Информационный женский портал

Оптические приборы с телескопическим ходом лучей: труба кеплера и труба галилея. Этот способ определения увеличения трубы называется способом галилея Несколько слов о конкретной реализации установки

Зрительная труба (телескоп-рефрактор) предназначена для проведения наблюдений за удаленными предметами. Труба состоит из 2 -х линз: объектива и окуляра.

Определение 1

Объектив - это собирающая линза с большим фокусным расстоянием.

Определение 2

Окуляр - это линза с малым фокусным расстоянием.

В качестве окуляра используются собирающие или рассеивающие линзы.

Компьютерная модель зрительной трубы

С помощью компьютерной программы можно составить модель, демонстрирующую работу зрительной трубы Кеплера из 2 -х линз. Телескоп предназначен для проведения астрономических наблюдений. Поскольку прибор показывает перевернутое изображение, то это неудобно для наземных наблюдений. Программа настроена так, что глаз наблюдателя аккомодирован на бесконечное расстояние. Потому в зрительной трубе выполняется телескопический ход лучей, то есть параллельный пучок лучей от удаленной точки, который входит в объектив под углом ψ . Выходит из окуляра точно также параллельным пучком, однако по отношению к оптической оси уже под другим углом φ .

Угловое увеличение

Определение 3

Угловое увеличение зрительной трубы - это отношение углов ψ и φ , которое выражается формулой γ = φ ψ .

Следующая формула показывает угловое увеличение зрительной трубы через фокусное расстояние объектива F 1 и окуляра F 2:

γ = - F 1 F 2 .

Отрицательный знак, который стоит в формуле углового увеличения перед объективом F 1 означает, что изображение перевернуто.

При желании можно менять фокусные расстояния F 1 и F 2 объектива и окуляра и угол ψ . На экране прибора указываются значения угла φ и углового увеличения γ .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Не слишком удаленные предметы?

Допустим, что мы хотим хорошенько разглядеть какой-то относительно близко расположенный предмет. С помощью трубы Кеплера это вполне возможно. В этом случае изображение, даваемое объективом, получится немного дальше задней фокальной плоскости объектива. А окуляр следует расположить так, чтобы это изображение оказалось в передней фокальной плоскости окуляра (рис. 17.9) (если мы хотим вести наблюдения, не напрягая зрения).

Задача 17.1. Труба Кеплера установлена на бесконечность. После того как окуляр этой трубы отодвинули от объектива на расстояние Dl = 0,50 см, через трубу стали ясно видны предметы, расположенные на расстоянии d . Определить это расстояние, если фокусное расстояние объектива F 1 = 50,00 см.

того как объектив передвинули, это расстояние стало равно

f = F 1 + Dl = 50,00 см + 0,50 см = 50,50 см.

Запишем формулу линзы для объектива:

Ответ : d » 51 м.

СТОП! Решите самостоятельно: В4, С4.

Труба Галилея

Первая зрительная труба была сконструирована все-таки не Кеплером, а итальянским ученым, физиком, механиком и астрономом Галилео Галилеем (1564–1642) в 1609 г. В трубе Галилея в отличие от трубы Кеплера окуляр представляет собой не собирающую, а рассеивающую линзу, поэтому и ход лучей в ней более сложный (рис. 17.10).

Лучи, идущие от предмета АВ , проходят через объектив – собирающую линзу О 1 , после чего они образуют сходящиеся пучки лучей. Если предмет АВ – бесконечно удаленный, то его действительное изображение ab должно было бы получиться в фокальной плоскости объектива. Причем это изображение получилось бы уменьшенным и перевернутым. Но на пути сходящихся пучков стоит окуляр – рассеивающая линза О 2 , для которой изображение ab является мнимым источником. Окуляр превращает сходящийся пучок лучей в расходящийся и создает мнимое прямое изображение А ¢В ¢.

Рис. 17.10

Угол зрения b, под которым мы видим изображение А 1 В 1 , явно больше угла зрения a, под которым виден предмет АВ невооруженным глазом.

Читатель : Как-то уж очень мудрёно… А как тут подсчитать угловое увеличение трубы?

Рис. 17.11

Объектив дает действительное изображение А 1 В 1 в фокальной плоскости. Теперь вспомним про окуляр – рассеивающую линзу, для которой изображение А 1 В 1 является мнимым источником.

Построим изображение этого мнимого источника (рис. 17.12).

