Информационный женский портал

Как называется создание лекарств в лаборатории. Новые лекарства: как происходит разработка лекарств. А что это означает в реальности

Для создания лекарств, как и во многих других сферах, все чаще применяются компьютерные технологии. О том, как уже сейчас различные препараты создаются на компьютере и в чем суть персонализированной медицины, рассказывает Полина Шичкова, студентка пятого курса МФТИ лаборатории биоинформатики кафедры молекулярной и трансляционной медицины и магистрант Сколтеха по направлению «Биомедицинские технологии».

Лекарства. Разнообразие смыслов

Когда вы слышите о новой разработке некой современной фармкомпании, то вряд ли представляете себе собирающих на лужайке целебные травы ученых-биологов или запертых в маленькой лаборатории алхимиков. Как же изобретаются новые лекарства и что они из себя представляют теперь, когда многие лечебные травы уже собраны и изучены?

Суть лекарства - то есть то, что помогает человеку выздороветь - заключается в активном веществе. Вкупе с разнообразными химическими добавками оно может стать, например, удобной для проглатывания цветной таблеткой. Говоря о лекарствах далее, мы будем иметь в виду их активные вещества. Есть несколько разных по своей химической природе типов лекарственных веществ, а в целом их можно разделить на две группы: малые молекулы (с молекулярной массой <500 дальтон, иногда используется менее жесткий предел - 900 дальтон) и биологические препараты (с большей молекулярной массой, обычно это белки или пептиды). На сегодняшний день малые молекулы доминируют на рынке, поэтому мы будем говорить именно о них. Смысл работы любого вещества, обладающего лекарственной активностью, заключается в том, что оно связывается с мишенью бактерии или вируса в организме человека, взаимодействует с другими молекулами, благодаря чему происходит улучшение состояния организма.

Пример сложного каскада реакций в нашем организме: сигнальный путь Wnt

Молекулярные основы препаратов

В организме человека протекает множество химических процессов. Их можно описать каскадами реакций, которые могут быть очень большими и сложными, как на рисунке выше. Развитие заболевания сопровождается нарушениями в каких-то химических процессах в организме. В каскадах реакций есть ключевые участники (некоторые молекулы, в большинстве случаев белки), которые в большей мере ответственны за происходящее. Для них, собственно, разрабатываются лекарства, то есть они становятся мишенями для них.

Поиск мишеней в процессе разработки лекарств

Однако белки - большие молекулы. Поэтому мало просто вычислить белок как мишень среди каскадов и сетей, нужно еще и определить на этой мишени конкретное место. Его называют активным сайтом. Взаимодействие правильного лекарства с этим самым местом и должно приводить к желаемому результату - улучшению самочувствия или выздоровлению.

Представьте себе замок и ключ. Взаимодействие лекарства с белком-мишенью - это и есть закрывание или открывание замка ключом. Чтобы лекарственная молекула могла взаимодействовать с необходимым центром белка, она должна соответствовать множеству физических, химических и даже просто геометрических требований. Замок должен подходить к ключу. Эти параметры могут быть довольно точно рассчитаны как раз с помощью компьютерных методов. Итак, молекула, которая обладает лекарственной активностью против определенного заболевания, связывается с активным сайтом белка-мишени, что модулирует его активность. Очень часто это модулирование заключается в ингибировании (подавлении) его взаимодействия с другими молекулами. Таким образом исправляются ошибки, то есть вылечивается заболевание. Однако важно заметить, что молекулярные механизмы воздействия лекарств на мишени и последующие изменения в каскадах реакций разнообразны и сложны.

Фарминдустрия и разработка лекарств

В среднем на разработку одного лекарства тратится от 1 до 2,5 млрд долларов и около 10–15 лет. Если мы уже знаем белок-мишень и тем более его активный сайт, то для первичного отбора молекул - кандидатов в лекарства можно провести компьютерный виртуальный скрининг или высокопроизводительный экспериментальный скрининг. Последнее значительно дороже.

При проведении высокопроизводительного скрининга используются роботизированные системы. Они позволяют добавлять сотни тысяч разных исследуемых веществ в лунки панелей со специальным образом подготовленной тестовой системой. Разнообразные детекторы регистрируют сигналы о взаимодействии исследуемого вещества в каждой лунке с белком-мишенью тестовой системы.

А теперь давайте представим, что мы можем моделировать то, что происходит в каждой лунке панели высокопроизводительного скрининга. Точнее, как будут взаимодействовать исследуемые молекулы (среди которых мы хотим найти обладающих лекарственной активностью) с белком-мишенью. В таком случае дорогую роботизированную систему можно заменить компьютерными программами, а вещества и белки - описанием их структур в определенном формате. Тогда с помощью компьютерных методов мы исключим вещества, которые плохо взаимодействуют с белком-мишенью, уменьшив количество веществ для экспериментальной проверки, что снизит затраты и увеличит шансы на успех.

