Информационный женский портал

Признаки локального возрастания и убывания функции. Необходимые и достаточные условия существования экстремума функции в точке. Возрастание и убывание функции на интервале, экстремумы

Пусть f непрерывна на отрезке и дифференцируема во внутренних точках этого отрезка. Тогда существует внутренняя точка с этого отрезка, такая, что касательная к графику функции, проведенная в точке с абсциссой с, параллельна хорде АВ, где A(а;f(x)) и B(b;f(x)). Или: на гладкой дуге АВ всегда есть точка с, в которой касательная параллельна хорде, соединяющей концы дуги.

Пусть f непрерывна на отрезке и дифференцируема во внутренних точках этого отрезка. Тогда существует внутренняя точка с этого отрезка, такая, что

Следствие 1:если функция f непрерывна на отрезке , а её производная равна нулю внутри этого отрезка, то функция f постоянна на отрезке .

Следствие 2: Если функции f и g непрерывны на отрезке и имеют одинаковые производные внутри этого отрезка, то они отличаются постоянным слагаемым.

2. Достаточный признак возрастания функции:

Если f[/](x)>0 в каждой точке интервала I, то функция f возрастает на интервале I.

3. Достаточный признак убывания функции:

Если f[/](x)

Докажем эти признаки по формуле Лагранжа:

Возьмем два любых числа и из интервала. Пусть. По формуле Лагранжа существует число, такое, что.

Число c принадлежит интервалу I, так как точки и принадлежат этому интервалу. Если f[/](x)>0 для, то f[/](с) >0 , и поэтому - это следует из формулы (1), так как ->0. Этим доказано возрастание функций f на интервале I. Если же f[/](x) 0. Доказано убывание функции f на интервале I.

Пример 1. найдите промежутки возрастания и убывания функции

2. Найдем производную функции и ее критические точки: или

3. Отметим на числовой оси точки экстремумов и найдем промежутки возрастания и убывания функции

Ответ: - функция возрастает

Функция убывает

Пример 2. Исследуйте на возрастание (убывание) функцию:

2. Найдем производную и точки экстремумов функции:

3. Отметим критическую точку на числовой оси и найдем промежутки возрастания (убывания) функции:

Ответ: - функция убывает

Функция возрастает

II. Критические точки. Признаки нахождения максимума и минимума функции.

1. Критические точки

Определение: критические точки функции - это внутренние точки области определения функции, в которых её производная равна нулю или не существует.

№1. Найдите критические точки функции f: а) g(x) =

Ответ: , где; , где б) g(x) =

2. Признаки нахождения максимума и минимума функции.

Признак максимума функций:

Если функция f непрерывна в точке х0 , а f[/](x)>0 на интервале (а;х0) и f[/](x)

Или: если в точке х0 производная меняет знак с плюса на минус, то х0 есть точка максимума.

Доказательство:

Производная f[/](x)>0 на интервале (а;х0), а функция непрерывна в точке х0 ,следовательно функция f возрастает на промежутке (a; х0], и потому f(x)

На промежутке [х0;в) функция убывает, и потому f(x)

Признаки минимума функции:

Если функция f непрерывна в точке х0 , а f[/](x) 0 на интервале (х0;в), то точка х0 является точкой минимума функции f.

Или: если в точке х0 производная меняет знак с минуса на плюс, то х0 есть точка минимума.

Доказательство:

Производная f[/](x) f (x0) для всех х из интервала (а;х0).

На промежутке [х0;в) функция f возрастает, и потому f(x) >f (x0) для всех из интервала (а;в), то есть х0 есть точка минимума f.

III. Вторая производная. Признаки выпуклости и вогнутости.

Пусть и в точке существует вторая производная. Тогда, если, то точка является точкой минимума, а если, то точка является точкой максимума функции.

Если, то выпуклость направлена вниз. Если, то выпуклость направлена вверх.

IV. Наклонные асимптоты

Определение: Прямая является наклонной асимптотой графика функции, где и

Уравнение наклонной асимптоты

Вертикальные асимптоты уравнение наклонной асимптоты

V. План исследования функции

1. Найдем область определения функции.

2. Исследовать функцию на четность (нечетность).

3. Найти точки пересечения графика с осями координат и определить интервалы знакопостоянства функции.

4. Найти производную.

5. Найти точки экстремума функции и интервалы возрастания и убывания функции.

6. Составить таблицу.

7. Найти вторую производную.

8. Найти точки перегиба графика функции и установить интервалы выпуклости и вогнутости этого графика.

9. Найти асимптоты графика функции, если это необходимо.

10. Построить эскиз графика данной функции.

11. Найти множество значений функции.

VI. Примеры на исследование функции

2). О четности функции говорить нельзя.

5) Найдем точки экстремума функции и интервалы возрастания и убывания функции:

Функция возрастает

Функция убывает

6) Составим таблицу х

7) Найдем вторую производную

8) Найдем точки перегиба: или

Выпуклость вверх

Выпуклость вниз

9) Найдем наклонные асимптоты не существует. наклонных асимптот нет.

10) График

; х=2 - вертикальная асимптота

2). О четности функции говорить нельзя

3) Найдем точки пересечения графика с осью ОХ.