1. Проведем луч В 1 О через оптический центр линзы – этот луч не преломляется.

Рис. 17.12

2. Проведем из точки В 1 луч В 1 С , параллельный главной оптической оси. До пересечения с линзой (участок CD ) – это вполне реальный луч, а на участке 1 – это чисто «умственная» линия – до точки В 1 в реальности луч CD не доходит! Он преломляется так, что продолжение преломленного луча проходит через главный передний фокус рассеивающей линзы – точку F 2 .

Пересечение луча 1 с продолжением луча 2 образуют точку В 2 – мнимое изображение мнимого источника В 1 . Опуская из точки В 2 перпендикуляр на главную оптическую ось, получим точку А 2 .

Теперь заметим, что угол, под которым из окуляра видно изображение А 2 В 2 – это угол А 2 ОВ 2 = b. Из DА 1 ОВ 1 угол . Величину |d | можно найти из формулы линзы для окуляра: здесь мнимый источник дает мнимое изображение в рассеивающей линзе, поэтому формула линзы имеет вид:

.

Если мы хотим, чтобы наблюдение можно было вести без напряжения глаза, мнимое изображение А 2 В 2 надо «отправить» на бесконечность: | f | ® ¥. Тогда из окуляра будут выходить параллельные пучки лучей. А мнимый источник А 1 В 1 для этого должен оказаться в задней фокальной плоскости рассеивающей линзы. В самом деле, при | f | ® ¥

.

Этот «предельный» случай схематически изображен на рис. 17.13.

Из DА 1 О 1 В 1

h 1 = F 1 a, (1)

Из DА 1 О 2 В 1

h 1 = |F 1 |b, (2)

Приравняем правые части равенств (1) и (2), получим

.

Итак, мы получили угловое увеличение трубы Галилея

Как видим, формула очень похожа на соответствующую формулу (17.2) для трубы Кеплера.

Длина трубы Галилея, как видно из рис. 17.13, равна

l = F 1 – |F 2 |. (17.14)

Задача 17.2. Объективом театрального бинокля служит собирающая линза с фокусным расстоянием F 1 = 8,00 см, а окуляром – рассеивающая линза с фокусным рас­стоянием F 2 = –4,00 см. Чему равно расстояние между объективом и окуляром, если изображение рассматри­вается глазом с расстояния наилучшего зрения? На сколько нужно переместить окуляр для того, чтобы изо­бражение можно было рассматривать глазом, аккомо­дированным на бесконечность?

Это изображение играет по отношению к окуляру роль мнимого источника, находя­щегося на расстоянии а за плоскостью окуляра. Мнимое изображение S 2 , давае­мое окуляром, находится на расстоянии d 0 перед плоскостью окуляра,где d 0 расстояние наилучшего зрения нормального глаза.

Запишем формулу линзы для окуляра:

Расстояние между объективом и окуляром, как видно из рис. 17.14, равно

l = F 1 – a = 8,00 – 4,76 » 3,24 см.

В том случае, когда глаз аккомодирован на бесконечность, длина трубы по формуле (17.4) равна

l 1 = F 1 – |F 2 | = 8,00 – 4,00 » 4,00 см.

Следовательно, смещение окуляра составляет

Dl = l – l 1 = 4,76 – 4,00 » 0,76 см.

Ответ : l » 3,24 см; Dl » 0,76 см.

СТОП! Решите самостоятельно: В6, С5, С6.

Читатель : А может ли труба Галилея дать изображение на экране?

Рис. 17.15

Мы знаем, что рассеивающая линза может дать действительное изображение только в одном случае: если мнимый источник находится за линзой перед задним фокусом (рис. 17.15).

Задача 17.3. Объектив трубы Галилея дает в фокальной плоскости действительное изображение Солнца. При каком расстоянии между объективом и окуляром можно получить на экране изображение Солнца с диаметром, в три раза бóльшим, чем у действительного изображения, которое получилось бы без окуляра. Фокусное расстояние объектива F 1 = 100 см, окуляра – F 2 = –15 см.

Рассеивающая линза создает на экране действительное изображение этого мнимого источника – отрезок А 2 В 2 . На рисунке R 1 – радиус действительного изображения Солнца на экране, а R – радиус действительного изображения Солнца, созданного только объективом (при отсутствии окуляра).

Из подобия DА 1 ОВ 1 и DА 2 ОВ 2 получим:

.