Для решения задачи виртуального скрининга активно используется молекулярный докинг («стыковка»). Его суть заключается в моделировании взаимного расположения малой исследуемой молекулы и белка мишени. С помощью специальной скоринговой функции, приближенно описывающей энергию взаимодействия малой молекулы с белком-мишенью, программа докинга ранжирует исследуемые вещества. Используя ее результаты, можно выкинуть из дальнейшего рассмотрения вещества с плохими значениями скоринговой функции относительно некоторого порогового значения. Для виртуального скрининга мы можем взять наборы большего размера (библиотеки) химических соединений, чем для высокопроизводительного скрининга. Так как мы проверим соединения на этапе виртуального скрининга, в экспериментальную проверку попадет уже «обогащенный» набор соединений, то есть тех, что с большей вероятностью будут иметь лекарственную активность. Таким образом, рациональный дизайн лекарств начинается с компьютера. Далее, чтобы лекарство вышло на рынок, оно должно пройти множество преклинических и клинических испытаний. Но даже когда препарат уже применяется на практике, исследования не прекращаются, ведь нужно проверить, нет ли у него побочных эффектов, которые могут проявляться спустя годы. Наверное, одним из наиболее широко известных примеров такого рода побочек является эффект одного успокаивающего и снотворного средства. В 1960-е годы в Европе родились тысячи детей с врожденными уродствами: их матери во время беременности принимали не до конца изученный снотворный препарат (талидомид). Так, из 10 000–1 000 000 кандидатных молекул лишь одна обычно становится настоящим лекарством. Шансы на успех, как мы видим, крайне малы.

Методы компьютерного дизайна лекарств

Какие еще компьютерные методы (помимо виртуального скрининга химических соединений) используются в разработке лекарств? Это может быть всевозможное моделирование, поиск подобных молекул, смена скелета молекулы и многое другое. У тех, кто занимается компьютерным дизайном лекарственных препаратов, есть целый арсенал специальных методик. В целом их принято разделять на те, что руководствуются знанием о структуре мишени, и те, что ориентируются на химическое соединение.

Теперь представим, что мы уже поняли почти все о химической структуре разработанного лекарства. И допустим, что у этого вещества есть побочные свойства, которые не позволяют нам выпустить его на рынок. Используя особые методы - поиск по молекулярному подобию и фармакофорам (наборам пространственных и электронных признаков молекулы), смену скелета молекулы, - мы можем найти такую, которая продолжит лечить, но перестанет калечить, либо побочные эффекты просто уменьшатся. Молекулярное подобие - это похожесть структур химических соединений. Считается, что близкие по химическим структурам соединения наиболее вероятно обладают похожими биологическими свойствами. Фармакофоры позволяют представить молекулу в виде набора функционально важных компонентов, каждый из которых отвечает за какое-то свойство молекулы. Представьте конструктор, каждый из блоков которого представляет какое-то свойство. Часть этих кирпичиков-свойств нас интересуют, а другие, напротив, нежелательны в потенциальном лекарстве, так как могут приводить к побочным эффектам, отрицательно влиять на доставку лекарства в нужное место в организме или на метаболизм. Мы хотим найти молекулу, в которой будут только полезные блоки-фармакофоры. Суть смены скелета молекулы состоит в использовании найденных полезных фрагментов с заменой остальных на более подходящие, то есть в оптимизации свойств молекулы потенциального лекарства.

Персонализированная медицина и драг-дизайн

Мы все отличаемся друг от друга. Одно и то же лекарство может помогать одному человеку, быть бесполезным для другого, а у третьего вызывать нежелательные последствия. Как мы уже говорили, взаимодействие лекарства с белком-мишенью обуславливается множеством физико-химических и пространственных параметров их обоих. А теперь представим, что в участке ДНК, кодирующем белок-мишень пациента N, есть отличие в одном-двух нуклеотидах (составных частей ДНК) по сравнению с большинством людей. То есть белок пациента N отличается от белка большинства людей, и эта его особенность приводит к бесполезности для пациента N лекарства A. Конечно, не каждая замена в ДНК приводит к изменениям в белке и далеко не все изменения являются критическими, но лекарство A не только не вылечит пациента N, но его употребление может привести к серьезным побочным эффектам. Однако, зная подробности замены в гене белка-мишени у пациента N (это можно определить генотипированием), можно смоделировать новую структуру белка. А зная новую структуру, можно провести тот самый скрининг и найти индивидуальное лекарство, которое поможет именно пациенту N.

