Информационный женский портал

Система называется самоорганизующейся если. Философская энциклопедия - самоорганизующаяся система. Взгляды на развитие самоорганизации

Системы, способные к самоорганизации, характеризуются такими свойствами, как открытость, неравновесность, нелинейность, наличие в них диссипативных, рассеивающих процессов.

Открытость означает способ существования, характеризующийся постоянным обменом с внешней средой. Может происходить обмен веществом, энергией или информацией или тем и другим одновременно (в разных сочетаниях, например, веществом и энергией или энергией и информацией и т.п.).

Неравновесность предполагает, что система выведена из состояния равновесия, как правило, далека от него. Тогда она становится чувствительной к малым возмущениям, незначительным флуктуациям, приводящих к рождению макроскопических упорядоченных структур.

Важнейшее значение для самоорганизующейся системы имеет ее нелинейность , которая характеризует, прежде всего, способность системы к самодействию . Линейная система отличается от нелинейной своим пассивным характером, т.е. способностью испытывать лишь внешние воздействия. Линейные системы реагируют на внешние воздействия пропорционально: малые воздействия приводят к малым изменениям состояния, а большие – к большим (отсюда термин «линейность», подразумевающий линейный характер пропорциональной зависимости).

Самодействие нелинейных систем приводит к нарушению указанной пропорциональности: малые воздействия теперь могут вызывать очень большие последствия («малые причины больших исторических событий»), а большие – к совершенно незначительным («гора родит мышь»). Самодействие нелинейных систем приводит к эффекту самоорганизации.

Самоорганизация отличается от процесса организации тем, что сущность процесса здесь объясняется уже природой самой системы (а не действием внешних факторов). То есть: система называется самоорганизующейся, если она без дополнительного воздействия извне, обретает определенную пространственную, временную или функциональную структуру.

Непропорциональность зависимости состояния системы от состояния среды делает такие системы, с одной стороны, поразительно устойчивыми по отношению к крупномасштабным неблагоприятным воздействиям на определенных стадиях своего развития, далеких от моментов нестабильности (точек бифуркации), а с другой стороны – необычайно чувствительными к очень незначительным изменениям состояния среды вблизи точек бифуркации. То есть, благодаря нелинейности сложные системы обретают весьма своенравный характер , резко отличающийся от обычных линейных систем. И управление ими требует для получения нужно результата целого спектра новых для менеджера знаний.

Нелинейность – свойство сложных самоорганизующихся систем, имеющее глубокий мировоззренческий смысл.

Нелинейность означает:

– пороговость чувствительности (ниже порога все стирается, забывается, а выше – наоборот многократно усиливается);

– возможность «разрастания малого», «усиления флуктуаций», выявления огромного внутреннего потенциала системы;

– появление целого спектра возможных путей развития;

– изменение темпов развития, смену режимов ускоренного роста и существенного замедления процессов.

Таким образом, самоорганизующиеся системы – это открытые, нелинейные, существенно неравновесные системы. В научной литературе их часто называют по одной из данных характеристик. Например, говорят: нелинейная система, и это означает, что речь идет об открытой системе, способной к самоорганизации и саморазвитию.

Итак, самоорганизация – ключевой термин синергетики. Синергетику часто так и называют – теориясамоорганизующихся систем.

Необходимыми условиями для самоорганизации являются открытость, нелинейность, неравновесность системы, наличие в ней диссипативных процессов.

Самоорганизующиеся системы сохраняют свою целостность и динамично развиваются благодаря возможности переключаться на иной, противоположный, режим, чтобы избегать угрозы распада и дезинтеграции в моменты их неустойчивости, и это переключение происходит вследствие наличия в них хаотических элементов. Кроме того, элементы неорганизованности и хаотичности готовят системы к многовариантному будущему, делают их гибкими и пластичными, способными приспосабливаться к изменчивым условиям окружающей среды.

У.Р. Эшби публикует статью: W. R. Ashby Principles of the Self-Organizing Dynamic System, «Journal of General Psychology», 1947, vol. 37, рр. 125-128, где впервые использовал термин «самоорганизующаяся система».

«Кибернетик и психиатр У. Эшби ввёл понятие самоорганизующихся систем. В этих системах приспособление к изменениям или оптимизация процессов управления достигается соответствующим изменением людьми отдельных подсистем, алгоритмов управления, связей между подсистемами, а в общем случае, структурно-функциональными компонентами».

Борушко А.П., Выбор будущего: Quo vadis, Минск, «Дизайн ПРО», 2004 г., с.64.