Запишем формулу линзы для окуляра, при этом учтем, что d < 0 – источник мнимый, f > 0 – изображение действительное:

|d | = 10 см.

Тогда из рис. 17.16 находим искомое расстояние l между окуляром и объективом:

l = F 1 – |d | = 100 – 10 = 90 cм.

Ответ : l = 90 см.

СТОП! Решите самостоятельно: С7, С8.



16.12.2009 21:55 | В. Г. Сурдин , Н. Л. Васильева

В эти дни мы отмечаем 400-летие создания оптического телескопа - самого простого и самого эффективного научного прибора, распахнувшего перед человечеством дверь во Вселенную. Честь создания первых телескопов по праву принадлежит Галилею.

Как известно, Галилео Галилей занялся экспериментами с линзами в середине 1609 г., после того как узнал, что в Голландии для потребностей мореплавания была изобретена зрительная труба. Ее изготовили в 1608 году, возможно, независимо друг от друга голландские оптики Ганс Липперсгей, Яков Мециус и Захария Янсен. Всего за полгода Галилею удалось существенно усовершенствовать это изобретение, создать на его принципе мощный астрономический инструмент и сделать ряд изумительных открытий.

Успех Галилея в совершенствовании телескопа нельзя считать случайным. Итальянские мастера стекла уже основательно прославились к тому времени: еще в XIII в. они изобрели очки. И именно в Италии была на высоте теоретическая оптика. Трудами Леонардо да Винчи она из раздела геометрии превратилась в практическую науку. «Сделай очковые стекла для глаз, чтобы видеть Луну большой», - писал он в конце XV в. Возможно, хотя и нет этому прямых подтверждений, Леонардо удалось осуществить телескопическую систему.

Оригинальные исследования по оптике провел в середине XVI в. итальянец Франческо Мавролик (1494-1575). Его соотечественник Джованни Батиста де ла Порта (1535-1615) посвятил оптике два великолепных произведения: «Натуральная магия» и «О преломлении». В последнем он даже приводит оптическую схему телескопа и утверждает, что ему удавалось видеть на большом расстоянии мелкие предметы. В 1609 г. он пытается отстаивать приоритет в изобретении зрительной трубы, но фактических подтверждений этому оказалось недостаточно. Как бы то ни было, работы Галилея в этой области начались на хорошо подготовленной почве. Но, отдавая должное предшественникам Галилея, будем помнить, что именно он сделал из забавной игрушки работоспособный астрономический инструмент.

Свои опыты Галилей начал с простой комбинации положительной линзы, в качестве объектива, и отрицательной линзы, в качестве окуляра, дающей трехкратное увеличение. Сейчас такая конструкция называется театральным биноклем. Это самый массовый оптический прибор после очков. Разумеется, в современных театральных биноклях в качестве объектива и окуляра применяются высококачественные просветленные линзы, иногда даже сложные, составленные из нескольких стекол. Они дают широкое поле зрения и отличное изображение. Галилей же использовал простые линзы как для объектива, так и для окуляра. Его телескопы страдали сильнейшими хроматической и сферической аберрациями, т.е. давали размытое на краях и не сфокусированное в различных цветах изображение.

Однако Галилей не остановился, подобно голландским мастерам, на «театральном бинокле», а продолжил эксперименты с линзами и к январю 1610 г. создал несколько инструментов с увеличением от 20 до 33 раз. Именно с их помощью он совершил свои замечательные открытия: обнаружил спутники Юпитера, горы и кратеры на Луне, мириады звезд в Млечном Пути, и т. д. Уже в середине марта 1610 г. в Венеции на латинском языке тиражом 550 экземпляров вышел труд Галилея «Звездный вестник», где были описаны эти первые открытия телескопической астрономии. В сентябре 1610 г. ученый открывает фазы Венеры, а в ноябре обнаруживает признаки кольца у Сатурна, хотя и не догадывается об истинном смысле своего открытия («Высочайшую планету тройною наблюдал», - пишет он в анаграмме, пытаясь закрепить за собой приоритет открытия). Пожалуй, ни один телескоп последующих столетий не дал такого вклада в науку, как первый телескоп Галилея.

Однако те любители астрономии, кто пытался собирать телескопы из очковых стекол, нередко удивляются малым возможностям своих конструкций, явно уступающих по «наблюдательным возможностям» кустарному телескопу Галилея. Нередко современные «Галилеи» не могут обнаружить даже спутники Юпитера, не говоря уже о фазах Венеры.