Есть и менее драматичный пример: некоторые казусы с ДНК просто требуют замены дозировки лекарства. Но о своих особенностях и отличиях пациентам нужно для начала знать. С этим помогает генотипирование. Между тем информацию о взаимосвязи конкретных генетических вариантов с дозировкой лекарств (и не только) сегодня можно найти в специальной глобальной базе данных , чем и занимаются в продвинутых клиниках и чем, можно надеяться, будут заниматься повсеместно, принимая во внимание индивидуальные особенности ДНК пациентов при назначении лечения.

Создание лекарств - это сложно и важно, а компьютерные методы помогают снизить временные и материальные затраты на их разработку. За этими технологиями будущее, над которым сейчас и работает современная наука.

Процесс начинается с получения нового химического состава. Субстанции с комплексной структурой могут быть получены из различных источников, таких как растения (сердечные гликозиды), ткани животных (гепарин), микробные культуры (пенициллин), человеческие клетки (урокиназа), средствами генной инженерии (человеческий инсулин). Человек все глубже проникает в структурно-функциональные взаимосвязи, поиск новых агентов становится более сфокусированным.

Преклиническое тестирование

Преклиническое тестирование собирает информацию о биологических эффектах новых субстанций. Начальный скрининг проводится в биохимико-фармакологических исследованиях или экспериментах на клеточных культурах, изолированных клетках и изолированных органах. Так как эти модели не способны полностью воспроизвести весь комплекс биологических процессов в интактном организме, любое потенциальное лекарство должно быть тестировано на животных. Только опыты на животных могут ответить на вопрос. появляются ли желательные эффекты в нетоксичных или малотоксичных дозах.

Исследование токсичности призвано оценить:

  • токсичность при кратковременном и длительном применении,
  • возможность генетических повреждений (генотоксичность, мутагенность),
  • возможность развития опухолей (онко- и канцерогенность),
  • возможность рождения больного плода (тератогенность).

На животных исследуемые соединения испытываются также на поглощение, распределение, метаболизм, и выделение (фармакокинетика). Даже на уровне преклинических исследований отсеивается подавляющее большинство потенциальных лекарственных соединений и остаются только отдельные из них.

Клиническое тестирование

Фаза I

В этой фазе проводится исследование новых препаратов на здоровых лицах с целью определить, наблюдаются ли у человека эффекты, обнаруженные в тестах на животных, выявить взаимоотношения между дозой и эффектом.

Фаза II

Потенциальный новый препарат апробируется на избранных пациентах для определения терапевтической эффективности при заболевании, для которого он предназначен. Положительное действие должно быть явным, а нежелательные эффекты приемлемо малы.

Фаза III

В этой фазе к исследованию привлекаются большие группы пациентов с помощью которых исследуемое лекарство сравнивается со стандартным лечением по исходам терапии.

Как форма испытаний на людях, такие клинические испытания являются субъектом рассмотрения и одобрения этическими комитетами в соответствии с Хельсинской, Токийской и Венецианской декларациями. В процессе клинических испытаний многие новые лекарства лекарства признаются негодными к применению. В конечном итоге, остается только одно лекарство из примерно 10000 вновь полученных субстанций.

Решение одобрить новое препарат принимает национальный регулирующий орган (в России – Фармкомитет МЗ РФ). Заявители (фармацевтические компании) представляют в регулирующий орган полный комплект документации преклинических и клинических испытаний в которых полученные данные об эффективности и безопасности удовлетворяют установленным требованиям и предполагаемую форму выпуска продукта (таблетки, капсулы и т.д.)

После получения одобрения новое лекарство может продаваться под торговой маркой и, таким образом. становится доступным для назначения врачами и продажи в аптеках.

Параллельно идет разработка технологического процесса производства лекарственного средства, требований к качеству, методов анализа.

Процесс разработки лекарств и подготовки к производству лекарственных средств обычно продолжается 5 – 8 лет.

Фаза IV

По мере распространения препарата за ним продолжается наблюдение. Окончательное суждение о соотношении польза-риск нового лекарства может быть сделано только на основании долговременного опыта его применения. Таким образом, определяется терапевтическая ценность нового лекарственного препарата.

Наше мнение

Путь нового лекарства от исследовательской лаборатории до аптечного прилавка долог и требует вложения колоссальных средств. Вот почему глупо говорить о тотальном импортозамещении в фарминдустрии. Если, конечно, речь не идет о незаконном и полузаконном копировании чужих разработок или бесконечном производстве устаревших препаратов.

Казалось бы, все инновации, в том числе фармацевтических препаратов, входят в нашу жизнь медленно, но верно: ученые делают открытия, бизнесмены вкладывают в них средства, превращают в продукт для потребителей и - "полный вперед" на рынки сбыта. На самом же деле путь нового медикамента на аптечные полки иногда бывает необычайно трудным. На эту тему Александр Рылов беседовал с заместителем директора по науке НИИ молекулярной медицины ММА им. И. М. Сеченова Всеволодом Киселевым.

