Информационный женский портал

Мышечная ткань: виды, особенности строения и функции. Сердечная мышечная ткань: источник развития, структурная и функциональная характеристика ткани, особенности иннервация и сократительной активности, виды кардиомиоцитов, регенерация Клеткой сердечной мы

Гистогенез и виды клеток. Источники развития сердечной поперечнополосатой мышечной ткани - симметричные участки висцерального листка спланхнотома в шейной части зародыша - так называемые миоэпикардиалъные пластинки. Из них дифференцируются также клетки мезотелия эпикарда.

В ходе гистогенеза возникает 3 вида кардиомиоцитов:

  • рабочие, или типичные, или же сократительные, кардиомиоциты,
  • атипичные кардиомиоциты (сюда входят пейсмекерные, проводящие и переходные кардиомиоциты)
  • секреторные кардиомиоциты.

Рабочие (сократительные) кардиомиоциты образуют свои цепочки. Укорачиваясь, они обеспечивают силу сокращения всей сердечной мышцы. Рабочие кардиомиоциты способны передавать управляющие сигналы друг другу. Синусные (пейсмекерные) кардиомиоциты способны автоматически в определенном ритме сменять состояние сокращения на состояние расслабления. Они воспринимают управляющие сигналы от нервных волокон, в ответ на что изменяют ритм сократительной деятельности. Синусные (пейсмекерные) кардиомиоциты передают управляющие сигналы переходным кардиомиоцитам, а последние - проводящим. Проводящие кардиомиоциты образуют цепочки клеток, соединенных своими концами. Первая клетка в цепочке воспринимает управляющие сигналы от синусных кардиомиоцитов и передает их далее - другим проводящим кардиомиоцитам. Клетки, замыкающие цепочку, передают сигнал через переходные кардиомиоциты рабочим.

Секреторные кардиомиоциты выполняют особую функцию. Они вырабатывают гормон - натрийуретический фактор, участвующий в процессах регуляции мочеобразования и в некоторых других процессах.

Сократительные кардиомиоциты имеют удлиненную (100-150 мкм) форму, близкую к цилиндрической. Их концы соединяются друг с другом, так что цепочки клеток составляют так называемые функциональные волокна (толщиной до 20 мкм). В области контактов клеток образуются так называемые вставочные диски. Кардиомиоциты могут ветвиться и образуют трехмерную сеть. Их поверхности покрыты базальной мембраной, в которую снаружи вплетаются ретикулярные и коллагеновые волокна. Ядро кардиомиоцита (иногда их два) овальное и лежит в центральной части клетки. У полюсов ядра сосредоточены немногочисленные органеллы общего значения. Миофибриллы слабо обособлены друг от друга, могут расщепляться. Их строение аналогично строению миофибрилл миосимпласта скелетного мышечного волокна. От поверхности плазмолеммы в глубь кардиомиоцита направлены Т-трубочки, находящиеся на уровне Z-линии. Их мембраны сближены, контактируют с мембранами гладкой эндоплазматической (т.е. саркоплазматической) сети. Петли последней вытянуты вдоль поверхности миофибрилл и имеют латеральные утолщения (L-системы), формирующие вместе с Т-трубочками триады или диады. В цитоплазме имеются включения гликогена и липидов, особенно много включений миоглобина. Механизм сокращения кардиомиоцитов такой же, как у миосимпласта.

Кардиомиоциты соединяются друг с другом своими торцевыми концами. Здесь образуются так называемые вставочные диски: эти участки выглядят как тонкие пластинки при увеличении светового микроскопа. Фактически же концы кардиомиоцитов имеют неровную поверхность, поэтому выступы одной клетки входят во впадины другой. Поперечные участки выступов соседних клеток соединены друг с другом интердигитациями и десмосомами. К каждой десмосоме со стороны цитоплазмы подходит миофибрилла, закрепляющаяся концом в десмоплакиновом комплексе. Таким образом, при сокращении тяга одного кардиомиоцита передается другому. Боковые поверхности выступов кардиомиоцитов объединяются нексусами (или щелевыми соединениями). Это создает между ними метаболические связи и обеспечивает синхронность сокращений.

Возможности регенерации сердечной мышечной ткани. При длительной усиленной работе (например, в условиях постоянно повышенного артериального давления крови) происходит рабочая гипертрофия кардиомиоцитов. Стволовых клеток или клеток-предшественников в сердечной мышечной ткани не обнаружено, поэтому погибающие кардиомиоциты (в частности, при инфаркте миокарда) не восстанавливаются, а замещаются элементами соединительной ткани.

Мышечные ткани объединяет способность к сокращению.

Особенности строения: сократительный аппарат, занимающий значительную часть в цитоплазме структурных элементов мышечной ткани и состоящий из актиновых и миозиновых филаментов, которые формируют органеллы специального назначения –миофибриллы .

Классификация мышечных тканей

1. Морфофункциональная классификация:

1) Поперечнополосатая, или исчерченная мышечная ткань: скелетная и сердечная;

2) Неисчерченная мышечная ткань: гладкая.

2. Гистогенетическая классификация (в зависимости от источников развития):

1) Соматического типа (из миотомов сомитов) – скелетная мышечная ткань (поперечнополосатая);

2) Целомического типа (из миоэпикардиальной пластинки висцерального листка спланхнотома) – сердечная мышечная ткань (поперечнополосатая);

3) Мезенхимного типа (развивается из мезенхимы) – гладкая мышечная ткань;

4) Из кожной эктодермы и прехордальной пластинки – миоэпителиальные клетки желёз (гладкие миоциты);

5) Нейрального происхождения (из нервной трубки) – мионейральные клетки (гладкие мышцы, суживающие и расширяющие зрачок).

Функции мышечной ткани : перемещение тела или его частей в пространстве.

СКЕЛЕТНАЯ МЫШЕЧНАЯ ТКАНЬ

Исчерченная (поперечно-полосатая) мышечная ткань составляет до 40% массы взрослого человека, входит в состав скелетных мышц, мышц языка, гортани и др. Относятся к произвольным мышцам, поскольку их сокращения подчиняются воле человека. Именно эти мышцы задействованы при занятии спортом.

Гистогенез. Скелетная мышечная ткань развивается из клеток миотомов миобластов. Различают головные, шейные, грудные, поясничные, крестцовые миотомы. Они разрастаются в дорзальном и вентральном направлениях. В них рано врастают ветви спинномозговых нервов. Часть миобластов дифференцируется на месте (образуют аутохтонную мускулатуру), а другие с 3 недели внутриутробного развития мигрируют в мезенхиму и, сливаясь друг с другом, образуют мышечные трубки (миотубы ) с крупными центрально ориентированными ядрами. В миотубах происходит дифференцировка специальных органелл миофибрилл. Первоначально они располагаются под плазмолеммой, а затем заполняют большую часть миотубы. Ядра смещаются к периферии. Клеточные центры и микротрубочки исчезают, грЭПС значительно редуцируется. Такая многоядерная структура называется симпласт , а для мышечной ткани – миосимпласт . Часть миобластов дифференцируется в миосателлитоциты, которые располагаются на поверхности миосимпластов и впоследствии принимают участие в регенерации мышечной ткани.

Строение скелетной мышечной ткани

Рассмотрим строение мышечной ткани на нескольких уровнях организации живого: на органном уровне (мышца как орган), на тканевом (непосредственно мышечная ткань), на клеточном (строение мышечного волокна), на субклеточном (строение миофибриллы) и на молекулярном уровне (строение актиновых и миозиновых нитей).

На каритнке:

1 — мышца икроножная (органный уровень), 2 — поперечный срез мышцы (тканевой уровень) — мышечные волокна, между которыми РВСТ: 3 — эндомизий, 4 — нервное волокно, 5 — кровеносный сосуд; 6 — поперечный срез мышечного волокна (клеточный уровень): 7 — ядра мышечного волокна — симпласта, 8 — митохондрия между миофибриллами, синим цветом — саркоплазматический ретикулум; 9 — поперечный срез миофибриллы (субклеточный уровень): 10 — тонкие актиновые нити, 11 — толстые миозиновые нити, 12 — головки толстых миозиновых нитей.

1) Органный уровень: строение мышцы как органа.

Скелетная мышца состоит из пучков мышечных волокон, связанных воедино системой соединительнотканных компонентов. Эндомизий – прослойки РВСТ между мышечными волокнами, где проходят кровеносные сосуды, нервные окончания. Перимизий – окружает 10-100 пучков мышечных волокон. Эпимизий – наружная оболочка мышцы, представлена плотной волокнистой тканью.

2) Тканевой уровень: строение мышечной ткани.

Структурно-функциональной единицей скелетной поперечнополосатой (исчерченной) мышечной ткани является мышечное волокно – цилиндрической формы образование диаметром 50 мкм и длиной от 1 до 10-20 см. Мышечное волокно состоит из 1) миосимпласта (образование его смотри выше, строение – ниже), 2) мелких камбиальных клеток – миосателлитоцитов , прилежащих к поверхности миосимпласта и располагающиеся в углублениях его плазмолеммы, 3) базальной мембраны, которой покрыта плазмолемма. Комплекс плазмолеммы и базальной мембраны называется сарколемма . Для мышечного волокна характерна поперечная исчерченность, ядра смещены на периферию. Между мышечными волокнами – прослойки РВСТ (эндомизий).

3) Клеточный уровень: строение мышечного волокна (миосимпласта).

Термин «мышечное волокно» подразумевает «миосимпласт», поскольку миосимпласт обеспечивает функцию сокращения, миосателлитоциты участвуют только в регенерации.

Миосимпласт , как и клетка, состоит из 3-х компонентов: ядра (точнее множества ядер), цитоплазмы (саркоплазма) и плазмолеммы (которая покрыта базальной мембраной и называется сарколемма). Почти весь объём цитоплазмы заполнен миофибриллами – органеллами специального назначения, органеллы общего назначения: грЭПС, аЭПС, митохондрии, комплекс Гольджи, лизосомы, а также ядра смещены на периферию волокна.

В мышечном волокне (миосимпласте) различают функциональные аппараты: мембранный , фибриллярный (сократительный) и трофический .

Трофический аппарат включает ядра, саркоплазму и цитоплазматические органеллы: митохондрии (синтез энергии), грЭПС и комплекс Гольджи (синтез белков – структурных компонентов миофибрилл), лизосомы (фагоцитоз изношенных структурных компонентов волокна).

Мембранный аппарат : каждое мышечное волокно покрыто сарколеммой, где различают наружную базальную мембрану и плазмолемму (под базальной мембраной), которая образует впячивания (Т -трубочки). К каждой Т -трубочке примыкают по две цистерны триаду : две L -трубочки (цистерны аЭПС) и одна Т -трубочка (впячивание плазмолеммы). В цистернах аЭПС концентрируются Са 2+ , необходимый при сокращении. К плазмолемме снаружи прилежат миосателлитоциты. При повреждении базальной мембраны запускается митотический цикл миосателлитоцитов.

Фибриллярный аппарат .Большую часть цитоплазмы исчерченных волокон занимают органеллы специального назначения – миофибриллы, ориентированы продольно, обеспечивающие сократительную функцию ткани.

4) Субклеточный уровень: строение миофибриллы.

При исследовании мышечных волокон и миофибрилл под световым микроскопом, отмечается чередование в них темных и светлых участков – дисков. Темные диски отличаются двойным лучепреломлением и называются анизотропными дисками, или А - дисками. Светлые диски не обладают двойным лучепреломлением и называются изотропными, или I -дисками.

В середине диска А имеется более светлый участок – Н -зона, где содержатся только толстые нити белка миозина. В середине Н -зоны (значит и А -диска) выделяется более темная М -линия, состоящая из миомезина (необходим для сборки толстых нитей и их фиксации при сокращении). В середине диска I расположена плотная линия Z , которая построена из белковых фибриллярных молекул. Z -линия соединена с соседними миофибриллами с помощью белка десмина, и поэтому все названные линии и диски соседних миофибрилл совпадают и создается картина поперечнополосатой исчерченности мышечного волокна.

Структурной единицей миофибриллы является саркомер (S ) это пучок миофиламентов заключенный между двумя Z -линиями. Миофибрилла состоит из множества саркомеров. Формула, описывающая структуру саркомера:

S = Z 1 + 1/2 I 1 + А + 1/2 I 2 + Z 2

5) Молекулярный уровень: строение актиновых и миозиновых филаментов .