Во Флоренции, в Музее истории науки (рядом со знаменитой картинной галереей Уффици) хранятся два телескопа из числа первых, построенных Галилеем. Там же находится и разбитый объектив третьего телескопа. Эта линза использовалась Галилеем для многих наблюдений в 1609-1610 гг. и была подарена им Великому герцогу Фердинанду II. Позже линза была случайно разбита. После смерти Галилея (1642 г.) эта линза хранилась у принца Леопольда Медичи, а после его смерти (1675 г.) была присоединена к коллекции Медичи в галерее Уффици. В 1793 г. коллекция передали Музею истории науки.

Очень интересна декоративная фигурная рамка из слоновой кости, изготовленная для галилеевской линзы гравером Витторио Кростеном. Богатый и причудливый растительный орнамент перемежается с изображениями научных инструментов; в узор органично включены несколько латинских надписей. Вверху ранее находилась лента, ныне утраченная, с надписью «MEDICEA SIDERA» («Звезды Медичи»). Центральную часть композиции венчает изображение Юпитера с орбитами 4 его спутников, окруженное текстом «CLARA DEUM SOBOLES MAGNUM IOVIS INCREMENTUM» («Славное [молодое] поколение богов, великое потомство Юпитера»). Слева и справа - аллегорические лики Солнца и Луны. Надпись на ленте, оплетающей венок вокруг линзы, гласит: «HIC ET PRIMUS RETEXIT MACULAS PHEBI ET IOVIS ASTRA» («Он первым открыл и пятна Феба (т.е. Солнца), и звезды Юпитера»). На картуше внизу текст: «COELUM LINCEAE GALILEI MENTI APERTUM VITREA PRIMA HAC MOLE NON DUM VISA OSTENDIT SYDERA MEDICEA IURE AB INVENTORE DICTA SAPIENS NEMPE DOMINATUR ET ASTRIS» («Небо, открытое зоркому разуму Галилея, благодаря этой первой стеклянной вещи показало звезды, до сих пор невидимые, по праву названные их первооткрывателем Медицейскими. Ведь мудрец властвует и над звездами»).

Информация об экспонате содержится на сайте Музея истории науки: ссылка №100101 ; ссылка №404001 .

В начале ХХ века хранящиеся во флорентийском музее телескопы Галилея были изучены (см. табл.). С ними были даже проведены астрономические наблюдения.

Оптические характеристики первых объективов и окуляров телескопов Галилея (размеры в мм)

Оказалось, что первая труба имела разрешающую способность 20" и поле зрения 15". А вторая, соответственно, 10" и 15". Увеличение первой трубы было 14-кратным, а второй 20-кратным. Разбитый объектив третьей трубы с окулярами от первых двух труб давал бы увеличение в 18 и 35 раз. Итак, мог ли Галилей сделать свои изумительные открытия, используя столь несовершенные инструменты?

Исторический эксперимент

Именно таким вопросом задался англичанин Стивен Рингвуд и, чтобы выяснить ответ, создал точную копию лучшего телескопа Галилея (Ringwood S. D. A Galilean telescope // The Quarterly Journal of the Royal Astronomical Society, 1994, vol. 35, 1, p. 43-50). В октябре 1992 года Стив Рингвуд воссоздал конструкцию третьего телескопа Галилея и в течение года проводил с ним всевозможные наблюдения. Объектив его телескопа имел диаметр 58 мм и фокусное расстояние 1650 мм. Как и Галилей, Рингвуд диафрагмировал свой объектив до диаметра апертуры D = 38 мм, чтобы получить лучшее качество изображения при сравнительно небольшой потере проницающей способности. Окуляром служила отрицательная линза с фокусным расстоянием -50 мм, дающая увеличение в 33 раза. Поскольку в такой конструкции телескопа окуляр размещается перед фокальной плоскостью объектива, полная длина трубы составила 1440 мм.

Самым большим недостатком телескопа Галилея Рингвуд считает его малое поле зрения - всего 10", или третья часть лунного диска. Причем на краю поля зрения качество изображения очень низкое. При использовании простого критерия Рэлея, описывающего дифракционный предел разрешающей способности объектива, можно было бы ожидать качества изображения в 3,5-4,0". Однако хроматическая аберрация снизила его до 10-20". Проницающая сила телескопа, оцененная по простой формуле (2 + 5lg D ), ожидалась около +9,9 m . Однако в действительность не удалось обнаружить звезд слабее +8 m .