Всеволод Иванович, значит, лекарства рождаются "в муках"?
- Еще примерно лет пять назад я считал: стоит изобрести препарат, по-настоящему полезный для больных, как дальше все пойдет автоматически. В действительности же те, кто участвует в его создании, 90% сил тратят на то, чтобы не дать проекту умереть. Да и сам такой бизнес невероятно сложен и непредсказуем с точки зрения инновационной удачи. Вот почему на этом "поле" профессиональных инвесторов не так много. Тем более, что выведение на рынок нового лекарства, по оценкам американских специалистов, сейчас стоит около 1 млрд. дол. Словом, чтобы взяться за столь рискованное дело, надо обладать колоссальным капиталом и соответствующим опытом работы.

Кроме того, "цена удачи" в данном виде деятельности с каждым годом значительно возрастает. Если в середине XX в. в мире ежегодно появлялись 20 - 30 новых лекарств, то в начале 2009 г., увы, в 5 - 6 раз меньше. К тому же крайне редким стало появление "революционных" препаратов (каким был, например, антибиотик пенициллин), т.е. в разы повышающих эффективность лечения в отличие от прочих лекарств-"новичков", увеличивающих ее лишь на 15 - 20%. К сожалению, это означает, что КПД фармацевтики падает.

Так с чего начинается рождение лекарства?
- С некой "питательной среды": тысячи лабораторий во всем мире изучают биологические процессы. В одних случаях исследователи прицельно ищут пути создания какого-либо препарата, в других - осуществляют творческий поиск, часто оказывающийся плодотворным для решения практических задач. В результате ежегодно открывают десятки регуляторных молекул (способных влиять на происходящие в нашем организме важные для здоровья преобразования). Большинство таковых патентуется, однако они не представляют собой даже "зародыша" лекарства и весьма далеки до его появления на аптечной полке.

Но вот в дело начинают включаться инвесторы - фонды, специализирующиеся, как правило, на производстве биофармацевтических средств. Решение о финансировании тех или иных проектов они принимают на основании экспертной оценки венчурных менеджеров - представителей редкой, сложной, востребованной, требующей интуиции профессии, знающих, по каким законам живет "элита" фармацевтического мира, чего от этой отрасли ждет рынок, как биологически активные молекулы превращаются в лекарства.

Такие специалисты присматриваются к университетам и научным центрам в поисках перспективных разработок. И когда окончательно останавливаются на какой-либо из них, наступает самый ответственный момент в рождении лекарства: капитан консолидируется с наукой - организовывается стартовая компания (создатели препарата, как правило, ее соучредители), получающая от материнской венчурной фирмы миллионы долларов на доведение регуляторной молекулы до стадии медикамента. Затем фирмы, занимающиеся изготовлением лекарств, начинают его широкомасштабное производство.- Но зачем нужна цепочка посредников?
- Она оправдана и даже необходима. Не секрет, что мировое разделение труда все более усугубляется, каждое дело становится успешным лишь тогда, когда им займется специалист. Транснациональные фармацевтические "гиганты" крайне редко берутся за изготовление препаратов, находящихся на стадии изучения, а предпочитают те, что прошли первые этапы клинического исследования, когда уже доказана их безопасность и эффективность (тогда риски инвестирования минимальны, а цена проекта еще не достигла заоблачных масштабов). Этот новый собственник финансирует завершение испытаний, проводит государственную регистрацию лекарства, затем налаживает соответствующее производство и продвигает свою продукцию на глобальный рынок, поскольку ее окупаемость в пределах одного государства сегодня недостаточна. Как я уже говорил, финансовые риски при венчурном бизнесе очень велики, поэтому та или иная компания в течение 8 - 10 лет финансирует сразу около 10 проектов. А "путевку в жизнь" получит лишь один из них, способный оправдать все вложения.

Но все это касается наиболее развитых стран. Россия же сложные и современные лекарства может производить только по их лицензии?
- Пять лет назад так и было. Ныне же в нашей стране уже разработано несколько инновационных высокотехнологичных препаратов. А столь значимые события не остаются незамеченными для финансистов. Хочу отметить: число моих встреч с отечественными предпринимателями, взвешивающими возможности подобных инвестиций, растет в геометрической прогрессии.

Подобные "истории успеха" - сигнал и для нашей молодежи идти в фармацевтику, причем оставаться после окончания вуза на родине.