Это понятие широко вошло в кибернетику, биологию, социологию и другие науки, имеющих дело со сложными системами. Вот характерный пример:

«…приведите оркестр в действие и вы увидите, что он обладает естественной тенденцией порождать разнообразие за счёт внесения ошибок в интерпретацию музыкальной пьесы отдельными музыкантами. Кроме того, оркестр будет вносить дополнительные элементы случайности в исполнение из-за недостаточной связи между музыкантами. Дирижёр (или регулятор) ставит перед собой цель уменьшить сложность управляемой им системы, заставляя примерно восемьдесят пять человек играть так, как будто они являются только определёнными знаками в партитуре»

Процессы самоорганизации могут иметь место только в системах с большим количеством элементов, связи между которыми имеют не жесткий, а вероятностный характер. Эти процессы происходят за счет перестройки существующих и образования новых связей между элементами системы. Отличительная особенность процессов самоорганизации - их целенаправленный, но вместе с тем и естественный, спонтанный характер: эти процессы, протекающие при взаимодействии системы с окружающей средой, в той или иной мере автономны, относительно независимы от нее.

Различают три типа процессов самоорганизации. Первый - это самозарождение организации, т.е. возникновение из некоторой совокупности объектов определенного уровня новой целостной системы со своими специфическими закономерностями. Второй тип - процессы, благодаря которым система поддерживает определенный уровень организации при изменении внешних и внутренних условий ее функционирования (гомеостатические механизмы, в частности, действующие по принципу обратной связи). Третий тип связан с совершенствованием и с саморазвитием таких систем, которые способны накапливать и использовать прошлый опыт. Термин "самоорганизующаяся система" ввел английский кибернетик Эшби У.Р. (1947).

В широком плане понятие самоорганизации отражает фундаментальный принцип Природы, лежащий в основе наблюдаемого развития от менее сложных к более сложным и упорядоченным формам организации вещества. Но у этого понятия есть и более узкое значение, непосредственно характеризующее способ реализации перехода от простого к более сложному. В таком значении самоорганизацией называют природные скачкообразные процессы, переводящие открытую неравновесную систему, достигшую в своем развитии критического состояния, в новое устойчивое состояние с более высоким уровнем сложности и упорядоченности по сравнению с исходным. Критическое состояние - это состояние крайней неустойчивости, достигаемое открытой неравновесной системой в ходе предшествующего периода плавного, эволюционного развития.

Понятия «простой» и «сложный» всегда относительны, их смысл выявляется только при сопоставлении свойств родственных объектов. Так, протон сложен относительно кварков, но прост относительно атома водорода; атом сложен относительно протона и электрона, но прост относительно молекулы и т.д. При этом мы видим, что сложные объекты обладают новыми качествами, которых лишены исходные простые элементы, составляющие их. Таким образом, Природу можно представить как цепочку нарастающих по сложности элементов.

Процессы объединения «простых» элементов с образованием «сложных» систем протекают лишь при выполнении определенных условий. Например, если температура (энергия) окружающей среды превышает энергию связи двух частиц, то они не смогут удерживаться вместе. При снижении температуры до значений, при которых энергия среды и энергия связи частиц окажутся равными, наступает критический момент, и дальнейшее снижение температуры делает возможным процесс фиксирования частиц (например, протона и электрона) в атоме водорода.Намного сложнее обстоит дело при соединении атомов в молекулы. Здесь также существуют пороговые значения параметров (температуры, плотности), называемые критическими значениями, которые отделяют область возможного образования от области, где этот процесс невозможен.

Затем идут новые уровни сложности и упорядоченности вещества. Наиболее высокий уровень упорядоченности, известный науке, демонстрирует феномен жизни и порождаемый им разум. Долгое время считалось, что феномен жизни противоречит господствовавшим физическим представлениям о стремлении материи к хаосу. Жизнь представлялась упорядоченным и закономерным поведением материи, основанным не только на тенденции переходить от упорядоченности к неупорядоченности, но частично и на существовании упорядоченности, которая поддерживается все время. Эта проблема впервые была четко сформулирована в книге известного физика-теоретика Э. Шредингера «Что такое жизнь?». Анализ, проделанный им, показывал, что феномен жизни разрушает постулат о единственной тенденции развития вещества - от случайно возникшей упорядоченности к неупорядоченности, рожденный классической термодинамикой. Живые системы оказались способны поддерживать упорядоченность вопреки «естественной» тенденции.