Найдем точки пересечения графика с осью ОУ.

4) Найдем производную функции:

5) Найдем точки экстремума функции и точки возрастания и убывания функции:

Функция возрастает

Функция убывает

6) Составим таблицу х

7) Найдем вторую производную:

8) Найдем точки перегиба: точек перегиба нет

Выпуклость вниз

Выпуклость вверх

Уравнение наклонной асимптоты

10) График

Вертикальная асимптота

2) о четности функции говорить нельзя

Точек пересечения с осью OX нет.

Не существует. Таких точек нет.

4) Найдем производную:

Функция убывает

Функция возрастает

6) Составим таблицу:

7) Построим график функции:

Вертикальная асимптота

2) - о четности функции говорить нельзя

3) Найдем точки пересечения графика с осью OX.

Найдем точки пересечения графика с осью OY.

4) Найдем производную:

5) Найдем точки экстремума функции и интервалы возрастания и убывания функции.

Критических точек нет.

Точек max и min нет.

6) Составим таблицу:

↘ 7) Найдем вторую производную:

8) Найдем точки перегиба графика функции и установим интервалы выпуклости и вогнутости:

Точек перегиба нет.

Выпуклость вверх

Выпуклость вниз

9) Найдем наклонные асимптоты:

Уравнение горизонтальной асимптоты, т. к. k = 0.

10) Построим график функции:

; - вертикальные асимптоты

2) - функция нечетная, так как. График симметричен относительно начала координат.

3) Найдем точки пересечения графика с осью OX.

Найдем точки пересечения графика с осью OY.

4) Найдем производную:

5) Найдем точки экстремума и интервалы возрастания и убывания функции:

Нет решения.

Функция убывает

Функция возрастает

6) Составим таблицу:

↘ Не сущ.

↗ 7) Найдем наклонные асимптоты:

Наклонных асимптот нет.

8) Найдем вторую производную:

9) Найдем точки перегиба: или или

Выпуклость вниз

Выпуклость вверх

10) Построим график

VII. Историческая справка.

Совсем иным был конец жизненного пути другого творца математического анализа - Готфрида Вильгельма Лей - бница (1646 - 1716). Но обо всем по порядку.

Его предки были выходцами из Польши и носили фамилию Любениц. После переселения в Лейпциг" фамилия их стала произноситься на немецкий лад. Интересно отметить, что и само название этого города тоже славянское, оно означает >. Лейбниц родился в семье профессора философии Лейпцигского университета. Он рано лишился родителей: в 6 лет остался без отца, а в 17 - без матери. В школьные годы Лейбниц поражал своих учителей умением слагать стихи на латинском и греческом языках, увлеченностью философией и математикой. Он отличался большой любознательностью, многие предметы изучал самостоятельно, до знакомства с ними в школе. Память у него была неровной: легко запоминал сложные вещи и хуже - простые; не мог долго производить вычисления, но тяготел к обобщениям и абстракциям. И такая память и склад мышления сохранились у Лейбница на всю жизнь.

В 15. лет Лейбниц - студент философского факультета Лейпцигского университета. Этот факультет был подготовитель - ным для юридического и богословского. Закончив с блеском философский, а затем юридический факультет, 20-летний Лейбниц не смог получить желаемой должности в родном городе. Консервативные порядки в университете ставили материальные преграды к получению докторской степени. Он едет в Нюрнберг и в тамошнем университете с небывалым успехом защищает юридическую диссертацию на степень доктора. Необычайный талант молодого ученого был замечен. Его приглашает на дипломатическую службу курфюрст (князь, имеющий право выбора короля) города Майнца, а позже - ганноверский герцог.

Находясь по делам курфюрста в Париже, Лейбниц встречается со многими известными учеными. Обсуждения различных проблем пробуждают в нем интерес к математике. Позже в письме к И. Бернулли он вспоминал: >. По окончании универси - тета (1666) Лейбниц опубликовал философско-математическую работу >, так что, говоря о своем >, он имел в виду неосведомленность о последних достижениях математики. Чтобы познакомиться с новыми результатами и идеями, возникшими в то время в математике, он обращается за помощью к Гюйгенсу. Тот советует ему внимательно изучить ряд работ, и Лейбниц с завидным рвением берется за дело: изучает труды Сен-Винцента и Валлиса, Декарта и Паскаля, занимается собственными исследованиями.

Но когда он по дипломатическим делам попадает в Лондон и сообщает о своих результатах английским математикам, то с удивлением узнает, что многие из этих результатов им уже известны из рукописи Ньютона >, хранящейся в Королевском обществе. Лейбниц через секретаря этого общества Ольденбурга (1615 - 1677) пишет Ньютону о своих работах. В том же письме он просит Ньютона сообщить его результаты. В ответ он получает (опять через Ольденбурга) два письма, в которых Ньютон разъясняет операции дифференцирования и интегрирования с помощью рядов.

Лейбниц не спешил обнародовать свои результаты в области нового исчисления, возможно, ожидая публикаций Ньютона. Но в 1683 г. Чирнгауз печатает статью о квадратуре алгебраических кривых. В ней не упоминается имя Лейбница, хотя в решении этих вопросов Чирнгауз многим был ему обязан. Чтобы сохранить пальму первенства в этой области, Лейбниц в следующем году печатает статью >, а через год - >. В первой из них содержались основы дифференциального исчисления, во второй - интегрального.