Что сейчас надо делать в России, чтобы развить и приумножить эти первые достижения?
- Освоить выпуск инновационных медикаментов ныне могут только государство рука об руку с бизнесом. И каждый член этого альянса должен решать свою задачу. Первый - создать мощную "питательную среду", где зарождались бы идеи и регуляторные молекулы, второй - научиться вести рискованные, долгосрочно окупаемые проекты. К сожалению, у нас еще не сформировался зрелый "климат" для их реализации, и, как следствие, все задачи на начальной стадии такой работы решаются трудно. Обратимся к мировому опыту: для постройки "мостика" между идеей ученого и началом производства препарата внутри фармацевтической отрасли существует несколько самостоятельных индустрии с многомиллионными денежными оборотами. В России тоже следует организовать несколько аналогичных предприятий.

Расскажите об одном из последних отечественных инновационных препаратов.
- Скажем, в нашем НИИ молекулярной медицины ММА им. И. М. Сеченова разработан диаскинтест, предназначенный для диагностики туберкулеза при массовых обследованиях населения, по точности на порядок превосходящий применяемые сегодня в мире. Причем стоимость соответствующей пробы у одного человека составляет всего несколько долларов. Речь идет о генно-инженерном белке, имеющем природные и искусственные фрагменты.

Этот препарат включили в Федеральную целевую программу "Предупреждение и борьба с социально значимыми заболеваниями (2007 - 2011 годы)".

Деньги в данный проект вложило только государство?
- Нет, оно не потратило ни копейки. Мы взаимодействовали с двумя российскими фирмами, финансировавшими работы, чтобы сначала организовать стартовую компанию, затем приступить к массовому изготовлению препарата. А после высокой оценки, данной диаскинтесту в апреле 2009 г. на специальном симпозиуме в рамках научной программы XVI Российского национального конгресса "Человек и лекарство", правительство РФ решило выделить средства на его государственную закупку.

А почему вы занялись именно туберкулезом?
- Поскольку мы создавали рыночный продукт, который должен подтвердить свою конкурентоспособность и в итоге оказаться прибыльным, то остановились на решении задачи, значимой для медицинского сообщества. Конечно, не менее важна и социальная составляющая. Этот недуг - колоссальная беда не только для России, где заболеваемость за последние 10 лет выросла вдвое, но и для всего мира. Ежегодно он поражает 9 млн. человек и почти 4 млн. из них погибают.

Дело в том, что у нас и во многих других странах всем младенцам вводят в организм так называемую вакцину БЦЖ - живые, но ослабленные благодаря специальной обработке туберкулезные микобактерии (подчеркнем: не человеческие, а бычьи). В результате у детей вырабатывается устойчивый иммунитет против возбудителей болезни. При обследовании же школьников на предмет данной инфекции регулярно делают пробу Манту - инъекцию туберкулина (специального препарата микобактерий). При его введении развивается местная воспалительная реакция - папула (немного возвышающийся над кожей красный кружок), значит, организм обладает нормальным иммунитетом. Если она не появилась, надо срочно повторить вакцинацию. В случае, когда этот "бугорок" достигает большого размера, сопровождается некрозом (омертвением тканей из-за нарушения кровообращения) и у ребенка увеличиваются лимфатические узлы, то надо немедленно обратиться к фтизиатру. Только он определит, болен пациент туберкулезом или в результате вакцинации БЦЖ образовался чрезмерный иммунитет.

Именно в неточности пробы Манту состояла главная трудность диагностики данного недуга: бесконечные обследования, профилактика и, конечно, психологические травмы, причем иногда им подвергались совершенно здоровые люди. Однако еще более опасные последствия наступали в результате их массового ненужного лечения, из-за чего в мире возникали новые, устойчивые к антибактериальным лекарствам штаммы микобактерий. Поэтому с болезнью справиться было все труднее, чаще наступали трагические исходы.

Из десяти пациентов, которым делают пробу Манту, примерно половина сталкивается с подобной проблемой. Но ведь прививки БЦЖ сейчас обязательны в 64 странах и рекомендуемы в 118. Выходит, ежегодно в мире из-за неточности такой диагностики десятки миллионов человек напрасно обследуются и лечатся. Уже по этим причинам наш диаскинтест, реагирующий только на заболевание туберкулезом, но всегда "молчащий" в случае избыточного иммунитета, сегодня ждут с нетерпением фтизиатры многих стран.

Не могли бы вы в общих чертах рассказать, как создавали этот чудо-препарат?
- Проведя долгую и сложную работу, мы сравнили структуру белков, образующихся в бычьих микобактериях (используемых для вакцинации БЦЖ), и туберкулинового из "человеческих" микробов (задействованного в пробе Манту). Некоторые их фрагменты оказались одинаковыми, поэтому привычная диагностика не могла точно "распознать", заразился человек туберкулезом или иммунитет превышает норму. С помощью методов генетической инженерии наши специалисты перестроили молекулу туберкулина, в частности, удалили из него "бычьи" фрагменты. Так появилась новая белковая молекула, состоящая из антигенных детерминант, присущих только микобактериям, вызывающим туберкулез у людей. На его основе и получили диаскинтест, который начала выпускать в 2009 г. фирма ЗАО ЛЕККО (Владимирская область).