Под электронным микроскопом миофибриллы представляют агрегаты из толстых, или миозиновых , и тонких, или актиновых , филаментов. Между толстыми филаментами располагаются тонкие филаменты (диаметр 7-8 нм).

Толстые филаменты, или миозиновые нити, (диаметр 14 нм, длина 1500 нм, расстояние между ними 20-30 нм) состоят из молекул белка миозина, являющимся важнейшим сократительным белком мышцы, по 300-400 молекул миозина в каждой нити. Молекула миозина – это гексамер, состоящий из двух тяжелых и четырех легких цепей. Тяжелые цепи представляют собой две спирально закрученные полипептидные нити. Они несут на своих концах шаровидные головки. Между головкой и тяжелой цепью находится шарнирный участок, с помощью которого головка может изменять свою конфигурацию. В области головок – легкие цепи (по две на каждой). Молекулы миозина уложены в толстой нити таким образом, что их головки обращены наружу, выступая над поверхностью толстой нити, а тяжелые цепи образуют стержень толстой нити.

Миозин обладает АТФ-азной активностью: высвобождающаяся энергия используется для мышечного сокращения.

Тонкие филаменты, или актиновые нити, (диаметр 7-8 нм), образованы тремя белками: актином, тропонином и тропомиозином. Основным по массе белком является актин, который образует спираль. Молекулы тропомиозина располагаются в желобке этой спирали, молекулы тропонина располагаются вдоль спирали.

Толстые нити занимают центральную часть саркомера – А -диск, тонкие занимают I - диски и частично входят между толстыми миофиламентами. Н -зона состоит только из толстых нитей.

В покое взаимодействие тонких и толстых нитей (миофиламентов) невозможно, т.к. миозин-связывающие участки актина заблокированы тропонином и тропомиозином. При высокой концентрации ионов кальция конформационные изменения тропомиозина приводят к разблокированию миозин-связывающих участков молекул актина.

Двигательная иннервация мышечного волокна . Каждое мышечное волокно имеет собственный аппарат иннервации (моторная бляшка) и окружено сетью гемокапилляров, располагающихся в прилежащей РВСТ. Этот комплекс называется мион. Группа мышечных волокон, которые иннервируются одним мотонейроном, называется нервно-мышечной единицей. Мышечные волокна в этом случае могут располагаться не рядом (одно нервное окончание может контролировать от одного до десятков мышечных волокон).

При поступлении нервных импульсов по аксонам двигательных нейронов происходит сокращение мышечного волокна .

Сокращение мышцы

При сокращении мышечные волокна укорачиваются, но длина актиновых и миозиновых филаментов в миофибриллах не изменяется, а происходит их движение друг относительно друга: миозиновые нити вдвигаются в пространства между актиновыми а, актиновые – между миозиновыми. В результате этого уменьшается ширина I -диска, H -полоски и уменьшается длина саркомера; ширина А -диска не изменяется.

Формула саркомера при полном сокращении:S = Z 1 + А + Z 2

Молекулярный механизм мышечного сокращения

1. Прохождение нервного импульса через нервно-мышечный синапс и деполяризация плазмолеммы мышечного волокна;

2. Волна деполяризации проходит по Т -трубочкам (впячивания плазмолеммы) до L -трубочек (цистерны саркоплазматического ретикулума);

3. Открытие кальциевых каналов в саркоплазматическом ретикулуме и выход ионов Са 2+ в саркоплазму;

4. Кальций диффундирует к тонким нитям саркомера, связывается с тропонином С, приводя к конформационным изменениям тропомиозина и освобождая активные центры для связывания миозина и актина;

5. Взаимодействие миозиновых головок с активными центрами на молекуле актина с образованием актино-миозиновых «мостиков»;

6. Миозиновые головки «шагают» по актину, образуя в ходе перемещения новые связи актина и миозина, при этом актиновые нити подтягиваются в пространство между миозиновыми нитями к M -линии, сближая две Z -линии;

7. Расслабление: Са 2+ -АТФ-аза саркоплазматического ретикулума закачивает Са 2+ из саркоплазмы в цистерны. В саркоплазме концентрация Са 2+ становится низкой. Разрываются связи тропонина С с кальцием, тропомиозин закрывает миозин-связывающие участки тонких нитей и препятствует их взаимодействию с миозином.

Каждое движение головки миозина (присоединение к актину и отсоединение) сопровождается затратой энергии АТФ.

Чувствительная иннервация (нервно-мышечные веретена). Интрафузальные мышечные волокна вместе с чувствительными нервными окончаниями формируют нервно-мышечные веретена, являющиеся рецепторами скелетной мышцы. Снаружи сформирована капсула веретена. При сокращении поперечно-полосатых (исчерченных) мышечных волокон изменяется натяжение соединительно-тканной капсулы веретена и соответственно изменяется тонус интрафузальных (расположенных под капсулой) мышечных волокон. Формируется нервный импульс. При избыточном растяжении мышцы возникает чувство боли.

Классификация и типы мышечных волокон

1. По характеру сокращения: фазные и тонические мышечные волокна. Фазные способны осуществлять быстрые сокращения, но не могут длительно удерживать достигнутый уровень укорочения. Тонические мышечные волокна (медленные) обеспечивают поддержание статического напряжения или тонуса, что играет роль в сохранения определённого положения тела в пространстве.

2. По биохимическим особенностям и цвету выделяют красные и белые мышечные волокна . Цвет мышцы обусловлен степенью васкуляризации и содержанием миоглобина. Характерной особенностью красных мышечных волокон является наличие многочисленных митохондрий, цепи которых располагаются между миофибриллами. В белых мышечных волокнах митохондрий меньше и они располагаются равномерно в саркоплазме мышечного волокна.

3. По типу окислительного обмена : оксидативные, гликолитические и промежуточные . Идентификация мышечных волокон основана на выявлении активности фермента сукцинатдегидрогеназы (СДГ), которая является маркером для митохондрий и цикла Кребса. Активность этого фермента свидетельствует о напряженности энергетического метаболизма. Выделяют мышечные волокна А -типа (гликолитические) с низкой активностью СДГ, С -тип (оксидативные) с высокой активностью СДГ. Мышечные волокна В -типа занимают промежуточное положение. Переход мышечных волокон от А -типа в С -тип маркирует изменения от анаэробного гликолиза к метаболизму, зависящему от кислорода.

У спринтеров (спортсменов, когда нужен быстрое недолгое сокращение, культуристов) тренировки и питание направлено на развитие гликолитических, быстрых, белых мышечных волкон : в них много запасов гликогена и энергия добывается преимущественно анаэолбным путём (белое мясо у курицы). У стайеров (спортсменов — марафонцев, в тех видах спорта, где необходима выносливость) преобладают оксидативные, медленные, красные волокна в мышцах — в них много митохондрий для аэробного гликолиза, кровеносных сосудов (нужен кислород).

4. В исчерченных мышцах различают два вида мышечных волокон: экстрафузальные , которые преобладают и обуславливают собственно сократительную функцию мышцы и интрафузальные , входящие в состав проприоцепторов – нервно-мышечных веретен.

Факторами, определяющими структуру и функцию скелетной мышцы являются влияние нервной ткани, гормональное влияние, местоположение мышцы, уровень васкуляризации и двигательной активности.

СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ

Сердечная мышечная тканьнаходится в мышечной оболочке сердца (миокард) и в устьях связанных с ним крупных сосудов. Имеет клеточный тип строения и основным функциональным свойством служит способность к спонтанным ритмическим сокращениям (непроизвольные сокращения).

Развивается из миоэпикардиальной пластинки (висцеральный листок спланхнотома мезодермы в шейном отделе), клетки которой размножаются митозом, а потом дифференцируются. В клетках появляются миофиламенты, которые далее формируют миофибриллы.

Строение . Структурная единица сердечной мышечной ткани – клетка кардиомиоцит. Между клетками находятся прослойки РВСТ с кровеносными сосудами и нервами.

Типы кардиомиоцитов : 1) типичные (рабочие, сократительные), 2) атипичные (проводящие), 3) секреторные .

Типичные кардиомиоциты

Типичные (рабочие, сократительные) кардиомиоциты – клетки цилиндрической формы, длиной до 100-150 мкм и диаметром 10-20 мкм. Кардиомиоциты образуют основную часть миокарда, соединены друг с другом в цепочки основаниями цилиндров. Эти зоны называют вставочными дисками , в которых выделяют десмосомальные контакты и нексусы (щелевидные контакты). Десмосомы обеспечивают механическое сцепление, которое препятствует расхождению кардиомиоцитов. Щелевидные контакты способствуют передаче сокращения от одного кардиомиоцита к другому.

Каждый кардиомиоцит содержат одно или два ядра, саркоплазму и плазмолемму, окружённую базальной мембраной. Различают функциональные аппараты, такие же, как в мышечном волокне: мембранный , фибриллярный (сократительный), трофический, а также энергетический .

Трофический аппарат включает ядро, саркоплазму и цитоплазматические органеллы: грЭПС и комплекс Гольджи (синтез белков – структурных компонентов миофибрилл), лизосомы (фагоцитоз структурных компонентов клетки). Кардиомиоциты, как и олокна скелетной мышечной ткани, характеризуются наличием в их саркоплазме железосодержащего кислород-связывающего пигмента миоглобина, придающего им красный цвет и сходного по строению и функции с гемоглобином эритроцитов.

Энергетический аппарат представлен митохондриями и включениями, расщепление которых обеспечивает получение энергии. Митохондрии многочисленны, лежат рядами между фибриллами, у полюсов ядра и под сарколеммой. Энергия, необходимая кардиомиоцитам, получается путём расщепления: 1) основного энергетического субстрата этих клеток – жирных кислот , которые депонируются в виде триглицеридов в липидных каплях; 2) гликогена, находящегося в гранулах, расположенных между фибриллами.

Мембранный аппарат : каждая клетка покрыта оболочкой, состоящей из комплекса плазмолеммы и базальной мембраны. Оболочка образует впячивания (Т -трубочки). К каждой Т -трубочке примыкает одна цистерна (в отличие от мышечного волокна – там 2 цистерны) саркоплазматического ретикулума (видоизменённая аЭПС), образуя диаду : одна L -трубочка (цистерна аЭПС) и одна Т -трубочка (впячивание плазмолеммы). В цистернах аЭПС ионы Са 2+ накапливаются не так активно, как в мышечных волокнах.

Фибриллярный (сократительный) аппарат .Большую часть цитоплазмы кардиомиоцита занимают органеллы специального назначения – миофибриллы, ориентированы продольно и расположенные по периферии клетки.Сократительный аппарат рабочих кардиомиоцитовсходен со скелетными мышечными волокнами. При расслаблении, ионы кальция выделяются в саркоплазму с низкой скоростью, что обеспечивает автоматизм и частые сокращения кардиомиоцитов. Т -трубочки широкие и образуют диады (одна Т -трубочка и одна цистерна сети), которые сходятся в области Z -линии.

Кардиомиоциты, связываясь с помощью вставочных дисков, образуют сократительные комплексы, которые способствуют синхронизации сокращения, между кардиомиоцитами соседних сократительных комплексов образуются боковые анастомозы.

Функция типичных кардиомиоцитов : обеспечение силы сокращения сердечной мышцы.

Проводящие (атипичные) кардиомиоциты обладают способностью к генерации и быстрому проведению электрических импульсов. Они образуют узлы и пучки проводящей системы сердца и разделяются на несколько подтипов: пейсмекеры (в синоатриальном узле), переходные (в атрио-вентрикулярном узле) и клетки пучка Гиса и волокон Пуркинье. Проводящие кардиомиоциты характеризуются слабым развитием сократительного аппарата, светлой цитоплазмой и крупными ядрами. В клетках нет Т-трубочек и поперечной исчерченности, поскольку миофибриллы расположены неупорядоченно.

Функция атипичных кардиомиоцитов – генерация импульсов и передача на рабочие кардиомиоциты, обеспечивая автоматизм сокращения миокарда.

Секреторные кардиомиоциты

Секреторные кардиомиоцитынаходятся в предсердиях, преимущественно в правом; характеризуются отростчатой формой и слабым развитием сократительного аппарата. В цитоплзме, вблизи полюсов ядра – секреторные гранулы, содержащие натриуретический фактор, или атриопептин (гормон, регулирующий артериальное давление). Гормон вызывает потерю натрия и воды с мочой, расширение сосудов, снижение давления, угнетение секреции альдостерона, кортизола, вазопрессина.