В основу новой науки он положил понятие дифференциала. Сейчас дифференциал df(x0) функции y=f(x) в точке х0 задается формулой df(xo) = f"(xo)dx, где f"(xb) - производная, вычисленная в точке хо, их - приращение аргумента. У Лейбница дифферен - циал определяется как один из катетов характеристического треугольника, о котором шла речь в предыдущей главе (п. 9). Из рисунка 46 видно, что эти определения эквивалентны.

Лейбниц дает правила вычисления дифференциала суммы, разности, произведения, частного, степени, решает дифференци - альные уравнения. Интеграл он определяет как сумму дифференци - алов, подчеркивая взаимную обратность операций дифференциро - вания и интегрирования: >. Откуда вытекают свойст - ва интегралов и способы их вычисле - ния. В последующих статьях Лейбниц развил новый анализ. Он доказал, что любая интегрируемая функция являет - ся ограниченной (необходимое усло - вие интегрируемости), разработал ал - горитм вычисления некоторых типов интегралов, в частности способ интег - рирования рациональных функций. Значение этого способа невозможно переоценить, так как с помощью раз - личных подстановок к интегралам от рациональных функций сводится масса самых разнообразных интегралов. Остановимся на этом способе подробнее.

Для графического решения задачи интегрирования произволь - ных функций Лейбниц придумал (1693) механический прибор - интегратор. Если перемещать один штифт этого прибора по графику функции, то другой вычерчивает график первообразной.

Разработанными Лейбницем алгоритмами и обозначениями мы пользуемся и поныне, как и большинством введенных им математических терминов: функция, переменная, постоянная, координаты, абсцисса, алгоритм, дифференциал и др. Многие из этих терминов употреблялись и раньше, но не имели того конкретного значения, которое придал им Лейбниц.

В начале следующего столетия разгорелась бурная дискуссия о приоритете изобретения анализа. Поводом к ней послужила рецензия (1704) Лейбница на работу Ньютона >, где он указал на идейную общность трактовки бесконечно малой у Ньютона и Фабри. Такое сравнение великого англичанина с малоизвестным французским математиком О н о -ре Фабри (1607 - 1688) вызвало > негодование английских ученых. (А Лейбниц не имел никаких задних мыслей; просто книга Фабри была одной из немногих, которая помогла ему в парижский период ликвидировать >.) Они увидели в этом принижение заслуг Ньютона, и началось. В этом споре права Ньютона отстаивали английские ученые, а Лейбница - континентальные. Поддержка Лейбница большинством континентальных математиков объяснялась тем, что его обозначения оказались столь совершенными, а само учение столь доступным, что сразу нашли сторонников среди многих ученых Европы, что бывает крайне редко при появлении новой теории.

По-видимому, именно этот спор имел в виду замечательный русский поэт Валерий Брюсов, когда писал такие строки:

О Лейбниц, о мудрец, создатель вещих книг! Ты выше мира был, как древние пророки. Твой век, дивясь тебе, пророчеств не достиг И с лестью смешивал безумные упреки.

На самом же деле претензии обеих сторон были безоснователь - ными. Оба ученых независимо пришли к созданию дифференциаль - ного и интегрального исчислений, да и подходы у них были совершенно разные. Ньютон использовал аппарат степенных рядов, а Лейбниц - понятие дифференциала. Разгоревшийся спор привел к тому, что английские математики игнорировали все, что исходило от Лейбница и его школы, а континентальные - работы англичан. Поскольку на континенте опирались на более совершен - ную, чем ньютоновская, символику Лейбница и ученые были объединены общими идеями, опубликованными и доступными каждому, то континентальные математики в посленьютоновский период далеко ушли вперед в сравнении с английскими.

Однако в судьбе Лейбница вражда между английскими и континентальными математиками сыграла роковую роль. Герцог, у которого он служил библиотекарем, историком и био - графом, став (1714) английским королем, уехал в Лондон. По - следовать за ним Лейбниц не мог из-за испорченных отношений с английскими математиками. К тому же герцог был недоволен своим историографом, считая, что он недостаточно уделяет вни - мания своим прямым служебным обязанностям. Лейбницу при - шлось остаться и работать в библиотеке герцога. Немилость ново - испеченного английского короля привела к тому, что окружение ученого сильно поредело. Через два года он умер, провожаемый в последний путь только секретарем и могильщиками. Обидная несправедливость судьбы по отношению к великому ученому, которым было сделано очень много.

Несмотря на огромную занятость по составлению истории герцогского дома, превратившейся в историю Западной Европы, и другие отвлекающие от науки обязанности, Лейбниц оставил множество работ по математике, философии, биологии, теории познания, политике, праву, языкознанию. Будучи всесторонне талантливым ученым, он внес неоценимый вклад в каждую из этих областей. Идеи у него сыпались как из рога изобилия: каждое письмо, любая заметка или статья содержали нечто принципиально новое в рассматриваемой области науки, подчас определяющее дальнейшее ее развитие. Многое было сделано при его непосред - ственном участии. В Берлине он организовал научное общество, преобразованное впоследствии в берлинскую АН, и стал первым его президентом. Он был первым иностранным членом Парижской АН. Лейбниц неоднократно встречался в Берлине с Петром I, для которого разработал ряд проектов развития образования и госу - дарственного правления России, а также создания Петербургской АН.