Думается, успешным завершением работы мы доказали: не оборвались традиции уникальной фармацевтической школы, сложившейся еще в XIX в. на медицинском факультете Московского университета - "дедушки" нашей академии. И важнейшая среди них - мультидисциплинарность: благодаря ей фармаколог - разработчик лекарства, избегнув ненужных административных процедур, устанавливает сотрудничество с опытными специалистами практически в любой области медицины. Так, большую помощь в создании диаскинтеста оказал заведующий кафедрой фтизиопульмонологии этого вуза, крупнейший в мире знаток туберкулеза, академик РАМН, директор НИИ фтизиопульмонологии, главный фтизиатр Министерства здравоохранения и социального развития РФ Михаил Перельман.

В конце 2008 г. в московском районе Тропарево завершилось строительство нового корпуса фармацевтического факультета ММА, где есть экспериментально-производственная база, позволяющая готовить профессионалов для передовых фармацевтических технологий. Уверен: наше учебное заведение внесет важный вклад в возрождение отечественной фармацевтической отрасли.

Александр Рылов, Всеволод Киселев

Генрих КЛЕХ, директор отдела медицинских исследований и развития Регионального медицинского центра компании "Эли Лилли", профессор Венского университета:

1. Настоящее инновационное лекарство - это принципиально новый препарат, который лечит болезнь по совершенно иному механизму, чем лекарства-предшественники. Именно такие революционные препараты имеют коммерческий успех на современном рынке. За последние годы фармацевтическая медицина сделала большой шаг вперед.

Прежние традиционные препараты, такие, как аспирин, лечили только симптомы болезни, и это была химическая эра фармацевтики. В последние годы гораздо больше внимания исследователи стали уделять влиянию биологических соединений на рецепторы, с помощью чего можно по-настоящему бороться с причиной заболевания. Так сегодня лечат повышенное давление, болезни сердца и желудочно-кишечного тракта. Особенно биопрепараты успешны при лечении рака.

К современной фармацевтике подключилась генетика, изучающая в числе прочего и генные отклонения. По ним фармацевты устанавливают, какова реакция человеческого индивидуума на конкретное лекарство, как классическое, так и новое. Так гораздо конкретнее, чем прежде, разрабатывается схема лечения больного.

2. Существуют достаточно жесткие требования к эффективности нового лекарства, его безопасности. Причем эти требования существенно изменились за последние 20 лет. Прежде для получения лицензии контролирующим органам было достаточно предоставить данные о проведении 2 - 3 тысяч тестов или исследований нового лекарства. Теперь необходимо исследовать препарат на 8 - 10 тысячах людей. Что касается доступности современного препарата, то в принципе она должна быть максимальной. Но постоянный контроль за его приемом со стороны врача тоже необходим, а покупка (согласно сложившейся западной практике) должна осуществляться строго по рецепту.

3. Создание нового лекарства занимает до 14 лет. Это зависит от того, к какому классу относится данный препарат, насколько хорошо известны публике его "предшественники" и т.д. Исследования могут потребовать от 500 миллионов до миллиарда долларов США. Достаточно сказать, что среди исследованных 100 тысяч молекулярных соединений только тысяча может стать основой для нового лекарства. Из них только 100 молекул будут оказывать активное воздействие на организм пациента. Но и среди них 90% оказываются токсичными, так что в широкую продажу попадают только 10 исходных соединений, а коммерческим успехом пользуются только три. Поэтому фармацевтические фирмы, занимающиеся разработкой новых препаратов, вкладывают в исследования от 14 до 20 процентов своей прибыли.

4. Достаточно перспективно сегодня разрабатывать и продвигать продукты фармакогенетики. Во-первых, ими не лечили прежде. Во-вторых, лечение ряда заболеваний во главе с болезнью Альцгеймера традиционными препаратами не давало положительного результата. Кроме того, фармацевтам всего мира нужно форсировать разработку лекарств против рака. Определенные подвижки есть, но люди продолжают страдать от злокачественных заболеваний, а значит нужно продолжать искать от них панацею. Третья область перспективных исследований - это диабет, поскольку пока нет препарата, который бы боролся с первопричиной болезни. Ведь инсулин только гасит ее последствия.