Функция секреторных кардиомиоцитов : эндокринная.

Регенерация кардиомиоцитов. Для кардиомиоцитов характерна только внутриклеточная регенерация. Кардиомиоциты не способны к делению, у них отсутствуют камбиальные клетки.

ГЛАДКАЯ МЫШЕЧНАЯ ТКАНЬ

Гладкая мышечная ткань образует стенки внутренних полых органов, сосудов; характеризуется отсутствием исчерченности, непроизвольными сокращениями. Иннервация осуществляется вегетативной нервной системой.

Структурно-функциональная единица неисчерченной гладкой мышечной ткани – гладкая мышечная клетка (ГМК), или гладкий миоцит. Клетки имеют веретенообразную форму длиной 20-1000 мкм и толщиной от 2 до 20 мкм. В матке клетки имеют вытянутую отростчатую форму.

Гладкий миоцит

Гладкий миоцит состоит из расположенного в центре ядра палочковидной формы, цитоплазмы с органеллами и сарколеммы (комплекс плазмолеммы и базальной мембраны). В цитоплазме у полюсов находится комплекс Гольджи, много митохондрий, рибосом, развит саркоплазматический ретикулум. Миофиламенты расположены косо или вдоль продольной оси. В ГМК актиновые и миозиновые филаменты не формируют миофибрилл. Актиновых нитей больше и они прикрепляются к плотным тельцам, которые образованы специальными сшивающими белками. Рядом с актиновыми нитями располагаются мономеры миозина (микромиозин). Обладая разной длиной, они значительно короче тонких нитей.

Сокращение гладких мышечных клеток осуществляется при взаимодействии актиновых филаментов и миозина. Сигнал, идущий по нервным волокнам, обуславливает выделение медиатора, что изменяет состояние плазмолеммы. Она образует колбовидные впячивания (кавеолы), где концентрируются ионы кальция. Сокращение ГМК индуцируется притоком ионов кальция в цитооплазму: кавеолы отшнуровываются и вместе с ионами кальция попадают в клетку. Это приводит к полимеризации миозина и взаимодействию его с актином. Актиновые нити и плотные тельца сближаются, усилие передается на сарколемму и ГМК укорачивается. Миозин в гладких миоцитах способен взаимодействовать с актином только после фосфорилирования его легких цепей особым ферментом – киназой легких цепей. После прекращения сигнала ионы кальция покидают кавеолы; миозин деполяризуется, теряет сродство к актину. В результате комплексы миофиламентов распадаются; сокращение прекращается.

Особые типы мышечных клеток

Миоэпителиальные клетки являются производными эктодермы, не имеют исчерченности. Окружают секреторные отделы и выводные протоки желез (слюнных, молочных, слезных). С железистыми клетками они связаны десмосомами. Сокращаясь, способствуют выделению секрета. В концевых (секреторных) отделах форма клеток отросчатая, звездчатая. Ядро в центре, в цитоплазме, преимущественно в отростках локализованы миофиламенты, которые образуют сократительный аппарат. В этих клетках есть и цитокератиновые промежуточные филаменты, что подчеркивает их сходство с эпителиоцитами.

Мионейральные клетки развиваются из клеток наружного слоя глазного бокала и образуют мышцу, суживающую зрачок и мышцу, расширяющую зрачок. По строению первая мышца сходна с ГМК мезенхимного происхождения. Мышца, расширяющая зрачок образована отростками клеток, располагающимися радиально, а ядросодержащая часть клетки находится между пигментным эпителием и стромой радужки.

Миофибробласты относятся к рыхлой соединительной ткани и представляют собой видоизмененные фибробласты. Они проявляют свойства фибробластов (синтезируют межклеточное вещество) и гладких миоцитов (обладают выраженными сократительными свойствами). Как вариант этих клеток можно рассматривать миоидные клетки в составе стенки извитого семенного канальца яичка и наружного слоя теки фолликула яичника. При заживлении раны часть фибробластов синтезирует гладкомышечные актины и миозины. Миофибробласты обеспечивают стягивание краёв раны.

Эндокринные гладкие миоциты – это видоизмененные ГМК, представляющие основной компонент юкстагломерулярного аппарата почек. Они находятся в стенке артериол почечного тельца, имеют хорошо развитый синтетический аппарат и редуцированный сократительный. Продуцируют фермент ренин, находящийся в гранулах и попадающий в кровь механизмом экзоцитоза.

Регенерация гладкой мышечной ткани. Гладкие миоциты характеризуются внутриклеточной регенерацией. При повышении функциональной нагрузки происходит гипертрофия миоцитов и в некоторых органах гиперплазия (клеточная регенерация). Так, при беременности гладко-мышечные клетки матки могут увеличиваться в 300 раз.


Поперечнополосатая мышечная ткань сердечного типа входит в состав мышечной стенки сердца (миокард). Основной гистологический элемент - кардиомиоцит. Кардиомиоциты присутствуют также в проксимальной части аорты и верхней полой вены.
А. Кардиомиогенез. Миобласты происходят из клеток спланхнической мезодермы, окружающей эндокардиальную трубку (глава 10 Б I). После ряда митотических делений G,-mho6- ласты начинают синтез сократительных и вспомогательных белков и через стадию G0- миобластов дифференцируются в кардиомиоциты, приобретая вытянутую форму; в саркоплазме начинается сборка миофибрилл. В отличие от поперечнополосатой мышечной ткани скелетного типа, в кардиомиогенезе не происходит обособления камбиального резерва, а все кардиомиоциты необратимо находятся в фазе G0 клеточного цикла. Специфический фактор транскрипции (ген CATFl/SMBP2, 600502, Ilql3.2-ql3.4) экспрессируется только в развивающемся и сформировавшемся миокарде.
Б. Кардиомиоциты расположены между элементами рыхлой волокнистой соединительной ткани, содержащей многочисленные кровеносные капилляры бассейна венечных сосудов и терминальные ветвления двигательных аксонов нервных клеток вегетативного отдела нервной системы. Каждый миоцит имеет сарколемму (базальная мембрана + плазмолемма). Различают рабочие, атипичные и секреторные кардиомиоциты.

  1. Рабочие кардиомиоциты (рис. 7-11) - морфофункциональные единицы сердечной мышечной ткани - имеют цилиндрическую ветвящуюся форму диаметром около 15 мкм. Клетки содержат миофибриллы и ассоциированные с ними цистерны и трубочки саркоплазматического ретикулума (депо Ca2+), центрально расположенные одно или два ядра. Рабочие кардиомиоциты при помощи межклеточных контактов (вставочные диски) объединены в так называемые сердечные мышечные волокна - функциональный синцитий (совокупность кардиомиоцитов в пределах каждой камеры сердца).
а. Сократительный аппарат. Организация миофибрилл и саркомеров в кардиомио- цитах такая же, как и в скелетном мышечном волокне (см. I Б I, 2). Одинаков и механизм взаимодействия тонких и толстых нитей при сокращении (см. I Г 5, 6, 7).
б. Саркоплазматическая сеть. Выброс Ca2+ из саркоплазматического ретикулума регулируется через рецепторы рианодина (см. также главу 2 III А 3 б (3) (а)). Изменения мембранного потенциала открывают потенциалзависимые Са2+-каналы, в кар- диомиоцитах незначительно повышается концентрация Ca2+. Этот Ca2+ активирует рецепторы рианодина, и Ca2* выходит в цитозоль (кальций-индуцированная мобилизация Ca2+).
в. Т-трубочки в кардиомиоцитах, в отличие от скелетных мышечных волокон, проходят на уровне Z-линий. В связи с этим Т-трубочка контактирует только с одной терминальной цистерной. В результате вместо триад скелетного мышечного волокна формируются диады.
г. Митохондрии расположены параллельными рядами между миофибриллами. Их более плотные скопления наблюдают на уровне I-дисков и ядер.


Продольный
участок

Вставочный диск

¦ Эритроцит

Комплекс Г ольджи

Ядро
Эндотелиальная
клетка

. Просвет капилляра

Z-линия" Митохондрии-1

Базальная
мембрана

Миофибриллы

Рис. 7-11. Рабочий кардиомиоцит - удлинённой формы клетка. Ядро расположено центрально, вблизи ядра находятся комплекс Гольджи и гранулы гликогена. Между миофибриллами лежат многочисленные митохондрии. Вставочные диски (на врезке) служат для скрепления кардиомиоцитов и синхронизации их сокращения [из Hees H, Sinowatz F (1992) и Kopf-MaierP, Merker H-J {1989))

д. Вставочные диски. На концах контактирующих кардиомиоцитов имеются интердигитации (пальцевидные выпячивания и углубления). Вырост одной клетки плотно входит в углубление другой. На конце такого выступа (поперечный участок вставочного диска) сконцентрированы контакты двух типов: десмосомы и промежуточные. На боковой поверхности выступа (продольный участок вставочного диска) имеется множество щелевых контактов (nexus, нексус).

  1. Десмосомы обеспечивают механическое сцепление, препятствующее расхождению кардиомиоцитов.
  2. Промежуточные контакты необходимы для прикрепления тонких актиновых нитей ближайшего саркомера к сарколемме кардиомиоцита.
  3. Щелевые контакты - межклеточные ионные каналы, позволяющие возбуждению перескакивать от кардиомиоцита к кардиомиоциту. Это обстоятельство - наряду с проводящей системой сердца - позволяет синхронизировать одновременное сокращение множества кардиомиоцитов в составе функционального синцития.
е. Предсердные и желудочковые миоциты - разные популяции рабочих кардиомиоцитов. В предсердных кардиомиоцитах слабее развита система Т-трубочек, но в зоне вставочных дисков значительно больше щелевых контактов. Желудочковые кардиомиоциты крупнее, они имеют хорошо развитую систему Т-трубочек. В состав сократительного аппарата миоцитов предсердий и желудочков входят разные изоформы миозина, актина и других контрактильных белков.
  1. Атипичные кардиомиоциты. Этот устаревший термин относится к миоцитам, формирующим проводящую систему сердца (глава 10 Б 2 б (2)). Среди них различают водители ритма и проводящие миоциты.
а. Водители ритма (пейсмейкерные клетки, пейсмейкеры; рис. 7-12) - совокупность специализированных кардиомиоцитов в виде тонких волокон, окружённых рыхлой соединительной тканью. По сравнению с рабочими кардиомиоцитами они имеют меньшие размеры. В саркоплазме содержится сравнительно мало гликогена и небольшое количество миофибрилл, лежащих в основном по периферии клеток. Эти клетки имеют богатую васкуляризацию и двигательную вегетативную иннервацию. Так, в синусно- предсердном узле доля соединительнотканных элементов (включая кровеносные капилляры) в 1,5-3 раза, а нервных элементов (нейроны и двигательные нервные окончания) в 2,5-5 раз выше, чем в рабочем миокарде правого предсердия. Главное свойство водителей ритма - спонтанная деполяризация плазматической мембраны. При достижении критического значения возникает потенциал действия, распространяющийся по волокнам проводящей системы сердца и достигающий рабочих кардиомиоцитов. Главный водитель ритма - клетки синусно-предсердного узла - генерирует ритм 60-90 импульсов в минуту. Нормально активность других водителей ритма подавлена.
  1. Спонтанная генерация импульсов потенциально присуща не только водителям ритма, но и всем атипичным, а также рабочим кардиомиоцитам. Так, in vitro все кардиомиоциты способны к спонтанному сокращению.
  2. В проводящей системе сердца существует иерархия водителей ритма: чем ближе к рабочим миоцитам, тем реже спонтанный ритм.
б. Проводящие кардиомиоциты - специализированные клетки, выполняющие функцию проведения возбуждения от водителей ритма. Эти клетки образуют длинные волокна.
  1. Пучок Гйса. Кардиомиоциты этого пучка проводят возбуждение от водителей ритма к волокнам Пуркинъё, содержат относительно длинные миофибриллы, имеющие спиральный ход; мелкие митохондрии и небольшое количество гликогена. Проводящие кардиомиоциты пучка Гйса входят также в состав синусно-предсердного и предсердно-желудочкового узлов.
  2. Волокна Пуркинъё. Проводящие кардиомиоциты волокон Пуркинъё - самые крупные клетки миокарда. В них содержатся редкая неупорядоченная сеть миофибрилл, многочисленные мелкие митохондрии, большое количество гликогена. Кардиомиоциты волокон Пуркинъё не имеют Т-трубочек и не образуют вставочных дисков. Они связаны при помощи десмосом и щелевых контактов. Последние занимают значительную площадь контактирующих клеток, что обеспечивает высокую скорость проведения импульса по волокнам Пуркинъё.
  1. Секреторные кардиомиоциты. В части кардиомиоцитов предсердий (особенно правого) у полюсов ядер располагаются хорошо выраженный комплекс Гольджи и секреторные гранулы, содержащие атриопептин - гормон, регулирующий АД (глава 10 Б 2 б (3)).
В. Иннервация. На деятельность сердца - сложной авторегуляторной и регулируемой системы - оказывает влияние множество факторов, в т.ч. двигательная вегетативная

Рис. 7-12. Атипичные кардиомиоциты. А - водитель ритма синусно-предсердного узла;
Б - проводящий кардиомиоцит пучка Гйса [из Hees Н, Sinowatz F, 1992]

иннервация - парасимпатическая и симпатическая. Парасимпатическая иннервация осуществляется терминальными варикозными окончаниями аксонов блуждающего нерва, а симпатическая - окончаниями аксонов адренергических нейронов шейного верхнего, шейного среднего и звёздчатого (шейно-грудного) ганглиев. В контексте представления о сердце как о сложной авторегуляторной системе чувствительная иннервация сердца (как вегетативная, так и соматическая) должна рассматриваться как часть системы регуляции
кровотока.