Но наиболее весомым оказался его вклад в математику. Вступив в нее >, он смог полностью ее преобразовать. После его работ и трудов его ближайших сподвижников не только появился математический анализ, но и вся математика вступила в новую эпоху.

. Известно, что постоянная функция имеет в каждой точке отрезка производную, равную нулю. В полных курсах анализа доказывается обратное, что функция f(x) постоянна на отрезке [а, b], если в каждой точке отрезка ее производная f "(х) равна нулю.

Иллюстрируем это геометрически. Если f " (x) = 0 в каждой из точек отрезка [а, b], то касательная к графику функции y=f(x) в каждой из точек х (а ≤ х ≤ b) параллельна оси Ох. При переходе х от одного значения к его последующим значениям точка М. графика функции, являющаяся точкой прикосновения касательной, сдвигается вправо, но остается на направлении касательной, проведенной вточке М, так как касательная при этом переходе не меняет своего направления. Вследствие этого на отрезке [а, b]

график функции y=f(x) обращается в прямую MN, параллельную оси Ох, а значение функции, равное f(а) , остается неизменным.

. Если в промежутке a функция y=f(x) возрастающая, то при увеличении х каждое последующее ее значение более предыдущего и потому для каждого данного значения х приращения Δx и Δу положительны, отношение Δy/Δx положительно и при стремлении Δx к нулю принимает только

положительные значения. Вследствие этого его предел - производная f "(х) - положительна или равна нулю

f "(x) ≥ 0

Если в промежутке а<хфункция y=f(x) убывающая, то при увеличении х каждое последующее значение функции менее предыдущего. Поэтому для каждого данного значения x в то время, когда приращение Δx положительно, приращение Δy отрицательно, отношение Δy/Δx принимает только отрицательные значения и при стремлении Δx к нулю имеет своим пределом отрицательное число или нуль, т. е.

f "(x) ≤ 0 .

Так как значение производной f "(х) равно угловому коэффициенту касательной к графику функции y = f(x):

f "(x) = tgφ ,

и у возрастающей функции f "(x) = tgφ ≥ 0 , то касательная к графику возрастающей функции образует с осью Ох острый угол или параллельна оси Ох (черт. 106). У убывающей функции f "(х) = tgφ ≤ 0 , касательная к графику образует с осью Ох тупой угол или параллельна оси Ох (черт.).

В промежутке aвозрастания (или убывания) функции не существует никакого отрезка а ≤ х ≤ b 1 (aво всех точках которого производная равна нулю, так как если бы f "(x) = 0 на отрезке a 1 ≤ х ≤ b 1 то функция f(x) имела бы одно и то же значение во всех точках этого отрезка, т. е. не была бы возрастающей (или убывающей).

Точки графика возрастающей (или убывающей) функции, в которых касательная параллельна оси Ox, являются отдельными точками в том смысле, что абсциссы их не составляют отрезка. На черт. и черт. такими точками являются Р и Р 1 .

. В полных курсах анализа доказываются следующие достаточные признаки возрастания и убывания функции:

функция f(x) возрастает (или убывает) в промежутке a

1) производная f "(х) не отрицательна (или не поло­жительна) в промежутке а<х

f "(x) ≥ 0 (или f "(x) ≤ 0)

2) в этом промежутке не существует отрезка a 1 ≤ x ≤ b 1 (а<а 1 .

. Пример. Определить промежутки возрастания и убывания функции: у = х 3 - х 2 - 8х + 2 .

Решение. Чтобы применить признаки возрастания и убывания функции, найдем производную данной функции и определим значения х, при которых она положительна или отрицательна:

у" = Зх 2 - 2х - 8 .

Разложим трехчлен второй степени на множители, так как гораздо легче судить о знаке произведения по знакам множителей, чем о знаке суммы по знакам слагаемых.

Корни трехчлена:

_______________ x=(1 + √1+24)/3=(1 + 5)/3; x 1 = - 4/3, x 2 =2 .

у" =3(х+4/3)(х-2).

Множитель x + 4/3 отрицателен при х < - 4/3 и положителен при х > - 4/3. Множитель х - 2 отрицателен при х < 2 и положителен при х > 2. Знак произведения будет тот или иной в зависимости от расположения точки х на оси Ох относительно точек -4/3 и 2.

Точки -4/3 и 2 разделяют всю ось на три промежутка;

1) - ∞ .

Чтобы определить знак производной в каждом из промежутков, составим таблицу:

№ промежутка Характеристика промежутка Знак x+4/3 Знак x-2 Знак f ’(x) Данная функция
- ∞ < x< - 4/3 - - + возрастает
-4/3 < x < 2 + - - убывает
2 < х < + ∞ + + + возрастает

Следовательно, данная функция возрастает в промежутках

- ∞ и убывает в промежутке - 4/3 < х <2 .

График данной функции представлен на черт.