Олег СУПРЯГА, медицинский директор компании "Никомед Россия-СНГ", д.м.н., профессор:

1. Под современным лекарством часто понимают "модное" лекарство, лекарство, созданное с помощью новых технологий. На мой взгляд, современное лекарство - это то, которое предназначено для лечения современных (имеющихся на настоящий момент) болезней. Структура заболеваний, а также доступность тех или иных лекарств в различных экономических и географических регионах мира разная, следовательно, частота применения различных лекарств также разная. Отсюда, определение современного лекарства для каждого региона будет своим.

2. Оно должно отвечать тем критериям качества, безопасности, доступности, которые может позволить себе общество по отношению к своим членам. Как правило, создается национальный (общественный или государственный) орган, которому делегирована функция контроля качества лекарственных средств. Общество с хорошо развитой экономикой и высокими затратами на здравоохранение может осуществлять нетарифное регулирование, ограничивая или закрывая импорт лекарств на свою территорию (рынок) из других менее экономически развитых государств. Тем самым, защищается и своя фармацевтическая промышленность.

3. Разброс затрат на создание нового лекарства составляет от 5 млн долларов США до 1 млрд долларов США и более. В разных странах по-разному, все зависит от тех критериев, которые диктуются обществом или государством, и которые, в свою очередь, определяются уровнем экономического и технологического развития общества, в частности ее фармацевтической промышленности, готовностью общества, государства или отдельных индивидуумов тратить те или иные суммы денег на лекарства, медицину и здравоохранение.

4. Стратегия компании "Никомед" такова, что она передала доклиническую разработку лекарств (Research and Development (R&D) подразделения) другой компании. В настоящее время компания "Никомед" участвует в разработке лекарств, начиная с уровня клинических исследований. Новые перспективные молекулы, успешно преодолевшие стадию доклинических исследований и доведенные до уровня клинических испытаний, лицензируются у специализированных компаний (биотехнологических, научно-исследовательских центров и т.д.).

При этом компания "Никомед" наряду с клиническими испытаниями осуществляет вывод лекарства на рынок (в основном, европейский) и его маркетинговую поддержку и продажи. Перспективными направлениями развития компании "Никомед" остаются кардиология, в т.ч. интервенционная, неврология, эндокринология, педиатрия, ревматология и другие области медицины.

Рустам ИКСАНОВ, директор Центра научных исследований и разработок (ЦНИиР) ОАО «Нижфарм».
1. Сегодня лекарство рассматривается как товар, а значит, оно является элементом рынка, существует по его законам.

2. Прежде всего, современное лекарство должно иметь обоснованную и доказанную безопасность и эффективность. Совершенно справедливо все большее внимание приобретают вопросы качества. За рубежом существуют очень высокие стандарты, распространяющиеся на все этапы разработки нового лекарства, проведения исследований, его производства. Только строгое соблюдение всех норм и правил может обеспечить гарантии соответствия ожидаемых и реальных свойств препарата.

В настоящее время в России также активно внедряются международные стандарты качества. Достаточно серьезным шагом в этом направлении станет, как я надеюсь, внедрение в России в 2005 году стандартов GMP (качественная производственная практика). Сегодня всего лишь несколько компаний в той или иной степени соответствует таким стандартам.

Немаловажным является вопрос доступности лекарств, который не может решаться без вмешательства государства в эту сферу. Пациенты должны иметь гарантию эффективного и безопасного лечения.

3. Новые лекарства проходят долгий путь, прежде чем займут место на аптечной полке. Необходимо не просто разработать лекарственное средство, нужно провести исследования на животных, клинические исследования, получить государственную регистрацию лекарственного средства. Разработка принципиально нового лекарственного средства за рубежом занимает около 10 лет и стоит порядка полумиллиона долларов. К сожалению, не обладая такими средствами, сегодня Россия практически не занимается разработкой принципиально новых лекарственных средств.

Вместе с тем стоит отметить, что научный потенциал для такой работы в России имеется. Хочется надеяться, что он получит необходимое развитие. В основном, российские компании занимаются разработкой воспроизведенных лекарственных средств, так называемых дженериков. Это требует меньших затрат.

4. Без анализа лекарственного рынка, без отслеживания современных тенденций развития стандартов лечения невозможно правильно оценивать перспективы развития фармакологии. Например, наша компания активно использует самые разные маркетинговые исследования, консультации ведущих специалистов для определения своих перспективных направлений.

Можно ли доверять дженерикам или оригинальные препараты всегда лучше? Разберемся, как устроено производ­ство лекарств у нас в стране и во всем мире. Наш эксперт - председатель координационного совета Национальной ассоциации производителей фармацевтической продукции и медицинских изделий, заслуженный работник здравоохранения РФ Надежда Дараган .

Новый или следующий?