  1. Двигательная вегетативная иннервация. Эффекты парасимпатической и симпатической иннервации реализуют соответственно мускариновые холинергические и
адренергические рецепторы плазмолеммы разных клеток сердца (кардиомиоциты рабочие и особенно атипические, внутрисердечные нейроны собственного нервного аппарата). Существует множество фармакологических препаратов, оказывающих непосредственное действие на названные рецепторы. Так, норадреналин, адреналин и другие адренергические препараты в зависимости от эффекта на а- и p-адренорецепторы подразделяют на активирующие (адреномиметики) и блокирующие (адреноблока- торы) агенты. м-Холинорецепторы также имеют аналогичные классы препаратов (холиномиметики и холиноблокаторы).
а. Активация симпатических нервов увеличивает частоту спонтанной деполяризации мембран водителей ритма, облегчает проведение импульса в волокнах Пуркинье и увеличивает частоту и силу сокращения типичных кардиомиоцитов.
б. Парасимпатические влияния, наоборот, уменьшают частоту генерации импульсов пейсмейкерами, снижают скорость проведения импульса в волокнах Пуркинье и уменьшают частоту сокращения рабочих кардиомиоцитов.
  1. Чувствительная иннервация
а. Спинальная. Периферические отростки чувствительных нейронов спинномозговых узлов образуют свободные и инкапсулированные нервные окончания.
б. Специализированные сенсорные структуры сердечно-сосудистой системы рассмотрены в главе 10.
  1. Внутрисердечные вегетативные нейроны (двигательные и чувствительные) могут формировать местные нейрорегуляторные механизмы.
  2. МИФ-клетки. Малая интенсивно флюоресцирующая клетка - разновидность нейронов, найдена практически во всех вегетативных ганглиях. Это небольшая (диаметр 10-20 мкм) и безотростчатая (или с небольшим числом отростков) клетка, в цитоплазме содержит множество крупных гранулярных пузырьков диаметром 50-200 нм с катехоламинами. Гранулярная эндоплазматическая сеть развита слабо и не образует скоплений, подобных тельцам Ниссля.
Г. Регенерация. При ишемической болезни сердца (ИБС), атеросклерозе коронарных сосудов, сердечной недостаточности разной этиологии (в т.ч. при артериальной гипертензии, инфаркте миокарда) наблюдаются патологические изменения кардиомиоцитов, включая их гибель.
  1. Репаративная регенерация кардиомиоцитов невозможна, т.к. они находятся в фазе G0 клеточного цикла, а аналогичные скелетномышечным клеткам-сателлитам G1- миобласты в миокарде отсутствуют. По этой причине на месте погибших кардиомиоцитов образуется соединительнотканный рубец со всеми вытекающими отсюда неблагоприятными последствиями (сердечная недостаточность) для проводящей и сократительной функций миокарда, а также для состояния кровотока.
  2. Сердечная недостаточность - нарушение способности сердца обеспечивать кровоснабжение органов в соответствии с их метаболическими потребностями.
а. Причины сердечной недостаточности - снижение сократительной способности, увеличение посленагрузки, изменения преднагрузки.
Снижение сократительной способности
(а) Инфаркт миокарда - некроз участка сердечной мышцы с потерей его способности к сокращению. Замещение поражённой части стенки желудочков соединительной тканью приводит к снижению функциональных свойств миокарда. При поражении значительной части миокарда развивается сердечная недостаточность.
(б) Врождённые и приобретённые пороки сердца приводят к перегрузке полостей сердца давлением или объёмом с развитием сердечной недостаточности.
(в) Артериальная гипертензия. Многие больные гипертонической болезнью или симптоматическими гипертензиями страдают недостаточностью кровообращения. Снижение сократительной способности миокарда характерно для стойкой тяжёлой гипертензии, быстро приводящей к развитию сердечной недостаточности.
(г) Кардиомиопатии токсические (алкоголь, кобальт, катехоламины, доксору- бицин), инфекционные, при т.н. коллагеновых болезнях, рестриктивные (ами- лоидоз и саркоидоз, идиопатические).
б. Компенсаторные механизмы при сердечной недостаточности. Феномены, вытекающие из закона Франка-Старлинга, в т.ч. гипертрофия миокарда, дилатация левого желудочка, периферическая вазоконстрикция вследствие выброса катехоламинов, активация системы ренин-ангиотензин-[альдостерон] и вазопрессина, перепрограммирование синтеза миозинов в кардиомиоцитах, увеличение секреции атриопептина, - компенсаторные механизмы, поддерживающие положительный инотропный эффект. Однако рано или поздно миокард теряет способность обеспечивать нормальный сердечный выброс.
  1. Гипертрофия кардиомиоцитов в виде увеличения массы клеток (в т.ч. их полиплоидизация) - компенсаторный механизм, приспосабливающий сердце к функционированию в патологических ситуациях.
  2. Перепрограммирование синтеза миозинов в кардиомиоцитах происходит при увеличении ОПСС для поддержания сердечного выброса, а также под влиянием повышенного содержания в крови T3 и T4 при тиреотоксикозах. Имеется несколько генов для лёгких и тяжёлых цепей сердечного миозина, различающихся по активности АТФазы, а значит, по длительности рабочего цикла (см. IГ 6) и развиваемому напряжению. Перепрограммирование миозинов (как и других сократительных белков) обеспечивает сердечный выброс на приемлемом уровне до тех пор, пока не будут исчерпаны возможности этого приспособительного механизма. При исчерпании этих возможностей развивается сердечная недостаточность - левосторонняя (гипертрофия левого желудочка с последующей его дилатацией и дистрофическими изменениями), правосторонняя (застой в малом круге кровообращения).
  3. Ренин-ангиотензин-[альдостерон], вазопрессин - мощная система вазо- констрикции.
  4. Периферическая вазоконстрикция вследствие выброса катехоламинов.
  5. Атриопептин - гормон, реализующий вазодилатацию.

Сердечная мышечная ткань

Структурно-функциональной единицей сердечной поперечно-полосатой мышечной ткани является кардиомиоцит. По строению и функциям кардиомиоциты подразделяются на две основные группы:

1) типичные (или сократительные) кардиомиоциты, образующие своей совокупностью миокард;

2) атипичные кардиомиоциты, составляющие проводящую систему сердца.

Сократительный кардиомиоцит представляет собой почти прямоугольную клетку длиной 50 – 120 мкм, шириной 15 – 20 мкм, в центре которой локализуется обычно одно ядро.

Покрыт снаружи базальной пластинкой. В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии – саркосомы. В отличие от скелетной мускулатуры миофибриллы кардиомиоцитов представляют собой не отдельные цилиндрические образования, а, по существу, сеть, состоящую из анастомозирующих миофибрилл, так как некоторые миофиламенты как бы отщепляются от одной миофибриллы и наискось продолжаются в другую. Кроме того, темные и светлые диски соседних миофибрилл не всегда располагаются на одном уровне, и потому поперечная исчерченность в кардиомиоцитах практически не выражена по сравнению с поперечно-полосатой мышечной тканью. Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующим канальцами. Терминальные цистерны и триады отсутствуют. Т-канальцы имеются, но они короткие, широкие и образованы не только углублениями плазмолеммы, но и базальной пластинки. Механизм сокращения в кардиомиоцитах практически не отличается от поперечно-полосатой скелетной мускулатуры.

Сократительные кардиомиоциты, соединяясь встык друг с другом, образуют функциональные мышечные волокна, между которыми имеются многочисленные анастомозы. Благодаря этому из отдельных кардиомиоцитов формируется сеть (функциональный синцитий).

Наличие таких щелевидных контактов между кардиомиоцитами обеспечивает одновременное и содружественное их сокращение вначале в предсердиях, а затем и в желудочках. Области контактов соседних кардиомиоцитов носят название вставочных дисков. Фактически никаких дополнительных структур между кардиомиоцитами нет. Вставочные диски – это места контактов цитолемм соседних кардиомиоцитов, включающих в себя простые, десмосомные и щелевидные контакты. Во вставочных дисках различают поперечные и продольные фрагменты. В области поперечных фрагментов имеются расширенные десмосомные соединения, к этому же месту с внутренней стороны плазмолеммы прикрепляются актиновые филаменты саркомеров. В области продольных фрагментов локализуются щелевидные контакты. Посредством вставочных дисков обеспечиваются как механическая, метаболическая, так и функциональные связи кардиомиоцитов.

Сократительные кардиомиоциты предсердий и желудочко в несколько отличаются между собой по морфологии и функциям.

Кардиомиоциты предсердий в саркоплазме содержат меньше миофибрилл и митохондрий, в них почти не выражены Т-канальца, а вместо них под плазмолеммой выявляются в большом количестве везикулы и кавеолы – аналоги Т-канальцев. В саркоплазме предсердных кардиомиоцитов у полюсов ядер локализуются специфические предсердные гранулы, состоящие из гликопротеиновых комплексов. Выделяясь из кардиомиоцитов в кровь предсердий, эти биологически активные вещества влияют на уровень давления в сердце и сосудах, а также препятствуют образованию внутрипредсердных тромбов. Таким образом, предсердные кардиомиоциты обладают сократительной и секреторной функциями.

В желудочковых кардиомиоцитах более выражены сократительные элементы, а секреторные гранулы отсутствуют.

Атипичные кардиомиоциты образуют проводящую систему сердца, которая включает в себя следующие структурные компоненты:

1) синусопредсердный узел;

2) предсердно-желудочковый узел;

3) предсердно-желудочковый пучок (пучок Гиса) – ствол, правую и левую ножки;

4) концевые разветвления ножек (волокна Пуркинье).

Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их поведение и передачу на сократительные кардиомиоциты.

По морфологии атипичные кардиомиоциты отличаются от типичных:

1) они крупнее – 100 мкм, толщина – до 50 мкм;

2) в цитоплазме содержится мало миофибрилл, которые расположены неупорядоченно, почему атипичные кардиомиоциты не имеют поперечной исчерченности;

3) плазмолемма не образует Т-канальцев;

4) во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты.

Атипичные кардиомиоциты различных отделов проводящей системы отличаются друг от друга по структуре и функциям и подразделяются на три основные разновидности:

1) Р-клетки – пейсмейкеры – водители ритма I типа;

2) переходные – клетки II типа;

3) клетки пучка Гиса и волокон Пуркинье – клетки III типа.

Клетки I типа являются основой синусопредсердного узла, а также в небольшом количестве содержатся в атриовентрикулярном узле. Эти клетки способны самостоятельно генерировать с определенной частотой биоэлектрические потенциалы, а также передавать их на клетки II типа с последующей передачей на клетки III типа, от которых биопотенциалы распространяются на сократительные кардиомиоциты.

Источники развития кардиомиоцитов – миоэпикардиальные пластинки, представляющие собой определенные участки висцеральных спланхиотом.