5°.Функция у = х 3 (черт.) имеет производную у = 3х 2 , которая положительна при всяком значении х, отличном от нуля. При х = 0 производная у" = 0 . Функция у = х 3 возрастает в промежутке - ; x= 0 есть отдельная единственная точка, в которой производная равна нулю, в ней функция возрастает. Действительно, при х = 0 х 3 = 0 , а при х < 0 х 3 < 0 и при х > 0 х 3 > 0.

Максимум и минимум функции

Задачи на отыскание наибольших и наименьших значений величин имеют важное значение в технике и, как это ясно из примеров, сводятся к отысканию максимума и минимума функции.

Определение. 1. Функция f(x) имеет при х=с максимум, если ее значение при х=с больше, чем при любом другом значении х, взятом в некоторой окрестности точки х=с.

2. Функция f(x) имеет при x= с минимум, если ее значение при х=с меньше, чем при любом другом значении х, взятом в некоторой окрестности точки х=с.

Термины "максимум" и "минимум" объединяются в один общий для них термин "экстремум".

Значение аргумента, которое дает максимум (или минимум) функции, называется точкой максимума (минимума), или точкой экстремума.

Функция может иметь только максимум, например функция y = 60x- 2х 2 (черт. 111), или только минимум, например функция у = 2х+72/x (черт. 112), или иметь

максимум и минимум, как, например, функция у = х 3 - - х 2 - 8х+2 (черт. 108). Функция может иметь несколько максимумов и минимумов (черт. 113), причем в этом случае максимумы и минимумы чередуются. Функция может не иметь ни максимума, ни минимума. Например, функции у = х 3 , y = ctgx, y = a x не имеют ни максимума, ни минимума, так как при возрастании х от - ∞ до +∞ первая и третья функции возрастают, а вторая только убывает.

Максимум (минимум) функции может не быть наибольшим (наименьшим) значением ее. Так, изображенная на черт. 113 функция имеет в точке с. значение, большее максимумов с 1 М 1 и с 3 М 2 , а в точке с 0 значение, меньшее минимума c 2 m 1 , и c 4 m 2 , минимум c 4 m 2 больше максимума с 1 М 1 . Максимум (минимум) функции в данной точке вообще есть наибольшее (наименьшее) значение функции по сравнению с ее значениями в точках, лежащих слева и справа от точки экстремума лишь в достаточной близости к ней.

Чтобы определить характер функции и говорить о ее поведении, необходимо находить промежутки возрастания и убывания. Этот процесс получил название исследования функции и построения графика. Точка экстремума используется при нахождении наибольшего и наименьшего значения функции, так как в них происходит возрастание или убывание функции из интервала.

Данная статья раскрывает определения, формулируем достаточный признак возрастания и убывания на интервале и условие существования экстремума. Это применимо к решению примеров и задач. Следует повторить раздел дифференцирования функций, потому как при решении необходимо будет использовать нахождение производной.

Yandex.RTB R-A-339285-1 Определение 1

Функция y = f (x) будет возрастать на интервале x , когда при любых x 1 ∈ X и x 2 ∈ X , x 2 > x 1 неравенство f (x 2) > f (x 1) будет выполнимо. Иначе говоря, большему значению аргумента соответствует большее значение функции.

Определение 2

Функция y = f (x) считается убывающей на интервале x , когда при любых x 1 ∈ X , x 2 ∈ X , x 2 > x 1 равенство f (x 2) > f (x 1) считается выполнимым. Иначе говоря, большему значению функции соответствует меньшее значение аргумента. Рассмотрим рисунок, приведенный ниже.

Замечание: Когда функция определенная и непрерывная в концах интервала возрастания и убывания, то есть (a ; b) , где х = а, х = b , точки включены в промежуток возрастания и убывания. Определению это не противоречит, значит, имеет место быть на промежутке x .

Основные свойства элементарных функций типа y = sin x – определенность и непрерывность при действительных значениях аргументах. Отсюда получаем, что возрастание синуса происходит на интервале - π 2 ; π 2 , тогда возрастание на отрезке имеет вид - π 2 ; π 2 .

Определение 3

Точка х 0 называется точкой максимума для функции y = f (x) , когда для всех значений x неравенство f (x 0) ≥ f (x) является справедливым. Максимум функции – это значение функции в точке, причем обозначается y m a x .

Точка х 0 называется точкой минимума для функции y = f (x) , когда для всех значений x неравенство f (x 0) ≤ f (x) является справедливым. Минимум функции – это значение функции в точке, причем имеет обозначение вида y m i n .

Окрестностями точки х 0 считаются точки экстремума, а значение функции, которое соответствует точкам экстремума. Рассмотрим рисунок, приведенный ниже.

Экстремумы функции с набольшим и с наименьшим значением функции. Рассмотрим рисунок, приведенный ниже.

Первый рисунок говорит о том, что необходимо найти наибольшее значение функции из отрезка [ a ; b ] . Оно находится при помощи точек максимума и равняется максимальному значению функции, а второй рисунок больше походит на поиск точки максимума при х = b .

Достаточные условия возрастания и убывания функции

Чтобы найти максимумы и минимумы функции, необходимо применять признаки экстремума в том случае, когда функция удовлетворяет этим условиям. Самым часто используемым считается первый признак.