После выхода книги Шредингера создалась любопытная ситуация: за живым веществом признавалась способность проявлять как тенденцию к разрушению упорядоченности, так и тенденцию к ее сохранению. А за неживой природой по-прежнему признавалась только одна тенденция - неизбежно разрушать любую упорядоченность, возникшую в результате случайных отклонений от равновесия. И лишь сравнительно недавно стало ясно, что тенденция к созиданию, к переходу от менее упорядоченного состояния к более упорядоченному, то есть самоорганизация, присуща неживой природе в той же мере, что и живой. Нужны лишь подходящие условия для ее проявления.

Выяснилось, что все разномасштабные самоорганизующиеся системы, независимо от того, каким разделом науки они изучаются, будь то физика, химия, биология или социальные науки, имеют единый алгоритм перехода от менее сложных и менее упорядоченных к более сложным и более упорядоченным состояниям.

Самоорганизующиеся системы обретают присущие им структуры или функции без какого бы то ни было вмешательства извне. Обычно эти системы состоят из большого числа подсистем. При изменении определенных условий, которые называются управляющими параметрами, в системе образуются качественно новые структуры. Эти системы обладают способностью переходить из однородного, недифференцированного состояния покоя в неоднородное, но хорошо упорядоченное состояние или в одно из нескольких возможных состояний.

Этими системами можно управлять, изменяя действующие на них внешние факторы. Поток энергии или вещества уводит физическую, химическую, биологическую или социальную систему далеко от состояния термодинамического равновесия. Изменяя температуру, уровень радиации, давление и т.д., мы можем управлять системами извне.Самоорганизующиеся системы способны сохранять внутреннюю устойчивость при воздействии внешней среды, они находят способы самосохранения, чтобы не разрушаться и даже улучшать свою структуру.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Кафедра «Общепрофессиональные и специальные дисциплины по юриспруденции»

Контрольная работа

По курсу: «Концепция современного естествознания»

самоорганизация система материя

Введение

1. Понятие самоорганизации

2. Самоорганизация систем

3. Типы процессов самоорганизации

4. Самоорганизация сложных систем

5. Услови я возникновения самоорганизации

6. Самоорганизация в живой природе

Заключение

Список использованной литературы

Введение

Наш мир, все, что доступно в нем наблюдению претерпевают непрерывные изменения - мы наблюдаем его непрекращающуюся эволюцию. Все подобные изменения происходят за счет сил внутреннего взаимодействия, во всяком случае, никаких внешних по отношению к нему сил мы не наблюдаем. Согласно принципу Бора, существующим мы имеем право считать лишь то, что наблюдаемо или может быть сделано таковым. Следовательно, подобных сил не существует. Таким образом, все, что происходит вокруг нас, мы можем считать процессом самоорганизации, то есть процессом, идущим за счёт внутренних стимулов, не требующих вмешательства внешних факторов, не принадлежащих системе. К числу таких процессов относится также и становление и действие Разума, ибо он родился в системе в результате её эволюции. Итак, весь процесс эволюции системы - процесс самоорганизации. Мир всё время меняется. Мы не можем утверждать, что процесс самоорганизации направлен на достижение состояния равновесия (под которым понимается абсолютный хаос), у нас нет для этого оснований, гораздо больше данных для утверждения обратного - мир непрерывно развивается, и в этом изменении просматривается определённая направленность, отличная от стремления к равновесию.

Для описания основ процесса самоорганизации удобно (хотя и заведомо недостаточно) использовать терминологию дарвиновской триады: наследственность, изменчивость, отбор, придав этим понятиям более широкий смысл. Изменчивость в этом более широком смысле - это вечно присутствующие факторы случайности и неопределённости. Без предположения о непрерывно действующих случайных факторах, постоянная эволюция системы, сопровождающаяся появлением новых качественных особенностей, по-видимому, невозможна. Что касается термина “наследственность”, то он означает лишь то, что настоящее и будущее любой системы в мире зависит от его прошлого. Степень зависимости той или иной системы от прошлого может быть любой. Эту степень зависимости условимся называть памятью системы. Во вполне детерминированных системах прошлое однозначно определяет будущее (возможно и обратное - по-настоящему определить прошлое). Такие системы - системы с бесконечной памятью (абсолютной наследственностью). Это абстракция, но она хорошо интерпретирует некоторые процессы в неживом мире - например, то движение планет, которое мы наблюдаем (конечно, лишь на некотором, конечном, правда очень большом, интервале времени. “Память системы” в реальных системах в том смысле, как мы её определили, чаще всего оказывается ограниченной: и бесконечная память и её отсутствие - лишь абстракции, которые удобны для интерпретации. Примером системы, лишённой памяти, является развитое турбулентное движение.