Иннервация сердечной мышечной ткани . Сократительные кардиомиоциты получают биопотенциалы из двух источников:

1) из проводящей системы (прежде всего из синусопредсердного узла);

2) из вегетативной нервной системы (из ее симпатической и парасимпатической части).

Регенерация сердечной мышечной ткани . Кардиомиоциты регенерируют только по внутриклеточному типу. Пролиферации кардиомиоцитов не наблюдается. Камбиальные элементы в сердечной мышечной ткани отсутствуют. При поражении значительных участков миокарда (например, некроз значительных участков при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубца – пластическая регенерация. При этом сократительная функция у этого участка отсутствует. Поражение проводящей системы сопровождается появлением нарушений ритма и проводимости.

Гладкая мышечная ткань мезенхимального происхождения

Локализуется в стенках полых органов (желудка, кишечника, дыхательных путей, органов мочеполовой системы) и в стенке кровеносных и лимфатических сосудов. Структурно-функциональной единицей является миоцит – клетка веретенообразной формы, длиной 30 – 100 мкм (в беременной матке – до 500 мкм), диаметром 8 мкм, покрытая базальной пластинкой.

В центре миоцита локализуется вытянутое ядро палочковидной формы. По полюсам ядра располагаются общие органеллы: митохондрии (саркосомы), элементы зернистой эндоплазматической сети, пластинчатый комплекс, свободные рибосомы, центриоли. В цитоплазме содержатся тонкие (7 нм) и более толстые – (17 нм) филаменты. Тонкие филаменты состоят из белка актина, толстые – из миозина и располагаются в основном параллельно актиновым. Однако в совокупности актиновые и миозиновые филаменты не образуют типичных миофибрилл и саркомеров, поэтому поперечная исчерченность в миоцитах отсутствует. В саркоплазме и на внутренней поверхности сарколеммы электронно-микроскопически определяются плотные тельца, в которых заканчиваются актиновые филаменты и которые рассматриваются как аналоги Z-полосок в саркомерах миофибрилл скелетного мышечного волокна. Фиксация миозиновых компонентов к определенным структурам не установлена.

Миозиновые и актиновые филаменты составляют сократительный аппарат миоцита.

Благодаря взаимодействию актиновых и миозиновых филаментов актиновые нити скользят вдоль миозиновых, сближают точки их прикрепления на плотных тельцах цитолеммы и укорачивают длину миоцита. Установлено, что в миоцитах, помимо актиновых и миозиновых филаментов, содержатся также промежуточные (до 10 нм), которые прикрепляются к цитоплазматическим плотным тельцам, а другими концами – к цитолемме и передают усилия сокращения центрально расположенных сократительных филаментов на сарколемму. При сокращении миоцита контуры его становятся неровными, форма овальной, а ядро штопорообразно закручивается.

Для взаимодействия актиновых и миозиновых филаментов в миоците так же, как и в скелетном мышечном волокне, необходимы энергия в форме АТФ, ионы кальция и биопотенциалы. АТФ вырабатывается в митохондриях, ионы кальция содержатся в саркоплазматической сети, которая представлена в редуцированной форме в виде везикул и тонких канальцев. Под сарколеммой содержатся небольшие полости – кавеолы, которые рассматриваются как аналоги Т-канальцев. Все эти элементы обеспечивают передачу биопотенциалов на везикулы в трубочки, выход ионов кальция, активацию АТФ, а затем и взаимодействие актиновых и миозиновых филаментов.

Базальная пластинка миоцита состоит из тонких коллагеновых, ретикулиновых и эластических волокон, а также аморфного вещества, которые являются продуктом синтеза и секреции самих миоцитов. Следовательно, миоцит обладает не только сократительной, но синтетической и секреторной функцией, особенно на стадии дифференцировки. Фибриллярные компоненты базальных пластин соседних миоцитов соединяются друг с другом и тем самым объединяют отдельные миоциты в функциональные мышечные волокна и функциональные синцитии. Однако между миоцитами, помимо механической связи, имеется и функциональная связь. Она обеспечивается с помощью щелевидных контактов, которые располагаются в местах тесного соприкосновение миоцитов. В этих местах базальная пластинка отсутствует, цитолеммы соседних миоцитов сближаются и образуют щелевидные контакты, через которые осуществляется ионный обмен. Благодаря механическим и функциональным контактам обеспечивается содружественное сокращение большого числа миоцитов, входящих в состав функционального мышечного волокна, или синцития.

Эфферентная иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой. При этом терминальные веточки аксонов эфферентных вегетативных нейронов, проходя по поверхности нескольких миоцитов, образуют на них небольшие варикозные утолщения, которые несколько прогибают плазмолемму и образуют мионевральные синапсы. При поступлении нервных импульсов в синаптическую щель выделяются медиаторы – ацетилхолин и норадреналин. Они вызывают деполяризацию плазмолеммы миоцитов и их сокращение. Однако не на всех миоцитах имеются нервные окончания. Деполяризация миоцитов, не имеющих вегетативной иннервации, осуществляется через щелевидные контакты с соседних миоцитов, получающих эфферентную иннервацию. Кроме того, возбуждение и сокращение миоцитов может происходить под влиянием различных биологически активных веществ (гистамина, серотонина, окситоцина), а также при механическом раздражении органа, содержащего гладкомышечную ткань. Существует мнение, что, несмотря на наличие эфферентной иннервации, нервные импульсы не индуцируют сокращение, а лишь регулируют его продолжительность и силу.

Сокращение гладкомышечной ткани обычно бывает длительным, что обеспечивает поддержание тонуса полых внутренних органов и сосудов.

Гладкомышечная ткань не образует мышцы в анатомическом понимании этого слова. Однако в полых внутренних органах и в стенке сосудов между пучками миоцитов содержатся прослойки рыхлой волокнистой соединительной ткани, образующие своеобразный эндомизий, а между пластами гладкой мышечной ткани – перимизий.

Регенерация гладкомышечной ткани осуществляется несколькими способами:

1) посредством внутриклеточной регенерации (гипертрофии при усилении функциональной нагрузки);

2) посредством митотического деления миоцитов (пролиферации);

3) посредством дифференцировки из камбиальных элементов (из адвентициальных клеток и миофибробластов).

Специальные гладкомышечные ткани

Среди специальных гладкомышечных тканей можно выделить ткани нейрального и эпидермального происхождения.

Ткани нейрального происхождения развиваются из нейроэктодермы, из краев глазного бокала, являющегося выпячиванием промежуточного мозга. Из этого источника развиваются миоциты, образующие две мышцы радужной оболочки глаза – мышцу, суживающую зрачок, и мышцу, расширяющую зрачок. По своей морфологии эти миоциты не отличаются от мезенхимальных, однако отличаются по иннервации. Каждый миоцит имеет вегетативную иннервацию: мышца, расширяющая зрачок, симпатическую, а суживающая – парасимпатическую. Благодаря этому мышцы сокращаются быстро и координированно в зависимости от мощности светового пучка.

Ткани эпидермального происхождения развиваются из кожной эктодермы и представляют собой клетки звездчатой формы, располагающиеся в концевых отделах слюнных, молочных и потовых желез, снаружи от секреторных клеток. В своих отростках миоэпителиальная клетка содержит актиновые и миозиновые филаменты, благодаря воздействию которых отростки клеток сокращаются и способствуют выделению секрета из концевых отделов и мелких протоков в более крупные. Эфферентную иннервацию эти миоциты получают также из вегетативного отдела нервной системы.

1

Гурин А.М.

Данная работа представляет систематизированное изложение современных данных о микроскопическом и ультрамикроскопическом строении, развитии и регенерации сердечной мышечной ткани, ее физиологических особенностях с целью анализа функциональной морфологии сердца человека и поиска возможных способов лечения заболеваний, связанных с повреждением и дисфункцией сердечного органа.

Введение

В современной медицине все больший интерес вызывают вопросы лечения и профилактики заболеваний сердечно-сосудистой системы, возникновение которых в значительной мере связано с нарушением структуры и функций сердечной мышечной ткани (атеросклероз, инфаркт миокарда, гипертензия, астма и др.). В связи с необходимостью более глубокого изучения этиологии и патогенеза заболеваний сердечно-сосудистой системы, познания механизмов, лежащих в основе этих состояний, возрастает интерес к фундаментальным исследованиям структурно-функциональных особенностей сердечной мышечной ткани.

1 Общая характеристика сердечной мышечной ткани

Сердце - основной орган человека, предназначенный для осуществления движения крови в его теле.

Стенка сердца состоит из трех оболочек:

  1. Внутренняя оболочка - эндокард ;
  2. Средняя, или мышечная, оболочка - миокард ;
  3. Наружная, или серозная, оболочка - эпикард .

В организме человека все мышечные ткани, в том числе и сердечная мышечная ткань, специализированы на функции сокращения и развиваются на общей основе: гипертрофии и видоизменении сократимой механической актин-миозиновой системы.

Сердечная мышечная ткань относится к поперечнополосатой мышечной ткани целомического типа, встречается только в мышечной оболочке сердца (миокарде) и устьях связанных с ним крупных сосудов; образована структурными элементами (клетками, волокнами), которые имеют поперечную исчерченность вследствие особого упорядоченного взаиморасположения в них актиновых и миозиновых миофиламентов и обладает спонтанными (непроизвольными) ритмическими сокращениями (рис. 1).

Основным функциональным свойством сердечной мышечной ткани является способность к спонтанным ритмическим сокращениям, на активность которых влияют гормоны и нервная система (симпатическая и парасимпатическая).

Для понимания структурно-функциональных особенностей сердечной мышечной ткани рассмотрим процессы ее формирования в период развития сердца и кардиомиогенеза.

2 Развитие сердца и кардиомиогенез

Закладка сердца человека происходит в начале 3-й недели развития (у эмбриона длиной 1,5 мм) и представлена парным скоплением мезенхимных клеток в задней части головного отдела эмбрионального щитка под висцеральным листком мезодермы (рис. 2, 3). С течением времени эти скопления превращаются в две удлиненные трубки, вдающиеся вместе с висцеральным листком мезодермы в целомическую полость тела, и выстилаются эндотелием. Позднее мезенхимные трубки сливаются и из их стенок образуется эндокард .

Рис. 1. Строение сердечной мышечной ткани
(объемная схема строения сердечной (рабочей) мускулатуры): 1 - кардиомиоциты, 2 - микрокапилляры, 3 - эндомизий, 4 - митохондрии, 5 - «вставочные диски»

Рис. 2. Стадии (I - III) развития сердца человека

Рис. 3. Развитие сердца человека

А - две парные закладки сердца; Б - их сближение; В - слияние в одну непарную закладку; 1 - эктодерма; 2 - энтодерма;
3 - париетальный листок мезодермы;
4 - висцеральный листок мезодермы; 5 - хорда; 6 - нервная пластинка; 7 - сомит; 8 - вторичная полость тела; 9 - эндотелиальная закладка сердца (парная); 10 - нервный желобок;
11 - нервные валики; 12 - нисходящая аорта (парная); 13 - образующаяся головная кишка; 14 - головная кишка; 15 - спинная сердечная брыжейка; 16 - полость сердца; 17 - эпикард; 18 - миокард; 19 - эндокард;
20 - околосердечная сумка;
21 - перикардиальная полость;
22 - редуцирующаяся брюшная сердечная брыжейка.

Область висцеральных листков мезодермы, прилежащая к данным трубкам, получила название миокардиальных пластинок . Из этих пластинок дифференцируются две части: одна - внутренняя, прилежащая к мезенхимно трубке, превращается в зачаток миокарда , а из наружной образуется эпикард .

Перикард формируется из париетального листка мезодермы.

Широкое пространство между эндотелиальными трубочками и миокардиальной пластинкой заполняется эндокардиальным гелем .

По мнению А.Г. Кнорре слой образующегося эпикарда (его мезотелиальное покрытие) нарастает на зачаток миокарда позднее, со стороны венозного синуса. Поэтому первичную закладку сердца предлагается называть не миоэпикардиальной пластинкой, а миокардиальной.

Источником развития сердечной мышцы служит утолщенный участок висцерального листка спланхнотомов - миокардиальная пластинка, формированию которой предшествует миграция презумптивных клеток сердца - кардиомиобластов . Способность к миграции определяется субстратом, по которому передвигаются клетки.

На стадии 4-12 сомитов в развивающемся сердце человека в кардиомиоцитах появляются миофибриллы. Позже образуются апикальные комплексы, развивающиеся во вставочные диски. К началу 4-й недели эмбриогенеза начинаются синхронизированные сокращения мышечных клеток, при этом электрическая связь осуществляется через клеточные соединения - нексусы.