Первое достаточное условие экстремума

Определение 4

Пусть задана функция y = f (x) , которая дифференцируема в ε окрестности точки x 0 , причем имеет непрерывность в заданной точке x 0 . Отсюда получаем, что

  • когда f " (x) > 0 с x ∈ (x 0 - ε ; x 0) и f " (x) < 0 при x ∈ (x 0 ; x 0 + ε) , тогда x 0 является точкой максимума;
  • когда f " (x) < 0 с x ∈ (x 0 - ε ; x 0) и f " (x) > 0 при x ∈ (x 0 ; x 0 + ε) , тогда x 0 является точкой минимума.

Иначе говоря, получим их условия постановки знака:

  • когда функция непрерывна в точке x 0 , тогда имеет производную с меняющимся знаком, то есть с + на - , значит, точка называется максимумом;
  • когда функция непрерывна в точке x 0 , тогда имеет производную с меняющимся знаком с - на + , значит, точка называется минимумом.

Чтобы верно определить точки максимума и минимума функции, необходимо следовать алгоритму их нахождения:

  • найти область определения;
  • найти производную функции на этой области;
  • определить нули и точки, где функция не существует;
  • определение знака производной на интервалах;
  • выбрать точки, где функция меняет знак.

Рассмотрим алгоритм на примере решения нескольких примеров на нахождение экстремумов функции.

Пример 1

Найти точки максимума и минимума заданной функции y = 2 (x + 1) 2 x - 2 .

Решение

Область определения данной функции – это все действительные числа кроме х = 2 . Для начала найдем производную функции и получим:

y " = 2 x + 1 2 x - 2 " = 2 · x + 1 2 " · (x - 2) - (x + 1) 2 · (x - 2) " (x - 2) 2 = = 2 · 2 · (x + 1) · (x + 1) " · (x - 2) - (x + 1) 2 · 1 (x - 2) 2 = 2 · 2 · (x + 1) · (x - 2) - (x + 2) 2 (x - 2) 2 = = 2 · (x + 1) · (x - 5) (x - 2) 2

Отсюда видим, что нули функции – это х = - 1 , х = 5 , х = 2 , то есть каждую скобку необходимо приравнять к нулю. Отметим на числовой оси и получим:

Теперь определим знаки производной из каждого интервала. Необходимо выбрать точку, входящую в интервал, подставить в выражение. Например, точки х = - 2 , х = 0 , х = 3 , х = 6 .

Получаем, что

y " (- 2) = 2 · (x + 1) · (x - 5) (x - 2) 2 x = - 2 = 2 · (- 2 + 1) · (- 2 - 5) (- 2 - 2) 2 = 2 · 7 16 = 7 8 > 0 , значит, интервал - ∞ ; - 1 имеет положительную производную. Аналогичным образом получаем, что

y " (0) = 2 · (0 + 1) · 0 - 5 0 - 2 2 = 2 · - 5 4 = - 5 2 < 0 y " (3) = 2 · (3 + 1) · (3 - 5) (3 - 2) 2 = 2 · - 8 1 = - 16 < 0 y " (6) = 2 · (6 + 1) · (6 - 5) (6 - 2) 2 = 2 · 7 16 = 7 8 > 0

Так как второй интервал получился меньше нуля, значит, производная на отрезке будет отрицательной. Третий с минусом, четвертый с плюсом. Для определения непрерывности необходимо обратить внимание на знак производной, если он меняется, тогда это точка экстремума.

Получим, что в точке х = - 1 функция будет непрерывна, значит, производная изменит знак с + на - . По первому признаку имеем, что х = - 1 является точкой максимума, значит получаем

y m a x = y (- 1) = 2 · (x + 1) 2 x - 2 x = - 1 = 2 · (- 1 + 1) 2 - 1 - 2 = 0

Точка х = 5 указывает на то, что функция является непрерывной, а производная поменяет знак с – на +. Значит, х=-1 является точкой минимума, причем ее нахождение имеет вид

y m i n = y (5) = 2 · (x + 1) 2 x - 2 x = 5 = 2 · (5 + 1) 2 5 - 2 = 24

Графическое изображение

Ответ: y m a x = y (- 1) = 0 , y m i n = y (5) = 24 .

Стоит обратить внимание на то, что использование первого достаточного признака экстремума не требует дифференцируемости функции с точке x 0 , этим и упрощает вычисление.

Пример 2

Найти точки максимума и минимума функции y = 1 6 x 3 = 2 x 2 + 22 3 x - 8 .

Решение.