При наблюдении Луны телескоп показал себя неплохо. В него удалось разглядеть даже больше деталей, чем было зарисовано Галилеем на его первых лунных картах. «Возможно, Галилей был неважный рисовальщик, или его не очень интересовали детали лунной поверхности?» - удивляется Рингвуд. А может быть, опыт изготовления телескопов и наблюдения с ними был у Галилея еще недостаточно велик? Нам кажется, что причина именно в этом. Качество стекол, отполированных собственными руками Галилея, не могло соперничать с современными линзами. Ну и, конечно, Галилей не сразу научился смотреть в телескоп: визуальные наблюдения требуют немалого опыта.

Кстати, а почему создатели первых зрительных труб - голландцы - не совершили астрономических открытий? Предприняв наблюдения с театральным биноклем (увеличение 2,5-3,5 раза) и с полевым биноклем (увеличение 7-8 раз), вы заметите, что между их возможностями пролегает пропасть. Современный высококачественный 3-кратный бинокль позволяет (при наблюдении одним глазом!) с трудом заметить крупнейшие лунные кратеры; очевидно, что голландская труба с таким же увеличением, но более низким качеством, не могла и этого. Полевой бинокль, дающий приблизительно те же возможности, что и первые трубы Галилея, показывает нам Луну во всей красе, со множеством кратеров. Усовершенствовав голландскую трубу, добившись в несколько раз более высокого увеличения, Галилей перешагнул через «порог открытий». С тех пор в экспериментальной науке этот принцип не подводит: если вам удастся улучшить ведущий параметр прибора в несколько раз, вы обязательно сделаете открытие.

Безусловно, самым замечательным открытием Галилея явилось обнаружение четырех спутников Юпитера и диска самой планеты. Вопреки ожиданиям, низкое качество телескопа не сильно помешало наблюдениям системы юпитеровых спутников. Рингвуд ясно видел все четыре спутника и смог, как и Галилей, каждую ночь отмечать их перемещение относительно планеты. Правда, не всегда удавалось одновременно хорошо сфокусировать изображение планеты и спутника: очень мешала хроматическая аберрация объектива.

А вот что касается самого Юпитера, то Рингвуд, как и Галилей, не смог обнаружить никаких деталей на диске планеты. Слабоконтрастные широтные полосы, пересекающие Юпитер вдоль экватора, оказались полностью замыты в результате аберрации.

Очень интересный результат получил Рингвуд при наблюдении Сатурна. Как и Галилей, при увеличении в 33 раза он увидел лишь слабые вздутия («загадочные придатки», как писал Галилей) по бокам планеты, которые великий итальянец, конечно же, не мог интерпретировать как кольцо. Однако дальнейшие эксперименты Рингвуда показали, что при использовании других окуляров с большим увеличением, все же можно различить более ясные признаки кольца. Сделай это в свое время Галилей - и открытие колец Сатурна состоялось бы почти на полстолетия раньше и не принадлежало бы Гюйгенсу (1656 г.).

Впрочем, наблюдения Венеры доказали, что Галилей быстро стал искусным астрономом. Оказалось, что в наибольшей элонгации фазы Венеры не видны, ибо слишком мал ее угловой размер. И только когда Венера приблизилась к Земле и в фазе 0,25 ее угловой диаметр достиг 45", стала заметна ее серпообразная форма. В это время ее угловое удаление от Солнца уже было не так велико, и наблюдения затруднены.

Самым же любопытным в исторических изысканиях Рингвуда, пожалуй, явилось разоблачение одного старого заблуждения по поводу наблюдений Галилеем Солнца. До сих пор считалось общепринятым, что в телескоп системы Галилея невозможно наблюдать Солнце, спроецировав его изображение на экран, ибо отрицательная линза окуляра не может построить действительного изображения объекта. Только изобретенный немного позже телескоп системы Кеплера из двух положительных линз дал такую возможность. Считалось, что впервые наблюдал Солнце на экране, помещенном за окуляром, немецкий астроном Кристоф Шейнер (1575-1650). Он одновременно и независимо от Кеплера создал в 1613 г. телескоп аналогичной конструкции. А как наблюдал Солнце Галилей? Ведь именно он открыл солнечные пятна. Долгое время существовало убеждение, что Галилей наблюдал дневное светило глазом в окуляр, пользуясь облаками как светофильтрами или подкарауливая Солнце в тумане низко над горизонтом. Считалось, что потеря Галилеем зрения в старости частично была спровоцирована именно его наблюдениями Солнца.