Клетки зачатка миокарда (миокардиальная пластинка), т.е. кардиомиобласты, производят процесс деления и на 2-м месяце эмбрионального развития в них появляются миофибриллы с поперечной исчерченностью. Z-полоски появляются одновременно с саркотубулярной сетью и поперечными инвагинациями клеточной мембраны (Т-системы). На плазмолеммах контактирующих миобластов образуются десмосомы. Формирующиеся миофибриллы прикрепляются к плазмолеммам, где позднее образуются вставочные диски.

В конце 2-го месяца начинает формироваться проводящая система сердца, завершение образования всех отделов которой завершается к 4-му месяцу. Развитие мышечной ткани левого желудочка происходит быстрее, чем правого.

Первые нервные терминали выявляются в предсердиях на 5,5 недели развития эмбриона, а на 8 недели обнаруживаются ганглии, состоящие из 4-10 нейробластов. Из клеток ганглиозной пластинки образуются холинергические нейроны, глиоциты и мелкие гранулярные клетки. Врастание нервных волокон в развивающемся сердце человека идет поэтапно. Сначала появляются нервные волокна в правом, затем в левом предсердиях, позже - в правом, затем в левом желудочке. При этом в предсердиях выявляются веточки от симпатических стволов, а позднее - ветви грудных симпатических волокон.

Опорный скелет сердца образован фиброзными кольцами между предсердиями и желудочками и плотной соединительной тканью в устьях крупных сосудов. Кроме плотных пучков коллагеновых волокон, в состав опорного скелета сердца входят эластические волокна, а иногда встречаются хрящевые пластинки.

В процессе развития сердце человека увеличивается в объеме в 16 раз в сравнении с сердцем новорожденного, при этом в 15 раз возрастает объем кардиомиоцитов.

Таким образом, рост миокарда происходит из-за полиплоидизации ядер кардиомиоцитов и гипертрофии, которая свойственна внутриклеточной регенерации, т.е. умножением числа внутриклеточных структур и увеличением массы гиалоплазмы. Полиплоидизация и гипертрофия обеспечивают увеличение миокарда при его развитии, а также осуществляют компенсационный рост ответ на повышенную нагрузку на сердце, когда может происходить небольшой всплеск митотической активности, но часто без цитотомии.

В процессе развития сердечной мышечной ткани происходит инверсия митотического индекса: на ранних этапах развития максимальная пролиферативная активность наблюдается в желудочках, а позднее более интенсивно митозируют миоциты предсердий.

Итак, кардиомиоциты представляют собой некамбиальную, медленно растущую популяцию, не имеющую сателлитов.

2.1 С троение внутренней оболочки сердца эндокарда

Эндокард выстилает изнутри камеры сердца, папиллярные мышцы, сухожильные нити и клапаны сердца. Толщина эндокарда в различных участках неодинакова: толще в левых камерах сердца, особенно на межжелудочковой перегородке и в устье крупных артериальных стволов - аорты и легочной артерии, а на сухожильных нитях значительно тоньше. По строению она соответствует стенке сосуда.

Поверхность эндокарда, обращенная в полость сердца, выстлана эндотелием , состоящим из полигональных клеток, лежащих на толстой базальной мембране . За ним следует подэндотелиальный слой , образованный соединительной тканью, богатой малодифференцируемыми соединительнотканными клетками. Ниже располагается мышечно-эластический слой , в котором эластические волокна переплетаются с гладкими мышечными клетками. Эластические волокна сильнее выражены в эндокарде предсердий, чем в желудочках. Гладкие мышечные клетки больше всего развиты в эндокарде у места выхода аорты и могут иметь многоотростчатую форму. Самый глубокий слой эндокарда - наружный соединительнотканный слой, который находится на границе с миокардом и состоит из соединительной ткани, содержащей толстые эластические, коллагеновые и ретикулярные волокна.

Питание эндокарда производится в основном диффузно из-за наличия крови, находящейся в сердечных камерах. Кровеносные сосуды имеются только в наружном соединительнотканном слое эндокарда.

2.1.1 К лапаны сердца

Клапаны сердца - предсердно-желудочковые и желудочково-сосудистые - развиваются из эндокарда, а также из соединительной ткани мио- и эпикарда.Клапаны располагаются между предсердиями и желудочками сердца, а также желудочками и крупными сосудами.

Левый предсердно-желудочковый клапан появляется в виде эндокардиального валика, в который к 2,5 месяцам врастает соединительная ткань из эпикарда. На 4-м месяце из эпикарда в створку клапана врастает пучок коллагеновых волокон, образующий позже фиброзную пластинку. Правый предсердно-желудочковый клапан закладывается как мышечно-эндокардиальный валик. С 3-го месяца эмбриогенеза мышечная ткань правого атриовентрикулярного клапана уступает место соединительной ткани, врастающей со стороны миокарда и эпикарда. У взрослого человека мышечная ткань сохраняется в виде рудимента только с предсердной стороны в основании клапана. Таким образом, предсердно-желудочковые клапаны являются производными как эндокарда, так и соединительной ткани миокарда и эпикарда.

Предсердно-желудочковый (атриовентрикулярный) клапан в левой половине сердца двустворчатый, в правой трехстворчатый и представляют покрытые эндотелием тонкие фиброзные пластинки из плотной волокнистой соединительной ткани с небольшим количеством клеток. Эндотелиальные клетки, покрывающие клапан, частично перекрывают друг друга в виде черепицы или образуют пальцевидные вдавливания цитоплазмы. Кровеносных сосудов створки клапанов не имеют. В подэндотелиальном слое выявлены тонкие коллагеновые волокна, постепенно переходящие в фиброзную пластинку створки клапана, а в месте прикрепления дву- и трехстворчаточого клапанов - в фиброзные кольца. В основном веществе створок клапанов обнаружено большое количество гликозаминогликанов.

На границе между восходящей частью дуги аорты и левым желудочком сердца локализуются аортальные клапаны , которые по своему строению имеют много общего с предсердно-желудочковыми клапанами и клапанами легочной артерии.

Аортальные клапаны имеют двойное происхождение: синусная сторона образуется из соединительной ткани фиброзного кольца, покрываемая эндотелием, а желудочковая - из эндокарда.

2.2 С троение средней оболочки сердца миокарда

Мышечная оболочка сердца - миокард (myocardium) - состоит из тесно связанных между собой поперечнополосатых мышечных клеток - сердечных миоцитов или кардиомиоцитов , которые составляют только 30-40% общего числа клеток сердца, но образуют 70-90% его массы. Между мышечными элементами миокарда располагаются прослойки рыхлой соединительной ткани, сосуды и нервы.

Различают два типа кардиомиоцитов:

  1. Типичные, или сократительные (рабочие) сердечные миоциты (myociti cardiaci)желудочков и предсердий;
  2. Атипичные, или проводящие сердечные миоциты (myociti conducens cardiacus) проводящей системы сердца.

2.2.1 С ердечные миоциты желудочков и предсердий

Рабочие кардиомиоциты желудочков (рис. 4) содержат сплошную массу миофиламентов, отдельные единицы которых отчетливо не выявляются. Миофиламенты располагаются гексагонально так, что каждая толстая нить окружена шестью тонкими. В линиях Z гексагональное расположение миофиламентов заменяется на тетрагональное. Тонкие линии не сразу переходят в линии Z. Между актиновыми филаментами и Z-нитями располагаются «аксиальные» (осевые) нити длиной, соответствующей молекуле тропомиозина , поэтому предполагают, что аксиальные структуры линии Z главным образом содержат тропомиозин , и, кроме того, в Z-полосках найдены α-актинин, десмин, виментин и филамин . Возможно, что соединительные Z-нити замыкаются сами на себя или связывают аксиальные нити соседних саркомеров. Линии Z оплетаются промежуточными филаментами, проходящими в межфибриллярном пространстве и скрепляющими группы миофиламентов между собой. На уровне Z-полосок обнаружены лептомерные структуры (зебрательца , или костомеры ), находящиеся с внутренней стороны сарколеммы. Они располагаются перпендикулярно по отношению к миофибриллам. Вместе с Т-каналами цистерны саркоплазматического ретикулума образуют преимущественно диады. Мембраны ретикулума содержат в своем составе Ca 2+ -активируемую транспортную аденозинтрифосфатазу (АТРазу), обеспечивающую накопление ионов Ca 2+ внутри цистерн саркоплазматического ретикулума. При релаксации миофиламентов ионы Ca 2+ всасываются в ретикулум, достигая по его каналам терминальных цистерн.

Рис. 4. Строение кардиомиоцита сердца.

а - фрагмент желудочковогомиоцита с малым увеличением, б, в - участки с большим увеличением, г - кардиомиоцит предсердия с секреторными гранулами (СГ), Д - десмосомы, Щ - щелевые соединения (нексусы), fa - промежуточные контакты связи саркомеров соседних клеток, Т - каналы Т-системы, СР - саркоплазматический ретикулум, Z - полоска Z, ТЦ - терминальные цистерны, ТР - триады

В цитоплазме кардиомиоцитов большое количество митохондрий, не образующих ветвящихся текстур и связанных между собой специализированными межмитохондриальными контактами, образуя единый функциональный комплекс. Подобные многочисленные контакты объединяют митохондрии в небольшие группы - кластеры, способные соединяться между собой. Тем самым межмитохондриальными контакты организуют в общую цепь потенциалы одиночных митохондрий, создавая единую энергетическую систему. Выделяется важность биологической роли подобных контактов, характерных для митохондрий интенсивно и постоянно работающих клеток сердца. Количество этих контактов возрастает при повышенной нагрузке на орган и уменьшается при ограничении подвижности организма человека.

Митохондрии в кардиомиоцитах можно разделить на три субпопуляции - субсарколеммальную, межфибриллярную и околоядерную. В субсарколеммальной субполяции митохондрий большая часть их неправильно-округлой формы и образует небольшие скопления под сарколеммой, названные «почками». Эти скопления располагаются в местах наибольшего сближения кардиомиоцита с капиллярами. Большая часть митохондрий межфибриллярной зоны клеток имеет цилиндрическую или овальную форму. Они ориентированы вдоль продольной оси клетки и располагаются между миофибриллами. Третья субпопуляция митохондрий, околоядерная , находится у полюсов ядер и образует скопления.

Сарколемма кардиомиоцита включает в себя базальную мембрану (гликокаликс толщиной 20-60 нм) и плазмолемму . Со стороны цитоплазмы к сарколемме присоединяются тонкие филаменты цитоскелета, а с внешней стороны - коллагеновые и эластические волокна и ряд других внеклеточных белков.

Т-каналы желудочковых миоцитов имеют характер глубоких поперечных складок на уровне линий Z, их продольных ветвей и анастомозов вблизи дисков А. Объем Т-системы в желудочковых миоцитах составляет 27-36% от объема цитоплазмы. По каналам данной системы у кардиомиоцитов не только распространяется импульс, но и поступают метаболиты в клетку.

Специализированными структурами кардиомиоцитов являются «вставочные диски» , которые представляют собой комплекс, состоящий из промежуточных соединений (fascia adherens), нексусов (щелевые контакты) и десмосом (рис. 5, 6). Вставочные диски всегда находятся на уровне линий Z и содержат плотный материал, в котором много липидов и ряд белков, в том числе α-актинин, виментин, винкулин, десмин, спектрин, коннектин и др.


Рис. 5. «Вставочные диски» кардиомиоцитов

Объемная модель фрагментов двух кардиомиоцитов на уровне вставочного диска. Видны пальцевидные выросты клеток, которые на срезе имитируют рисунок «вставочного диска»

Рис. 6. Ультраструктурная организация области «вставочного диска» кардиомиоцитов

В поперечных участках «вставочного диска» соседние кардиомиоциты образуют многочисленные интердигитации, связанные контактами типа десмосом (Д). Актиновые филаменты прикрепляются к поперечным участкам сарколеммы вставочного диска в участке полоски слипания (ПС). На сарколемме продольных участков «вставочного диска» располагаются щелевые соединения (ЩС). БМ - базальная мембрана, СЛ - сарколемма, МТХ - митохондрия. СМ - компоненты саркомеры.