Понятие “принципов отбора” является самым трудным среди понятий дарвиновской триады. Процессы самоорганизации следуют определённым правилам, законам. Это утверждение - некое эмпирическое обобщение, вопрос о происхождении этих правил лежит вне рационализма, как и вопрос о рождении Вселенной.

Вследствие этого необходимо более подробно коснуться понятия самоорганизации в живой и неживой природе, или точнее, нового научного направления, изучающего именно эти процессы на Земле и во Вселенной - синергетики.

1. Понятие самоорганизации

Самоорганизация -- это процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы. Процессы самоорганизации могут иметь место только в системах, обладающих высоким уровнем сложности и большим количеством элементов, связи между которыми имеют не жесткий, а вероятностный характер. Основные свойства самоорганизующих систем -- открытость, нелинейность, диссипативность. Теория самоорганизации имеет дело с открытыми нелинейными диссипативными системами, далекими от равновесия.

Свойства самоорганизации обнаруживают объекты самой различной природы: живая клетка, организм, биологическая популяция, биогеоценоз, человеческий коллектив и т.д. Процессы самоорганизации осуществляются за счет перестройки существующих и образования новых связей между элементами системы. Отличительная особенность процессов самоорганизации -- их целенаправленный, но вместе с тем и естественный, спонтанный характер: эти процессы протекают при взаимодействии системы с окружающей средой, в той или иной мере автономны и относительно независимы от нее.

2. Самоорганизация систем

В последние десятилетия развивается представление о том, что материи изначально присуща тенденция не только к разрушению упорядоченности и возврату к исходному хаосу, но и к образованию все более сложных и упорядоченных систем разного уровня. Представление о разрушительной тенденции материи сформировалось в результате развития двух отраслей классической физики - статистической механики и термодинамики, - которые описывают поведение изолированных (замкнутых) систем, т. е. систем не обменивающихся ни энергией, ни веществом с окружающей средой. При этом особая роль принадлежит второму началу термодинамики, определяющему необратимость процессов преобразования энергии в замкнутой системе. Такие процессы рано или поздно приводят систему к ее самому простому состоянию - термодинамическому равновесию, которое эквивалентно хаосу, когда отсутствует какая-либо упорядоченность и все виды энергии переходят в тепловую, в среднем равномерно распределенную между всеми элементами системы. В прошлом обсуждалась возможность приложения второго начала термодинамики ко Вселенной, которая полагалась замкнутой системой. Из этого следовал вывод о деградации Вселенной - ее тепловой смерти.

Известно, что все реальные системы, от самых малых до самых больших, являются открытыми, т. е. они обмениваются энергией и веществом с окружающей средой и не находятся в состоянии термодинамического равновесия. В таких системах возможно образование нарастающей упорядоченности. На данной основе возникло представление о самоорганизации вещественных систем

В последние десятилетия исследования процессов самоорганизации производятся в трех направлениях: синергетика, термодинамика неравновесных процессов и математическая теория катастроф.

Синергетика изучает связи между элементами (подсистемами) структуры, которые образуются в открытых системах (биологических, физико-химических и др.) благодаря интенсивному обмену веществом и энергией с окружающей средой в неравновесных условиях. В таких системах наблюдается согласованное поведение подсистем, в результате чего возрастает степень упорядоченности, т. е. уменьшается энтропия. Основа синергетики - термодинамика неравновесных процессов, теория случайных процессов, теория нелинейных колебаний и волн. Объект изучения синергетики, независимо от его природы, должен удовлетворять трем условиям: открытость, существенная неравновесность и скачкообразный выход из критического состояния.

Открытость означает незамкнутость системы, для которой возможен обмен энергией и веществом с окружающей средой. Существенная неравновесность приводит к критическому состоянию, сопровождающемуся потерей устойчивости. В результате скачкообразного выхода из критического состояния образуется качественно новое состояние с более высоким уровнем упорядоченности. Примером самоорганизующейся системы может служить оптический квантовый генератор - лазер. При его работе соблюдаются три перечисленные условия: открытость системы, снабжаемой извне энергией, ее сугубая неравновесность, достижение критического уровня накачки, при котором возникает упорядоченное, монохроматическое излучение.

«Повсюду, куда ни посмотри, обнаруживается эволюция, разнообразие форм и неустойчивости. Интересно отметить что такая картина наблюдается на всех уровнях - в области элементарных частиц, в биологии, в астрофизике», - так считает один из основоположников термодинамики неравновесных процессов, лауреат Нобелевской премии 1977 г. бельгийский физик и физикохимик И.Л. Пригожий (р. 1917).