Однако Рингвуд обнаружил, что и телескоп Галилея может давать вполне приличную проекцию солнечного изображения на экран, причем солнечные пятна видны очень отчетливо. Позже, в одном из писем Галилея, Рингвуд обнаружил подробное описание наблюдений Солнца путем проекции его изображения на экран. Странно, что этого обстоятельства не отмечали раньше.

Думаю, что каждый любитель астрономии не откажет себе в удовольствии на несколько вечеров «стать Галилеем». Для этого нужно всего лишь сделать Галилеев телескоп и попытаться повторить открытия великого итальянца. В детстве один из авторов этой заметки делал из очковых стекол кеплеровы трубы. А уже в зрелом возрасте не удержался и соорудил инструмент, похожий на телескопа Галилея. В качестве объектива была использована насадочная линза диаметром 43 мм силой в +2 диоптрии, а окуляр с фокусным расстоянием около -45 мм был взят от старинного театрального бинокля. Телескоп получился не очень мощный, с увеличением всего в 11 раз, но и у него поле зрения оказалось маленькое, диметром около 50", а качество изображения неровное, значительно ухудшающееся к краю. Однако изображения стали значительно лучше при диафрагмировании объектива до диаметра 22 мм, и еще лучше - до 11 мм. Яркость изображений, разумеется, понизилась, но наблюдения Луны от этого даже выиграли.

Как и ожидалось, при наблюдении Солнца в проекции на белый экран этот телескоп действительно давал изображение солнечного диска. Отрицательный окуляр увеличил эквивалентное фокусное расстояние объектива в несколько раз (принцип телеобъектива). Поскольку не сохранилось сведений о том, на каком штативе Галилей устанавливал свой телескоп, автор наблюдал, удерживая трубу в руках, а в качестве опоры для рук использовал ствол дерева, забор или раму открытого окна. При 11-кратном увеличении этого было достаточно, но при 30-кратном, очевидно, у Галилея могли быть проблемы.

Можно считать, что исторический эксперимент по воссозданию первого телескопа удался. Теперь мы знаем, что телескоп Галилея был довольно неудобным и скверным прибором с точки зрения современной астрономии. По всем характеристикам он уступал даже нынешним любительским инструментам. У него было лишь одно преимущество - он был первым, а его создатель Галилей «выжал» из своего инструмента все, что возможно. За это мы чтим Галилея и его первый телескоп.

Стань Галилеем

Нынешний 2009 год был объявлен Международным годом астрономии в честь 400-летия рождения телескопа. В компьютерной сети, вдобавок к существующим, появилось много новых замечательных сайтов с изумительными снимками астрономических объектов.

Но как бы ни были насыщены интересной информацией сайты Интернета, главной целью МГА было продемонстрировать всем желающим реальную Вселенную. Поэтому в числе приоритетных проектов оказался выпуск недорогих телескопов, доступных любому желающему. Самым массовым стал «галилеоскоп» - маленький рефрактор, спроектированный высокопрофессиональными астрономами-оптиками. Это не точная копия телескопа Галилея, а скорее - его современная реинкарнация. У «галилеоскопа» двухлинзовый стеклянный ахроматический объектив диаметром 50 мм и фокусным расстоянием 500 мм. Четырехлинзовый пластиковый окуляр дает увеличение 25x, а 2x линза Барлоу доводит его до 50x. Поле зрения телескопа 1,5 o (или 0,75 o с линзой Барлоу). С таким инструментом легко можно «повторить» все открытия Галилея.

Впрочем, сам Галилей с таким телескопом сделал бы их значительно больше. Цена инструмента в 15-20 долл. США делает его действительно общедоступным. Любопытно, что со штатным положительным окуляром (даже с линзой Барлоу) «галилеоскоп» в действительности представляет собой трубу Кеплера, но при использовании в качестве окуляра одной лишь линзы Барлоу он оправдывает свое название, становясь 17x трубой Галилея. Повторить открытия великого итальянца в такой (оригинальной!) конфигурации - задача не из легких.