Чтобы понять, как создаются новые лекарства, для начала стоит разобраться с терминами. Под инновационным препаратом понимается некая субстанция, которой ранее не существовало. Ее разработка начинается с подробного изучения болезни и выявления неизвестных до сих пор путей ее развития. Затем на основании полученных данных ученые определяют, каким образом можно повлиять на эти самые пути, чтобы остановить болезнь или обратить ее вспять. И уже после этого можно приступать к созданию молекул или биологических структур, которые и лягут в основу нового лекарства.

Совсем другое дело - это лекарства следующего поколения. В основе таких препаратов тоже лежат новые молекулы или биологические структуры, но действуют они на хорошо изученные звенья развития болезни и известные клетки-мишени. Разумеется, этапы создания инновационных лекарств и препаратов следующего поколения отличаются и по времени, и по стоимости.

От пробирки до таблетки

Итак, предварительные исследования проведены, мишени, на которые может подействовать инновационный препарат, обнаружены, теперь самое время приступать, собственно, к созданию лекарства. На первом этапе устанавливается формула препарата, на втором полученные вещества испытываются в различных условиях на клетках, тканях и животных. Если препарат показал себя безопасным, эффективным и нетоксичным, начинается самый сложный и долгий этап - клинические испытания, когда действие препарата проверяют на людях. И только после этого инновационный препарат выходит на рынок.

Весь этот процесс занимает не один год, и очень многое зависит от того, к­акое лекарство планируется выпустить на рынок. Если средство предназначено для лечения боли в суставах или , разработка может занимать от года до пяти лет, а если речь идет о препарате против рака, генетических или орфанных заболеваний, на его выпуск уходят десятилетия. Что касается стоимости, то разработка может оцениваться от нескольких десятков до сотен миллионов рублей.

Håkan Dahlström Follow/Flickr.com/CC BY 2.0

И вот тут-то и кроется ответ на вопрос: почему в России так мало новых лекарств? Вложить в разработку нового средства сотни миллионов рублей без гарантии, что этот препарат когда-либо появится на рынке (что-то может пойти не так на любом этапе создания лекарства) или что продажа нового средства принесет прибыль, могут позволить себе только очень крупные и богатые фармацевтические компании. Ведь основные финансовые затраты на разработку новых лекарств несут фармкомпании, не государство.

Возможно, ситуация изменится, если государство начнет активно стимулировать фармкомпании к выпуску и разработке новых лекарств и лекарств следующего поколения. Именно на это направлена федеральная целевая программа «Фарма-2020» и разрабатываемая в настоящее время Стратегия развития фармацевтической промышленности в Российской Федерации на период до 2030 года.

Мировой тренд

Впрочем, нельзя сказать, что в вопросе создания новых лекарств мы уж очень сильно отличаемся от других стран. На Западе количество выпускаемых инновационных препаратов и препаратов следующего поколения тоже медленно снижается с каждым годом. И дело не только в деньгах, хотя затраты на разработку - один из ключевых моментов, который тормозит выпуск новых лекарств. Дело еще и в изменившемся подходе к оценке эффективно­сти и безопасности новых лекарственных средств. За последние 20−30 лет контроль стал гораздо строже, и многие разработки так и остаются на стадии разработки.


mararie/Flickr.com/CCBY-SA 2.0

Поэтому и у нас, и во всем мире перед фармкомпаниями часто ставится совсем другая задача. Нужно не создать новое лекарство, а сделать существующие препараты доступнее. Именно поэтому большинство фармацевтических компаний во всем мире нацелено на выпуск дженериков - более дешевых аналогов оригинальных препаратов. Среди экспертов есть мнение, что американские, европейские и транснациональные фармацевтические компании давно закупают более 80% используемых фармацевтических субстанций в Индии и Китае.

Дешевле - значит хуже?

А у нас в стране дженерики часто называют «лекарствами второго сорта» и считается, что если есть возможность выбора, то всегда лучше предпочесть оригинальный препарат. Но такой подход хоть и выгоден аптечным учреждениям, которые получают больше прибыли от дорогих препаратов, верен далеко не всегда. Ведь дженерики дешевле оригиналов не потому, что на их производстве экономят (выпускают их на плохом оборудовании, не контролируют качество), а лишь потому, что на разработку дженерика тратится меньше денег и времени.

В основе дженерика лежит та же фармацевтическая субстанция, что и в основе оригинального препарата. Поэтому главная задача разработчиков дженериков - показать, что действующее вещество доходит до нужного места в организме и действует аналогично оригинальному препарату. Поэтому сказать, что дженерик всегда хуже оригинала, нельзя.

А раз так, при выборе препарата нельзя ориентироваться лишь на его цену. Если перед вами два средства с одним и тем же действующим вещест­вом, далеко не во всех случаях дешёвое окажется хуже дорогого. Поэтому единственный ориентир при выборе препарата - рекомендации врача.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!