Самоорганизация включает случайное и закономерное в развитии любых систем, в котором можно выделить две фазы: плавную эволюцию, ход которой достаточно закономерен и детерминирован, и скачок в точке бифуркации, протекающий случайно и поэтому случайно определяющий последующий закономерный эволюционный этап вплоть до следующего скачка в точке бифуркации. Прямое отношение к концепции самоорганизации имеет математическая теория катастроф, описывающая различные скачкообразные переходы, спонтанные качественные изменения и т. п. В теории катастроф применяется довольно сложный математический аппарат - топологическая теория динамических систем.

3. Типы процессов самоорганизации

Различают три типа процессов самоорганизации:

процессы самозарождения организации, т.е. возникновение из некоторой совокупности целостных объектов определенного уровня новой целостной системы со своими специфическими закономерностями (например, генезис многоклеточных организмов из одноклеточных);

процессы, благодаря которым система поддерживает определенный уровень организации при изменении внешних и внутренних условий ее функционирования (здесь исследуются главным образом гомеостатические механизмы, в частности, механизмы, действующие по принципу отрицательной обратной связи);

процессы, связанные с совершенствованием и саморазвитием таких систем, которые способны накапливать и использовать прошлый опыт.

Специальное исследование проблем самоорганизации впервые было начато в кибернетике. Термин «самоорганизующая система» ввел английский кибернетик У. Р. Эшби в 1947 г. Широкое изучение самоорганизации началось в конце 50-х гг. XX в. в целях отыскания новых принципов построения технических устройств, способных моделировать различные стороны интеллектуальной деятельности человека. Исследование проблем самоорганизации стало одним из основных путей проникновения идей и методов кибернетики, теории информации, теории систем, биологического и системного познания.

Мир нелинейных самоорганизующихся систем гораздо богаче, чем мир закрытых, линейных систем. Вместе с тем «нелинейный мир» сложнее моделировать. Как правило, для приближенного решения большинства возникающих нелинейных уравнений требуется сочетание современных аналитических методов с вычислительными экспериментами. Синергетика открывает для точного, количественного, математического исследования такие стороны мира, как его нестабильность, многообразие путей изменения и развития, раскрывает условия существования и устойчивого развития сложных структур, позволяет моделировать катастрофические ситуации и т.д.

Методами синергетики было осуществлено моделирование многих сложных самоорганизующихся систем: от морфогенеза в биологии и некоторых аспектов функционирования мозга до флаттера крыла самолета, от молекулярной физики и автоколебательных приборов до формирования общественного мнения и демографических процессов. Основной вопрос синергетики -- существуют ли общие закономерности, управляющие возникновением самоорганизующихся систем, их структур и функций. Такие закономерности существуют. Это открытость, нелинейность, диссипативность.

4. Самоорганизация сложных систем

Характерной особенностью развивающихся систем является их способность к самоорганизации, которая проявляется в самосогласованном функционировании системы за счет внутренних связей с внешней средой. Рассматривая развитие как процесс самоорганизации системы, выделим в нем две основные фазы: адаптацию, или эволюционное развитие и отбор. Самоорганизующиеся системы обладают механизмом непрерывной приспособляемости (адаптации) к меняющимся внутренним и внешним условиям, непрерывного совершенствования поведения с учетом прошлого опыта. При исследовании процессов самоорганизации будем исходить из предположения, что в развивающихся системах структура и функция тесно взаимосвязаны. Система преобразует свою структуру для того, чтобы выполнить заданные функции в условиях меняющейся внешней среды.

Адаптация системы к меняющимся условиям происходит благодаря появлению элементов, обладающих необходимыми для функционирования системы свойствами, причем благодаря не просто появлению таких элементов (имеется в виду не только появление новых элементов, но и возникновение у "старых" элементов новых признаков), а избыточности таких элементов-признаков. Увеличение числа сходных элементов лежит в основе прогрессивного развития систем, так как является предпосылкой для дальнейшего отбора элементов, дифференциации и интеграции структур. Вместе с тем увеличение числа сходных элементов - простейшее средство для увеличения надежности воспроизведения, для интенсификации функций и расширения связей с внешней средой. Периоду адаптации (устойчивости системы) соответствует постоянное накопление приспособительных признаков широкого значения, нарастание универсализма системы. В результате флуктуаций в системе возникают регулирующие сигналы, которые изменяют, приспосабливают структуру системы так, чтобы система продолжала функционировать необходимым образом.