Область определения функции – это все действительные числа. Это можно записать в виде системы уравнений вида:

1 6 x 3 - 2 x 2 - 22 3 x - 8 , x < 0 1 6 x 3 - 2 x 2 + 22 3 x - 8 , x ≥ 0

После чего необходимо найти производную:

y " = 1 6 x 3 - 2 x 2 - 22 3 x - 8 " , x < 0 1 6 x 3 - 2 x 2 + 22 3 x - 8 " , x > 0 y " = - 1 2 x 2 - 4 x - 22 3 , x < 0 1 2 x 2 - 4 x + 22 3 , x > 0

Точка х = 0 не имеет производной, потому как значения односторонних пределов разные. Получим, что:

lim y " x → 0 - 0 = lim y x → 0 - 0 - 1 2 x 2 - 4 x - 22 3 = - 1 2 · (0 - 0) 2 - 4 · (0 - 0) - 22 3 = - 22 3 lim y " x → 0 + 0 = lim y x → 0 - 0 1 2 x 2 - 4 x + 22 3 = 1 2 · (0 + 0) 2 - 4 · (0 + 0) + 22 3 = + 22 3

Отсюда следует, что функция непрерывна в точке х = 0 , тогда вычисляем

lim y x → 0 - 0 = lim x → 0 - 0 - 1 6 x 3 - 2 x 2 - 22 3 x - 8 = = - 1 6 · (0 - 0) 3 - 2 · (0 - 0) 2 - 22 3 · (0 - 0) - 8 = - 8 lim y x → 0 + 0 = lim x → 0 - 0 1 6 x 3 - 2 x 2 + 22 3 x - 8 = = 1 6 · (0 + 0) 3 - 2 · (0 + 0) 2 + 22 3 · (0 + 0) - 8 = - 8 y (0) = 1 6 x 3 - 2 x 2 + 22 3 x - 8 x = 0 = 1 6 · 0 3 - 2 · 0 2 + 22 3 · 0 - 8 = - 8

Необходимо произвести вычисления для нахождения значения аргумента, когда производная становится равной нулю:

1 2 x 2 - 4 x - 22 3 , x < 0 D = (- 4) 2 - 4 · - 1 2 · - 22 3 = 4 3 x 1 = 4 + 4 3 2 · - 1 2 = - 4 - 2 3 3 < 0 x 2 = 4 - 4 3 2 · - 1 2 = - 4 + 2 3 3 < 0

1 2 x 2 - 4 x + 22 3 , x > 0 D = (- 4) 2 - 4 · 1 2 · 22 3 = 4 3 x 3 = 4 + 4 3 2 · 1 2 = 4 + 2 3 3 > 0 x 4 = 4 - 4 3 2 · 1 2 = 4 - 2 3 3 > 0

Все полученные точки нужно отметить на прямой для определения знака каждого интервала. Поэтому необходимо вычислить производную в произвольных точках у каждого интервала. Например, у нас можно взять точки со значениями x = - 6 , x = - 4 , x = - 1 , x = 1 , x = 4 , x = 6 . Получим, что

y " (- 6) = - 1 2 x 2 - 4 x - 22 3 x = - 6 = - 1 2 · - 6 2 - 4 · (- 6) - 22 3 = - 4 3 < 0 y " (- 4) = - 1 2 x 2 - 4 x - 22 3 x = - 4 = - 1 2 · (- 4) 2 - 4 · (- 4) - 22 3 = 2 3 > 0 y " (- 1) = - 1 2 x 2 - 4 x - 22 3 x = - 1 = - 1 2 · (- 1) 2 - 4 · (- 1) - 22 3 = 23 6 < 0 y " (1) = 1 2 x 2 - 4 x + 22 3 x = 1 = 1 2 · 1 2 - 4 · 1 + 22 3 = 23 6 > 0 y " (4) = 1 2 x 2 - 4 x + 22 3 x = 4 = 1 2 · 4 2 - 4 · 4 + 22 3 = - 2 3 < 0 y " (6) = 1 2 x 2 - 4 x + 22 3 x = 6 = 1 2 · 6 2 - 4 · 6 + 22 3 = 4 3 > 0

Изображение на прямой имеет вид

Значит, приходим к тому, что необходимо прибегнуть к первому признаку экстремума. Вычислим и получим, что

x = - 4 - 2 3 3 , x = 0 , x = 4 + 2 3 3 , тогда отсюда точки максимума имеют значени x = - 4 + 2 3 3 , x = 4 - 2 3 3

Перейдем к вычислению минимумов:

y m i n = y - 4 - 2 3 3 = 1 6 x 3 - 2 2 + 22 3 x - 8 x = - 4 - 2 3 3 = - 8 27 3 y m i n = y (0) = 1 6 x 3 - 2 2 + 22 3 x - 8 x = 0 = - 8 y m i n = y 4 + 2 3 3 = 1 6 x 3 - 2 2 + 22 3 x - 8 x = 4 + 2 3 3 = - 8 27 3

Произведем вычисления максимумов функции. Получим, что

y m a x = y - 4 + 2 3 3 = 1 6 x 3 - 2 2 + 22 3 x - 8 x = - 4 + 2 3 3 = 8 27 3 y m a x = y 4 - 2 3 3 = 1 6 x 3 - 2 2 + 22 3 x - 8 x = 4 - 2 3 3 = 8 27 3

Графическое изображение

Ответ:

y m i n = y - 4 - 2 3 3 = - 8 27 3 y m i n = y (0) = - 8 y m i n = y 4 + 2 3 3 = - 8 27 3 y m a x = y - 4 + 2 3 3 = 8 27 3 y m a x = y 4 - 2 3 3 = 8 27 3

Если задана функция f " (x 0) = 0 , тогда при ее f "" (x 0) > 0 получаем, что x 0 является точкой минимума, если f "" (x 0) < 0 , то точкой максимума. Признак связан с нахождением производной в точке x 0 .