Клеточные соединения в виде десмосом имеют характерное строение, а нексусы в основном располагаются вдоль продольной оси клетки. В этих образованиях сближаются мембраны контактирующих клеток, образуя многочисленные коннексоны, при этом через гидрофильный канал распространяется нервный импульс и происходит обмен метаболитами между соседними миоцитами. Промежуточные соединения , или полоски слипания , представляют собой уплотненные участки плазмоллем контактирующих клеток и связывают конечные саркомеры соседних миоцитов. Вставочные диски соединяют друг с другом продольно лежащие миоциты с образованием тяжей или функциональных волокон . Часто плотные вставочные диски имеют ступенчатый вид.

Рабочие миоциты предсердий в отличие от желудочковых содержат секреторные гранулы и имеют способность к митозу. Данные миоциты мельче желудочковых и часто с отростками. Миофибриллярных элементов в них меньше на 40%, и реже наблюдаются лестничные структуры во вставочных дисках. Гранулярный эндоплазматический ретикулум и аппарат (комплекс) Гольджи развиты в этих клетках сильнее, чем в желудочковых миоцитах. Характерно, что Т-система в рабочих миоцитах предсердий почти не развита и если присутствуют, то каналы располагаются вдоль, а не перпендикулярно продольной оси клетки.

В предсердных миоцитах содержится пептидный гормон , состоящий из аминокислотных остатков и называемый кардиодилатином . Производное указанного гормона - циркулирующий в крови пептид (атриопептин, кардионатрин , или предсердный натрийуретический пептид ) вызывает сокращение гладких мышечных клеток артериол, увеличивает почечный кровоток и ускоряет клубочковую фильтрацию и выделение Na, регулирует уровень артериального давления. Секреторные гранулы расположены главным образом в миоцитах передней стенки правого предсердия и в ушках сердца. Возможно, что в предсердных миоцитах также синтезируются ренин , регулирующий тонус сосудов сердца, и ангиотензиноген .

Энергия, необходимая для сокращения сердечной мышцы, образуется в основном из-за взаимодействия АДФ с креатинфосфатом, в результате чего образуются креатин и фосфат. Главным субстратом дыхания в сердечной мышце являются жирные кислоты и в меньшей степени - углеводы. Процессы анаэробного расщепления углеводов (гликолиз) в миокарде (кроме проводящей системы) сердца существенного значения не имеют.

2.2.2 С ердечные миоциты проводящей системы сердца

Миоциты проводящей системы сердца (рис. 7). К проводящей системе сердца (systema conducens cardiacum) относятся мышечные клетки, формирующие и проводящие импульсы к сократительным клеткам сердца. В состав проводящей системы входят синусно-предсердный и предсердно-желудочковый узлы, предсердно-желудочковый пучок (пучок Гиса), его ножки и концевые разветвления ножек, образованные клетками Пуркинье. В сердце человека клетки проводящей системы сильно отличаются по размерам и структуре от рабочих миоцитов. Различают три типа мышечных клеток, которые в разных соотношениях находятся в соответствующих отделах данной системы.

Рис. 7. Кардиомиоциты проводящей системы сердца

I - схема расположения элементов проводящей системы сердца; II - кардиомиоциты синусного и атриовентрикулярного узлов: а - Р-клетки, б - переходные клетки; III - кардиомиоцит из пучка Гиса (волокна Пуркинье): 1 - ядра; 2 - миофибриллы; 3 - митохондрии; 4 - саркоплазма; 5 - глыбки гликогена; 6 - промежуточные филаменты; 7 - миофиламентные комплексы.

Синусно-предсердный (синусный ) узел содержит водители ритма , или пейсмекерные (ведущие) клетки (pacemaker cells - Р-клетки), занимающие центральную часть узла и способные к самопроизвольным сокращениям. Данные клетки располагаются гранулами, бедны миофибриллами и митохондриями, почти лишены предсердных гранул и имеют светлую цитоплазму. Упаковка миофиламентов в составе миофибрилл рыхлая, при этом миофибриллы могут ветвиться и изгибаться. Линии Z имеют неправильную конфигурацию. Пейсмекерным клеткам свойственна медленная диастологическая деполяризация. Данные клетки генерируют потенциал движения и при этом в проводящей системе преобладает анаэробный гликолиз, а в саркоплазме много гликогена.

Другим типом клеток синусного узла, находящегося по его периферии, является переходный , или латентный тип. В таких клетках больше миофибрилл и нексусов, а в некоторых из них есть Т-каналы. Данные клетки проводят импульс из синусного узла к другим клеткам предсердия, а именно от Р-клеток к клеткам предсердно-желудочкового пучка и рабочему миокарду.

Предсердно-желудочковый узел имеет клетки, схожие с миоцитами синусного узла. Оба узла сильно иннервированы с преобладание адренергических терминалей. Каждый миоцит имеет и афферентную, и эфферентную иннервации.

Предсердно-желудочковый пучок (пучок Гиса) представляет прямое продолжение предсердно-желудочкового узла и покрыт «чехлом» из плотной соединительной ткани. Ножки пучка разветвляются под эндокардом, а также по толщине миокарда желудочков и проникают в сосочковые мышцы.

Клетки пучка Гиса, названные клетками Пуркинье, неявно отличаются от рабочих миоцитов желудочков. Клетки Пуркинье - самые крупные клетки не только в проводящей системе, но и во всем миокарде, поэтому они крупнее рабочих миоцитов, а миофибриллы в них тонкие, малочисленные и расположены в основном по периферии клеток. В их цитоплазме много гликогена в виде агрегатов с белками - гликосом, содержащих десмогликоген, который резистентен к кислотам, щелочам, амилазе и нерастворим в воде. В клетках Пуркинье много промежуточных филаментов, при этом почти полностью отсутствуют Т-каналы. Клетки Пуркинье в совокупности образуют предсердно-желудочковый ствол и ножки пучка, концевые разветвления которого называются волокнами Пуркинье .

В проводящей системе сердца преобладают энзимы, принимающие участие в анаэробном гликолизе (фосфорилаза, дегидрогеназа молочной кислоты). В проводящих волокнах уровень калия ниже, а кальция и натрия выше в сравнении с сократительными кардиомиоцитами.

2.3 С троение наружной оболочки сердца эпикарда и перикарда

Наружная оболочка сердца, или эпикард (epicardium), представляет висцеральный листок перикарда (pericardium). Эпикард образован тонкой пластинкой соединительной ткани, плотно срастающейся с миокардом. Свободная поверхность ее покрыта мезотелием . В основе эпикарда различают поверхностный слой коллагеновых волокон, слой эластических волокон, глубокий слой коллагеновых волокон и глубокий коллагеново-эластический слой, составляющей до 50% всей толщины эпикарда.

В перикарде соединительнотканная основа развита сильнее, чем в эпикарде. Здесь много эластических волокон, особенно в глубоком его слое. Поверхность перикарда, обращенная к перикардиальной полости, также покрыта мезотелием. Эпикард и париетальный листок перикарда имеют многочисленные нервные окончания в основном свободного типа.

3. В аскуляризация сердца

Сосуды - ветви коронарных артерий - проходят в прослойках соединительной ткани между пучками кардиомиоцитов, распределяясь на капиллярную сеть, в которой каждому миоциту соответствует не менее одного капилляра.

Венечные (коронарные) артерии имеют плотный эластический каркас, в котором выделяются внутренняя и наружная эластические мембраны. Гладкие мышечные клетки в артериях обнаруживаются в виде продольных пучков во внутренней и наружной оболочках.

В основании клапанов сердца кровеносные сосуды в месте прикрепления створок разветвляются на капилляры, откуда кровь собирается в коронарные вены, впадающие в правое предсердие или венозный синус. В эпикарде и перикарде также находятся сплетения сосудов микроциркуляторного русла. Проводящая система сердца, особенно ее узлы, обильно снабжена кровеносными сосудами.

Кровоснабжение сердечной мышечной ткани чрезвычайно обильно: по уровню кровоснабжения (мл/мин/100г массы) миокард уступает только почке и превышает другие органы, включая головной мозг. В частности, этот показатель для сердечной мышцы в 20 раз выше, чем для скелетной.

Лимфатические сосуды в эпикарде сопровождают кровеносные. В миокарде и эндокарде они проходят самостоятельно и образуют густые сети. Лимфатические капилляры обнаружены также в атриовентрикулярных и аортальных клапанах. Из капилляров лимфа, оттекающая от сердца, направляется в парааортальные и парабронхиальные лимфатические узлы.

4 И ннервация сердца

В стенке сердца обнаруживается несколько нервных сплетений и ганглиев. Наибольшая плотность расположения нервных сплетений наблюдается в стенке правого предсердия и синусно-предсердного узла проводящей системы.

Рецепторные окончания в стенке сердца образованы нейронами ганглиев блуждающих нервов и нейронами спинномозговых узлов, а также ветвлениями дендритов равноотростчатых нейроцитов внутриорганных ганглиев (афферентные нейроны).

Эффекторная часть рефлекторной дуги в стенке сердца представлена расположенными среди кардиомиоцитов и по ходу сосудов органа нервными волокнами, образованными аксонами находящихся в сердечных ганглиях длинноаксонных нейроцитов (эфферентные нейроны), которые получают импульсы по преганглиолярным волокнам из нейронов ядер продолговатого мозга, приходящих сюда в составе блуждающего нерва. Эффекторные адренергические нервные волокна образованы ветвлениями аксонов нейронов ганглиев симпатической нервной цепочки, на которых синапсами заканчиваются преганглионарные волокна - аксоны нейронов симпатических ядер боковых рогов спинного мозга.

Пресинаптический аппарат в кардиомиоцитах синапсов характеризуется тем, что практически не удается выделить в миокардиоцитах локальные постсинаптические структуры, так как эффекторные влияния имеют модулирующий характер.

Электротоническое влияния в миокардиальной ткани распространяются далеко за пределы одной клетки, и как следствие, обнаружение высокого коэффициента передачи между кардиомиоцитами, что обусловлено наличием электрических синапсов (щелевых контактов) между клетками. При этом автоматизм сокращения связан с передачей импульса через указанные контакты.

В миокарде много афферентных и эфферентных нервных волокон. Раздражение нервных волокон, окружающих проводящую систему, а также нервов, подходящих к сердцу, вызывает изменение ритма сердечных сокращений. Это указывает на определяющую роль нервной системы в ритме сердечной деятельности, следовательно, и в передаче импульсов по проводящей системе сердца.

5. Ф ункциональная адаптация сердца

Функциональная адаптация клеток в гистогенезе сердечной мышечной ткани проявляется в гетерохромном развитии мышечных элементов миокарда различных отделов сердца. По морфологическим, гистохимическим, гистоавторадиографическим и биометрическим признакам, а также скорости дифференцировки мышечных клеток миокард желудочков, предсердий и мышечные трабекулы отличаются друг от друга, что находится в связи с особенностями гемодинамики, трофики и функции этих отделов миокарда.

Генетически детерминированные основные параметры процессов дифференциации, пролиферации и интеграции клеток миокарда характеризуются известным диапазоном изменчивости, вследствие чего осуществляется адаптация миокарда к конкретным условиям функционировании на каждом этапе фило- и онтогенеза как в норме, так и под влиянием различных внутренних и внешних условий.

6. В озрастные изменения сердечной деятельности

В течение онтогенеза можно выделить три периода изменения гистоструктуры сердца:

  1. Период дифференцировки;
  2. Период стабилизации;
  3. Период инволюции.

Дифференцировка гистологических элементов сердца, начавшаяся еще в эмбриональном развитии человека, завершается к 16-20 годам. Существенное влияние на процессы дифференцировки кардиомиоцитов и морфогенез желудочков оказывает заращение овального отверстия и артериального притока, что приводит к изменению гемодинамических условий - уменьшению давления и сопротивления в малом круге и увеличения в большом. Одновременно выявляется физиологическая атрофия миокарда правого желудочка и гипертрофия левого желудочка. В ходе дифференцировки сердечные миоциты обогащаются саркоплазмой, в результате чего их ядерно-плазменное соотношение уменьшается, при этом количество миофибрилл прогрессивно увеличивается, а мышечные клетки проводящей системы дифференцируются активнее, чем сократительные. При дифференцировке волокнистой стромы сердца наблюдается постепенное уменьшение количества ретикулярных волокон и замена их зрелыми коллагеновыми волокнами.