Период адаптации - это период эволюционных преобразований, которые связаны лишь с количественными изменениями в системе. Структурная устойчивость при этом не нарушается. Понятие структурной устойчивости играет важную роль в теории самоорганизации.

Процесс эволюции - это результат взаимодействия системы с внешней средой, поэтому при исследовании этого процесса необходимо рассматривать процесс система-внешняя среда.

Значение внешних и внутренних факторов в органической эволюции Шмальгаузен выявляет, объясняя эволюционный процесс как процесс направленный: "Биогеоценоз выступает по отношению ко всем составляющим его популяциям видов как управляющее устройство. Контроль и регуляция взаимозависимостей популяций разных видов друг с другом и с неживыми компонентами биогеоценоза совершаются через отбор или дифференциальное участие особей в воспроизведении следующего поколения. Гибель, полное или частичное устранение от размножения всех, кто не может выполнять биогеохимическую функцию, поддерживает устойчивость процессов циркуляции вещества и энергии в биогеоценозе и вместе с тем обеспечивает эволюцию отдельных видов. Эволюция является побочным, но неизбежным результатом поддержания устойчивости системы высшего по отношению к организму ранга. Отбор, осуществляя контроль и регуляцию, т.е. поддерживая стационарное состояние биогеоценоза, тем самым становится движущим фактором эволюции вида и обеспечивает не просто изменение вида как системы, которое могло бы привести ее к разрушению, а переход системы из одного гармонического (устойчивого по принципу регулирования) состояния в другое гармоническое состояние".

Множественное регулирование по принципу обратной связи, или самонастройка развивающего организма, лежит в основе поддержания устойчивого состояния, обеспечивает сохранение устойчивости процесса развития при нерегулярно меняющихся внешних условиях, обеспечивает надежность достижения результата развития в регулярно меняющихся условиях среды. Самонастройка составляет основу приспособленности организма к среде и взаимного приспособления органов друг к другу. Но она же составляет и основу приспособляемости, правда, на другом - надорганизменном уровне организации жизни.

Действие регуляторного механизма развития системы проявляется на различных уровнях ее организации и зависит от реакции на изменение внешних факторов, от форм взаимодействия системы с факторами внешней среды. В зависимости от уровня структуризации системы взаимозависимость с внешними факторами проявляется в различных формах, так как относится к разным уровням организации системы и различным процессам. В роли регулятора выступает внешняя среда, включающая рассматриваемую систему. Внешняя среда должна быть связана с развивающейся системой двумя линиями связи - прямой линией передачи управляющих сигналов от внешней среды к системе и линией обратной связи, передающей во внешнюю среду информацию о действительном состоянии системы. В процессе своего функционировании система передает во внешнюю среду информацию о количественном составе соответствующих элементов-признаков, об их распределении. Во внешней среде происходит преобразование этой информации (контроль и отбор наиболее ценной информации). Отобранная информация накапливается во внешней среде и передается в систему путем появления соответствующих свойств (признаков) у элементов системы.

В биологических системах в роли регулятора выступает биогеоценоз. Популяция, входящая в состав данного биогеоценоза, связана с ним двумя каналами. Первый канал связи лежит на молекулярном уровне организации и служит для передачи наследственной информации от зиготы до первичных половых клеток зрелой особи. Второй канал связи лежит на уровне организации особи и служит для передачи обратной информации от фенотипов к биогеоценозу. Между этими двумя каналами "вставлены" механизмы преобразования, обеспечивающие связь между ними и замыкающие таким образом элементарный цикл эволюционных изменений.

Таким образом, осуществляется двусторонняя связь между внешней средой и включенной в ее состав системой. Однако между обеими линиями передачи нет непосредственной связи, так как они находятся на разных уровнях. Накопленная информация передается по прямому каналу на уровне признаков отдельных элементов, а обратная информация - только на уровне элементов и компонентов системы. Так как регулирующие механизмы развития системы связаны с внешней средой, то следует считаться с возможностью различных случайных внешних влияний, которые искажают передачу информации и нарушают нормальное течение преобразований.