Пример 3

Найти максимумы и минимумы функции y = 8 x x + 1 .

Решение

Для начала находим область определения. Получаем, что

D (y) : x ≥ 0 x ≠ - 1 ⇔ x ≥ 0

Необходимо продифференцировать функцию, после чего получим

y " = 8 x x + 1 " = 8 · x " · (x + 1) - x · (x + 1) " (x + 1) 2 = = 8 · 1 2 x · (x + 1) - x · 1 (x + 1) 2 = 4 · x + 1 - 2 x (x + 1) 2 · x = 4 · - x + 1 (x + 1) 2 · x

При х = 1 производная становится равной нулю, значит, точка является возможным экстремумом. Для уточнения необходимо найти вторую производную и вычислить значение при х = 1 . Получаем:

y "" = 4 · - x + 1 (x + 1) 2 · x " = = 4 · (- x + 1) " · (x + 1) 2 · x - (- x + 1) · x + 1 2 · x " (x + 1) 4 · x = = 4 · (- 1) · (x + 1) 2 · x - (- x + 1) · x + 1 2 " · x + (x + 1) 2 · x " (x + 1) 4 · x = = 4 · - (x + 1) 2 x - (- x + 1) · 2 x + 1 (x + 1) " x + (x + 1) 2 2 x (x + 1) 4 · x = = - (x + 1) 2 x - (- x + 1) · x + 1 · 2 x + x + 1 2 x (x + 1) 4 · x = = 2 · 3 x 2 - 6 x - 1 x + 1 3 · x 3 ⇒ y "" (1) = 2 · 3 · 1 2 - 6 · 1 - 1 (1 + 1) 3 · (1) 3 = 2 · - 4 8 = - 1 < 0

Значит, использовав 2 достаточное условие экстремума, получаем, что х = 1 является точкой максимума. Иначе запись имеет вид y m a x = y (1) = 8 1 1 + 1 = 4 .

Графическое изображение

Ответ: y m a x = y (1) = 4 ..

Определение 5

Функция y = f (x) имеет ее производную до n -го порядка в ε окрестности заданной точки x 0 и производную до n + 1 -го порядка в точке x 0 . Тогда f " (x 0) = f "" (x 0) = f " " " (x 0) = . . . = f n (x 0) = 0 .

Отсюда следует, что когда n является четным числом, то x 0 считается точкой перегиба, когда n является нечетным числом, то x 0 точка экстремума, причем f (n + 1) (x 0) > 0 , тогда x 0 является точкой минимума, f (n + 1) (x 0) < 0 , тогда x 0 является точкой максимума.

Пример 4

Найти точки максимума и минимума функции y y = 1 16 (x + 1) 3 (x - 3) 4 .

Решение

Исходная функция – целая рациональная, отсюда следует, что область определения – все действительные числа. Необходимо продифференцировать функцию. Получим, что

y " = 1 16 x + 1 3 " (x - 3) 4 + (x + 1) 3 x - 3 4 " = = 1 16 (3 (x + 1) 2 (x - 3) 4 + (x + 1) 3 4 (x - 3) 3) = = 1 16 (x + 1) 2 (x - 3) 3 (3 x - 9 + 4 x + 4) = 1 16 (x + 1) 2 (x - 3) 3 (7 x - 5)

Данная производная обратится в ноль при x 1 = - 1 , x 2 = 5 7 , x 3 = 3 . То есть точки могут быть точками возможного экстремума. Необходимо применить третье достаточное условие экстремума. Нахождение второй производной позволяет в точности определить наличие максимума и минимума функции. Вычисление второй производной производится в точках ее возможного экстремума. Получаем, что

y "" = 1 16 x + 1 2 (x - 3) 3 (7 x - 5) " = 1 8 (x + 1) (x - 3) 2 (21 x 2 - 30 x - 3) y "" (- 1) = 0 y "" 5 7 = - 36864 2401 < 0 y "" (3) = 0

Значит, что x 2 = 5 7 является точкой максимума. Применив 3 достаточный признак, получаем, что при n = 1 и f (n + 1) 5 7 < 0 .

Необходимо определить характер точек x 1 = - 1 , x 3 = 3 . Для этого необходимо найти третью производную, вычислить значения в этих точках. Получаем, что

y " " " = 1 8 (x + 1) (x - 3) 2 (21 x 2 - 30 x - 3) " = = 1 8 (x - 3) (105 x 3 - 225 x 2 - 45 x + 93) y " " " (- 1) = 96 ≠ 0 y " " " (3) = 0

Значит, x 1 = - 1 является точкой перегиба функции, так как при n = 2 и f (n + 1) (- 1) ≠ 0 . Необходимо исследовать точку x 3 = 3 . Для этого находим 4 производную и производим вычисления в этой точке:

y (4) = 1 8 (x - 3) (105 x 3 - 225 x 2 - 45 x + 93) " = = 1 2 (105 x 3 - 405 x 2 + 315 x + 57) y (4) (3) = 96 > 0

Из выше решенного делаем вывод, что x 3 = 3 является точкой минимума функции.

Графическое изображение

Ответ: x 2 = 5 7 является точкой максимума, x 3 = 3 - точкой минимума заданной функции.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!