В период 20-30 лет при обычной функциональной нагрузке сердце человека находится в стадии относительной стабилизации. В возрасте старше 30-40 лет в миокарде обычно начинается некоторое увеличение его соединительнотканной стромы. При этом в стенке сердца, особенно в эпикарде, появляются адипоциты.

Степень иннервации сердца также изменяется с возрастом. Максимальная плотность внутрисердечных сплетений на единицу площади и высокая активность медиаторов отмечаются в период полового становления человека. После 30-летнего возраста уменьшаются плотность холинергических сплетений и количество медиаторов в них сохраняется на постоянном уровне. Нарушение равновесия в вегетативной иннервации сердца предрасполагает к развитию сложных патологических состояний. В пожилом возрасте уменьшается активность медиаторов в холинергических сплетениях сердца.

При повышенных систематических функциональных нагрузках общее количество клеток не возрастает, но в цитоплазме увеличиваются содержание органелл общего значения и миофибрилл, а также размер клеток (функциональная гипертрофия); соответственно возрастает и степень плоидности ядер кардиомиоцитов.

7. Р егенерация сердечной мышечной ткани

Для сердца как органа характерна способность к регенерации путем регенераторной гипертрофии, при которой масса органа восстанавливается, но форма остается нарушенной. Подобное явление наблюдается после перенесенного инфаркта миокарда, когда масса сердца может восстановиться как целое, при этом на месте повреждения образуется соединительнотканный рубец, но орган гипертрофируется, т.е. нарушается форма. Происходит не только увеличение размеров кардиомиоцитов, но и пролиферация в основном в предсердиях и ушках сердца.

Ранее полагали, что дифференцировка кардиомиоцитов является необратимым процессом, связанным с полной потерей этими клетками способности к делению. Но на современном уровне многочисленные данные показывают то, что дифференцированные кардиомиоциты способны к синтезу ДНК и митозу. В исследовательских работах П.П. Румянцева и его учеников показано, что после экспериментального инфаркта миокарда левого желудочка сердца в клеточный цикл возвращается 60-70% предсердных кардиомиоцитов, возрастает число полиплоидных клеток, но это не компенсирует повреждение миокарда.

Установлено, что кардиомиоциты способны к митотическому делению (в том числе и клетки проводящей системы). В миокарде сердца особенно много одноядерных полиплоидных клеток с 16-32-кратным содержанием ДНК, но встречаются и двуядерные кардиомиоциты (13-14%) в основном октоплоидные.

В процессе регенерации сердечной мышечной ткани кардиомиоциты участвуют в процессе гиперплазии и гипертрофии, возрастает их плоидность, но уровень пролиферации клеток соединительной ткани в области повреждения оказывается в 20-40 раз выше. В фибробластах активизируется синтез коллагена, в результате чего репарация происходит путем рубцевания дефекта. Биологическое представление подобной адаптационной реакции соединительной ткани объясняется жизненной важностью сердечного органа, так как задержка с закрытием дефекта может привести к гибели.

Считалось, что у новорожденных, а возможно, и в раннем детском возрасте, когда способные к делению кардиомиоциты еще сохраняются, регенераторные процессы сопровождаются увеличением количества кардиомиоцитов. При этом у взрослых физиологическая регенерация осуществляется в миокарде в основном путем внутриклеточной регенерации, без увеличения количества клеток, т.е. в миокарде взрослого человека отсутствует пролиферация кардиомиоцитов. Но недавно получены данные о том, что в здоровом сердце человека 14 миоцитов из миллиона находится в состоянии митоза, завершающегося цитотомией, т.е. количество клеток не значительно, но увеличивается.

Применение современных методов клеточной биологии в клинических и экспериментальных исследованиях позволило перейти к выяснению клеточных и молекулярных механизмов повреждения и регенерации миокарда. Особенно интересны данные о том, что в перинекротических областях и в функционально перегруженном сердце происходит синтез эмбриональных миоакрдиальных белков и пептидов, а также белков, синтезирующихся во время клеточного цикла. Это подтверждает положение о сходстве механизмов регенерации и нормального онтогенеза.

Выяснилось также и то, что дифференцированные кардиомиоциты в культуре способны к активному митотическому делению, что, возможно, объясняется не полной утратой, а подавлением способности кардиомиоцитов возвращаться в клеточный цикл.

Важной задачей теоретической и практической кардиологии является разработка способов стимуляции восстановления поврежденного миокарда, т.е. индукции миокардиальной регенерации и уменьшения соединительнотканного рубца. Одно из направлений исследований предоставляет возможность переноса регуляторных генов, которые превращают фибробласты рубца в миобласты или трансфекция в кардиомиоциты генов, контролирующих рост новых клеток. Другим направлением является перенос в область повреждения фетальных скелетных и миокардиальных клеток, которые могли бы участвовать в восстановлении сердечной мышцы. Также проводятся эксперименты по трансплантации скелетной мышцы в сердце, показывающие образование в миокарде участков сокращающейся ткани и улучшающие функциональные показатели миокарда. Перспективным может быть лечение с применением факторов роста, оказывающих как прямое, так и косвенное воздействие на поврежденный миокард, например, улучшение ангиогенеза.

8. П атологическая гистология сердечной мышечной ткани

Различные повреждающие воздействия на сердце (прекращение притока артериальной крови, травмы, воспаления и др.) могут вызвать некроз мышечной ткани, т.е. гибель мышечных клеток. Некроз , возникающий при нарушении или прекращении кровотока в артериях вследствие тромбоза, эмболии, длительного спазма или в условиях недостаточного коллатерального кровообращения, более характерен для миокарда. Артериальная сеть поперечнополосатых мышц в большом количестве имеет анастомозирующие сосуды, поэтому в случае полного закрытия артерии ишемии не наблюдается. Дистрофические и некротические изменения в мышцах развиваются только при длительном закрытии крупных артерий.

Для миокарда характерны следующие клинико-морфологические формы некроза: коагуляционный некроз, коагуляционный миоцитолиз, колликвационный некроз. В развитии разных типов некроза участвуют различные биохимические механизмы.

В основе коагуляционного (сухого) некроза находятся процессы денатурации белков с образованием труднорастворимых соединений, которые могут длительное время не подвергаться гидролизу. В сердечной мышце коагуляционный некроз (восковидный, ценкеровский некроз) является наиболее частым видом патологии. Одна из важных причин коагуляционного некроза - потеря сократительной способности кардиомиоцитов из-за ацидоза, возникающего при повреждении мембран мышечных клеток, и нарушения функции кальциевых насосов. Наступает атония сердечной мышцы. При этом возрастает давление интерстициальной ткани, а тромбоз, вызывающий коагуляционный некроз, уменьшает внутримышечное кровообращение, что ведет к развитию ишемии.

Выяснено, что в очаге инфаркта кардиомиоциты погибают путем некроза, а в широкой зоне, окружающей некротический очаг, - из-за апоптоза. Предполагают, что путем блокирования апоптоза кардиомиоцитов в этой зоне можно уменьшить общие размеры очага повреждения сердечной мышцы.

Коагуляционный миоцитолиз (гиперконтрактация, дисковидное расщепление) представлен тем, что в мышечных волокнах появляется резко выраженная поперечная исчерченность, заканчивающаяся распадом мышечного волокна на отдельные диски. Появляющаяся неравномерность поперечных полос являются результатом коагуляции сверхсокращенных саркомеров. Причиной коагуляционного миоцитолиза является повышение содержания катехоламинов (симпатическая стимуляция), при котором в мышечной ткани возрастает содержание ионов Ca 2+ . Подобное явление гибели миоцитов наблюдается в миокарде краевой зоны инфаркта. Уничтожение макрофагами участков некроза приводит к возникновению альвеолярной структуры кардиомиоцитов.

Колликвационный некроз развивается в результате пропитывания миокарда экссудатом из кровеносных сосудов. При этом в клетках возникает внутриклеточный отек и вакуолизация, что обычно может наблюдаться в периваскулярной и субэндотелиальной областях после инфаркта.

Вследствие воспалительной реакции происходит рассасывание омертвевшей мышечной ткани и последующим замещением рубцом. Вокруг пораженного участка наблюдается жировая дистрофия и липоматоз, а также отложение извести.

При атрофии миокарда тяжи кардиомиоцитов постепенно становятся тоньше. В случае сильной атрофии исчезает поперечная исчерченость, продольная же сохраняется дольше. В местах атрофии может развиться воспалительный процесс, образование межуточной соединительной ткани.

Наиболее типичной приспособительной реакцией миокарда на повышение физической нагрузки является гипертрофия .Гипертрофия сердечной мышцы часто относится к рабочим гипертрофиям, при этом наблюдается утолщение мышечных волокон и кардиомиоцитов, обусловленное увеличением количества саркоплазмы и миофибрилл. Установлено, что в миокарде гипертрофия является реакцией на пролиферативные стимулы и гемодинамическую нагрузку кардиомиоцитов, вышедшие из митотического цикла (исследования гипертрофии миокарда при различных воздействиях: бег, плавание, индивидуальные дозированные физические нагрузки, экспериментальная коарктация аорты и др.)

Процесс гипертрофии включает три основных стадии:

1. Аварийная стадия компенсаторной гиперфункции сердца - характеризуется увеличением интенсивности функционирования структур миокарда;

2. Стадия завершающейся гипертрофии и относительной устойчивости гиперфункции;

3. Стадия прогрессирующего кардиосклероза и постепенного истощения при явлениях нарушения синтеза нуклеиновых кислот и белков.

При ряде заболеваний, не связанных непосредственно с воздействием на миокард: алкогольной интоксикации, панкреатите, перитоните, амилоидозе селезенки и др. - также развиваются значительные изменения в ультраструктуре кардиомиоцитов. Это существенно влияет на организацию миофибрилл, митохондрий, межмитохондриальных контактов и других важных органелл кардиомиоцитов и представляют как деструктивные процессы в клетках, так и компенсаторно-приспособитель-ные, направленные на ликвидацию повреждений и энергетического истощения в условиях патологии.

Заключение

Анализ структурно-функциональных особенностей сердечной мышечной ткани показал, что, несмотря на то, что миокардиальная ткань состоит из отдельных клеток, в функциональном отношении она представляет собой единую систему. Способность сердечной мышечной ткани к регенерации, а также адаптация миокарда к конкретным условиям функционирования позволяют по-новому посмотреть на вопросы лечения и профилактики заболеваний сердечно-сосудистой системы, возникновение которых связано с повреждением структуры сердечной мышечной ткани и, как следствие, дисфункцией сердечной деятельности.

На современном уровне полагают, что в проблеме микроциркуляции заложен целый ряд расстройств сердечно-сосудистой деятельности при различных заболеваниях организма. Данная область получила ускоренное развитие особенно во 2-й половине ХХ века и уже сегодня формирует новые принципы в лечении патологий сердца. Импульсом к этому послужило техническое совершенствование исследований трансорганной микрогемодинамики и разработка методологических подходов к анализу гемато-тканевых взаимодействий в системе микроциркуляции.

Проведение научных исследований в различных направлениях, в том числе и микроциркуляционного русла сердца, совершенствование существующих и развитие новых способов оперативного лечения врожденных и приобретенных пороков сердца, применение современного диагностирующего оборудования и эффективных лекарственных препаратов, а также просвещение общества в направлении здорового образа жизни представляют возможность достижения целей, направленных на обеспечение лечения заболеваний сердечно-сосудистой системы и сохранение здоровья человека.

СПИСОК ЛИТЕРАТУРЫ

1. Быков В.Л. Цитология и общая гистология (функциональная морфология клеток и тканей человека) - Спб.: СОТИС, 2002.

2. Гистология / под ред. Ю.И. Афанасьева, Н.А. Юриной - М.: Медицина, 1999.

3. Куприянов В.В., Караганов Я.Л., Козлов В.И. Микроциркуляторное русло. М.: Медицина, 1975.

4. Морфоадаптация мышц в норме и патологии (Сборник научных работ) / под ред. А.А. Клишова - Саратов, 1975.

5. Мышечные ткани: Учеб. пособие / под ред. Ю.С. Ченцова - М.: Медицина, 2001.

Библиографическая ссылка

Гурин А.М. СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ СЕРДЧЕНОЙ МЫШЕЧНОЙ ТКАНИ ЧЕЛОВЕКА // Современные наукоемкие технологии. – 2009. – № 11. – С. 28-40;
URL: http://top-technologies.ru/ru/article/view?id=25978 (дата обращения: 12.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!