Если биогеоценоз в целом играет роль регулятора эволюционного процесса, то он обязательно должен быть обеспечен "информацией" о состоянии популяции (по линии "обратной" связи), должен включать в себя специфический механизм преобразования этой информации в управляющие сигналы и средства передачи последних на популяцию. Таким образом, кроме механизма преобразования, необходимы каналы связи для передачи информации в двух направлениях - от популяции к биогеоценозу и от биогеоценоза к популяции. Так как изменение популяции, будучи элементарным эволюционным процессом, всегда сопровождается наследственным изменением ее особей, то управляющие сигналы от биогеоценоза к популяции должны каким-то образом включить возможность изменения ее наследственной структуры. Последнее может произойти только в процессе преобразования информации в самом биогеоценозе (т.е. в "регуляторе"). Так как первичные эволюционные изменения возможны только в популяции (или в поколениях особей, но не в отдельных особях), то наиболее простым изменением является хотя бы небольшое изменение в генетическом составе популяции, т.е. в соотношении числа особей с разной наследственной характеристикой (генотипов). Информация о таких изменениях популяции может быть сообщена через наследственный аппарат ее особей и передана особям следующего поколения при посредстве, например, половых клеток. Такой аппарат действительно имеется, и, несомненно, он полностью обеспечивает надежную связь популяции с регулирующим механизмом биогеоценоза и дальнейшую передачу информации от одного поколения особей к следующему. Имеются и средства передачи обратной информации от популяции к биогеоценозу. Популяция, несомненно, активно воздействует на биогеоценоз, хотя бы через потребление пищевых материалов и накопление продуктов своей жизнедеятельности. В известных условиях популяция может внести значительные изменения в строении биогеоценоза. Таким образом, имеются и каналы обратной связи.

Однако нет прямой связи между наследственной информацией по первому каналу (от биогеоценоза) и обратной информацией по второму каналу (от популяции к биогеоценозу). Здесь непосредственная связь как будто прерывается, так как обе линии связи находятся на разных уровнях. Наследственная информация передается на внутриклеточном (молекулярном) уровне организации, а обратная информация - только на уровне организации целой особи.

Переход от одной линии связи к другой совершается посредством довольно сложного механизма преобразования. Наследственная информация преобразуется в процессах индивидуального развития в средства передачи обратной информации, именно в фенотип особи, являющейся реальным носителем жизни и активным участником наступления на жизненные ресурсы биогеоценоза ("борьбы за существование"). В биогеоценозе через естественный отбор и процессы размножения происходит новое преобразование этой информации в наследственную с переходом от уровня организации особи (в фенотипах) на уровень организации клетки (половые клетки, зиготы). Так замыкается полный круг преобразований в элементарном цикле эволюционного процесса.

Таким образом, можно еще раз сказать, что адаптация системы происходит за счет избыточности элементов-признаков, за счет накопления информации в системе о состоянии окружения. Избыточность обеспечивает селекцию, отбор наиболее оптимальных вариантов.

Причиной многообразия форм в популяции является, конечно, процесс мутирования. Стабилизирующая форма естественного отбора препятствует накоплению одинаковых мутаций, переводит наследственное многообразие особей в скрытое состояние и всегда поддерживает количество наследственной информации в популяции на довольно высоком уровне. На еще более высоком уровне поддерживается и количество обратной информации в фенотипах популяции. Следовательно, энтропия популяции остается высокой. Популяция - мало организованная биологическая система, и этот низкий уровень организации, т.е. некоторый беспорядок и неопределенность, поддерживается действием стабилизирующего отбора. Этим самым поддерживается высокая эволюционная пластичность популяции и вида в целом. В случае изменения соотношений между популяцией (видом) и внешней средой (биогеоценозом) нормальные особи теряют свою приспособленность. Стабилизирующий отбор в известных отношениях (по признакам, утратившим свое значение) прекращается, и это ведет к увеличению числа разнообразных мутаций. Резко увеличивается количество информации в отдельных особях, организация расшатывается. Однако некоторые мутации и их комбинации могут получить в новых условиях среды положительную оценку. Это ведет к свободному их накоплению под руководящим влиянием движущей формы естественного отбора.

Стабилизирующая форма отбора ведет, собственно, к двум разным, но одинаково важным результатам: к максимальной устойчивости особи и возможной мобильности, т.е. эволюционной пластичности популяции.

Стабилизирующая форма естественного отбора выступает в роли фактора, формирующего и поддерживающего надежное функционирование первого канала связи от зиготы к первичной половой клетке (путем клеточных делений) и безошибочное преобразование полученной таким образом информации в процессах индивидуального развития. Она ведет к созданию и максимальной стабилизации аппарата индивидуального развития и к нормализации популяции, ее особей и признаков.

Движущая (преобразующая) форма отбора выступает в роли фактора, формирующего и поддерживающего функцию второго канала связи от популяции к биогеоценозу. Она ведет к тем перестройкам в организации наследственного аппарата (в первом канале связи) и механизма индивидуального развития (в формах преобразования информации), которые способствуют возникновению новых адаптаций; к специализации, общему усложнению организации и увеличению активности отдельных особей, т.е. к изменению форм жизнедеятельности как средств связи по второму каналу. Преобразующий отбор использует в своей деятельности то, что достигнуто стабилизирующим отбором, - высокую наследственность тех уклонений от нормы, которые вызваны изменением генотипа.