Это весьма удобный и вполне массовый инструмент, пригодный для школ и начинающих любителей астрономии. Его цена значительно ниже, чем у существовавших ранее телескопов с аналогичными возможностями. Было бы весьма желательно приобрести такие инструменты для наших школ.



Зрительная труба представляет собой оптический прибор, предназначенный для рассматривания глазом весьма удаленных предметов. Как и микроскоп, она состоит из объектива и окуляра; и тот и другой являются более или менее сложными оптическими системами, хотя и не столь сложными, как в случае микроскопа; однако мы их будем схематически представлять тонкими линзами. В зрительных трубах объектив и окуляр располагаются так, что задний фокус объектива почти совпадает с передним фокусом окуляра (рис. 253). Объектив дает действительное уменьшенное обратное изображение бесконечно удаленного предмета в своей задней фокальной плоскости; это изображение рассматривается в окуляр, как в лупу. Если передний фокус окуляра совпадает с задним фокусом объектива, то при рассматривании удаленного предмета из окуляра выходят пучки параллельных лучей, что удобно для наблюдения нормальным глазом в спокойном состоянии (без аккомодации) (ср. § 114). Но если зрение наблюдателя несколько отличается от нормального, то окуляр передвигают, устанавливая его «по глазам». Путем передвижения окуляра производится также «наводка» зрительной трубы при рассматривании предметов, расположенных на различных не очень больших расстояниях от наблюдателя.

Рис. 253. Расположение объектива и окуляра в зрительной трубе: задний фокус. Объектива совпадает с передним фокусом окуляра

Объектив зрительной трубы должен быть всегда собирающей системой, окуляр же может быть как собирающей, так и рассеивающей системой. Зрительная труба с собирающим (положительным) окуляром называется трубой Кеплера (рис. 254, а), труба с рассеивающим (отрицательным) окуляром - трубой Галилея (рис. 254, б). Объектив 1 зрительной трубы дает действительное обратное изображение удаленного предмета в своей фокальной плоскости . Расходящийся пучок лучей из точки падает на окуляр 2; так как эти лучи идут из точки в фокальной плоскости окуляра, то из него выходит пучок, параллельным побочной оптической оси окуляра под углом к главной оси. Попадая в глаз, лучи эти сходятся на его сетчатке и дают действительное изображение источника.

Рис. 254. Ход лучей в зрительной трубе: а) труба Кеплера; б) труба Галилея

Рис. 255. Ход лучей в призменном полевом бинокле (а) и его внешний вид (б). Изменение направления стрелки указывает на «обращение» изображения после прохождении лучей через часть системы

(В случае галилеевой трубы (б) глаз не изображен, чтобы не загромождать рисунка.) Угол - угол, который составляют с осью лучи, падающие на объектив.

Труба Галилея, нередко применяемая в обычном театральном бинокле, дает прямое изображение предмета, труба Кеплера - перевернутое. Вследствие этого, если труба Кеплера должна служить для земных наблюдении, то ее снабжают оборачивающей системой (дополнительной линзой или системой призм), в результате чего изображение становится прямым. Примером подобного прибора может служить призменный бинокль (рис. 255). Преимуществом трубы Кеплера является то, что в ней имеется действительное промежуточное изображение, в плоскость которого можно поместить измерительную шкалу, фотопластинку для производства снимков и т. п. Вследствие этого в астрономии и во всех случаях, связанных с измерениями, применяется труба Кеплера.

С помощью зрительных труб обычно рассматривают удаленные предметы, лучи от которых образуют почти параллельные слабо расходящиеся пучки. Основной задачей является увеличение углового расхождения этих пучков для того, чтобы их источники оказались на сетчатке разрешенными (не слившимися в точку).

На рисунке показан ход лучей в трубе Кеплера , состоящей из двух собирающих линз, задний фокус объектива совпадает с передним фокусом окуляра. Предположим, мы рассматриваем две точки удаленного тела, например Луны. Первая точка испускает пучок, параллельный главной оптической оси (не показан), а вторая, нарисованный на чертеже косой пучок, идущий под малым углом φ к первому. Если угол φ меньше 1’, то изображения обеих точек на сетчатке сольются. Нужно увеличить угол расхождения пучков. Как это сделать – показано на чертеже. Косой пучок собирается в общей фокальной плоскости, затем расходится. Но затем преобразуется второй линзой в параллельный. После второй линзы этот параллельный пучок идет под гораздо большим углом φ’ к осевому пучку. Простые геометрические рассуждения позволяют найти приборное (угловое) увеличение.

Точка фокальной плоскости, в которой собирается наклонный пучок определяется центральным лучом пучка, идущим без преломления через первую линзу. Чтобы определить угол прохождения этого пучка через вторую линзу, достаточно рассмотреть вспомогательный источник в этой точке фокальной плоскости. Испускаемые им лучи превратятся после второй линзы в параллельный пучок. Он будет параллелен центральному лучу второй линзы (рисунок). Значит пучок, нарисованный на верхнем рисунке пойдет под тем же углом φ’ к оптической оси. Видно, что и , поэтому . Приборное увеличение трубы Кеплера равно отношению фокусных расстояний, поэтому объектив всегда имеет гораздо большее фокусное расстояние. Для правильного описания действия трубы необходимо рассматривать наклонные пучки. Параллельный оси пучок преобразуется трубой в пучок меньшего диаметра.

Поэтому в зрачок глаза попадает больше световой энергии, чем при непосредственном наблюдении, например, звезд. Звезды настолько малы, что их изображения всегда формируются на одном «пикселе» глаза. С помощью трубы мы не можем получить протяженного изображения звезды на сетчатке. Однако, свет слабосветящихся звезд может быть «сконцентрирован». Поэтому в трубу можно увидеть звезды, невидимые глазом. Таким же образом объясняется, почему в трубу можно наблюдать звезды даже днем, когда при наблюдении простым глазом их слабый свет не виден на фоне ярко светящейся атмосферы.

Труба Кеплера обладает двумя недостатками, исправленными в трубе Галилея . Во-первых, длина тубуса трубы Кеплера равна сумме фокусных расстояний объектива и окуляра. То есть это максимально возможная длина. Во-вторых, что наиболее важно, этой трубой неудобно пользоваться в земных условиях, поскольку она дает перевернутое изображение. Идущий вниз пучок лучей преобразуется в идущий вверх. Для астрономических наблюдений это не так важно, а в зрительных трубах для наблюдения земных объектов приходится делать специальные «переворачивающие» системы из призм.


Труба Галилея устроена иначе (левый рисунок).

Она состоит из собирающей (объектива) и рассеивающей (окуляра) линз, причем их общий фокус находится теперь справа. Теперь длина тубуса – это не сумма, а разность фокусных расстояний объектива и окуляра. Кроме того, поскольку лучи отклоняются от оптической оси в одну сторону, изображение получается прямым. Ход луча и его преобразование, увеличение угла φ показано на рисунке. Проведя чуть более сложные геометрические рассуждения, мы придем к той же формуле для приборного увеличения трубы Галилея. .

Для наблюдения астрономических объектов приходится решать еще одну задачу. Астрономические объекты, как правило, слабосветящиеся. Поэтому в зрачок глаза попадает очень малый световой поток. Чтобы его увеличить, необходимо «собирать» свет с как можно большей поверхности, на которую он падает. Поэтому диаметр линзы-объектива делают как можно большим. Но линзы большого диаметра очень тяжелые, и кроме того, их трудно изготовить и они чувствительны к изменениям температуры и механическим деформациям, которые искажают изображение. Поэтому вместо телескопов-рефракторов (refract-преломлять), чаще стали использовать телескопы-рефлекторы (reflect- отражать). Принцип действия рефлектора состоит в том, что роль объектива, дающего действительное изображение, играет не собирающая линза, а вогнутое зеркало. На рисунке справа показан переносной телескоп-рефлектор весьма остроумной конструкции Максутова. Широкий пучок лучей собирается вогнутым зеркалом, но, не доходя до фокуса, поворачивается плоским зеркальцем так, что его ось становится перпендикулярной оси трубы. Точка s является фокусом окуляра – небольшой линзы. После этого пучок, ставший почти параллельным, наблюдается глазом. Зеркальце почти не мешает входящему в трубу световому потоку. Конструкция компактна и удобна. Телескоп направляется в небо, а зритель смотрит в него сбоку, а не вдоль оси. Поэтому луч зрения горизонтален и удобен для наблюдения.

В больших телескопах не удается создавать линзы диаметром более метра. Качественное вогнутое металлическое зеркало можно сделать диаметром до 10 м. Зеркала более устойчивы к воздействиям температуры, поэтому все самые мощные современные телескопы – рефлекторы.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!