Эмбриологические работы Шмальгаузена показали, что наиболее быстро эволюционируют те структуры, которые в процессе развития зародыша наиболее независимы от остальных частей организма.

Идея ускорения эволюции наиболее стабильных структур явилась высшей точкой синтеза идеи устойчивости и идеи эволюции.

Исследования Шмальгаузена показывают, что для развития системы нужны закрепленные признаки, появившиеся в результате адаптации к внешней среде, т.е. необходимо наличие в системе определенной формы памяти. Но одной наследственности для развития мало, нужен активный обмен с внешней средой, система должна быть открытой. Организационные формы не могут возникнуть без специально организованной памяти. Но наряду с "накопленным опытом" система должна обладать способностью к обучению.

Таким образом, Шмальгаузен связал один из факторов эволюции - изменчивость с процессами передачи, преобразования, накопления информации. При этом понятие "информация" связывается с числом элементов-признаков. На этапе адаптации важную роль играет избыточность информации.

5.Условия возникновения самоорганизации

Развитие системы происходит за счет внутренних механизмов, в результате процессов самоорганизации и за счет внешних управляющих воздействий.

М. Эйгеном на основе неравновесной термодинамики и теории информации разработана концепция самоорганизации материи. Эйген ограничивается моделированием добиологической эволюции макромолекул, но развитые им идеи и методы имеют более общее принципиальное значение. Так же как и работы школы Пригожина, работы Эйгена вышли за рамки частных наук и имеют общенаучное методологическое значение.

Согласно теории Эйгена, самоорганизация не является очевидным свойством материи, которое обязательно проявляется при любых обстоятельствах. Должны быть выполнены определенные внутренние и внешние условия, прежде чем такой процесс станет неизбежным. Самоорганизация начинается с флуктуации. Для возникновения процесса самоорганизации необходимы инструктивные свойства системы на микроуровне.

Инструкция требует информации, которая кодирует определенные функции. Для самоорганизованных систем интерес представляет функция воспроизведения или сохранения ее собственного информационного содержания. Для возникновения эволюции существенно не количество информации, а инструктирующие свойства информации; важно не количество, а ценность информации, которая непосредственно связана с ее используемостью.

Достаточно сложно дать продуктивное универсальное определение ценности информации, так как оно дано для количества информации. Ценность информации различна для одной и той же системы при различных целях, различных условиях внешней среды. Ценность зависит от того запаса накопленной информации, которую имеет система. Ценность - это степень ее неизбыточности, незаменимости.

Информация, накопленная в процессе эволюции, - это "оцененная" информация, и число битов мало что говорит о ее функциональном значении. Накопление информации - это увеличение числа элементов, обладающих заданным признаком.

Ценность информации оказывается тем большей, чем меньше разнообразных способов выполнить заданную функцию. Если сравниваются системы, выполняющие различные функции, то ценностный критерий уже оказывается малопригодным, здесь по-прежнему можно использовать количественный информационный критерий. Количественный и прагматический информационные критерии необходимо применять не порознь, а совместно, только в этом случае можно достигнуть наиболее адекватного определения степени организации, как в функциональном, так и во многих других отношениях.

Для появления согласованных направленных процессов в системе необходимо использование информации в процессе функционирования системы. Если использования нет, то новые признаки у элементов появляются независимо от того, какие признаки есть у других элементов. Если нет использования информации, то нет ее накопления во внешней среде, а следовательно, нет передачи накопленной информации из внешней среды в систему. Организация в системе связана с локализацией элементов, обладающих определенными признаками, с концентрацией этих элементов, то есть образованием диссипативной структуры. Локализованные диссипативные структуры имеют способность накапливать информацию за счет своего рода "примитивной памяти". Такая локализация происходит благодаря самоинструктирующему процессу использования информации.

В процессе использования информации происходит отбор тех элементов-признаков, которые дают преимущества в ходе развития. Использование информации не является ее атрибутом, а лишь свойством, проявляющимся в определенных условиях.

Во всех случаях, когда проводится сравнение и отбор информации, это происходит на основе их оценки по качеству. На линиях обратной связи всегда идет сопоставление реального результата некоторого действия с тем, который закодирован в программе. Это всегда означает прежде всего оценку по качеству информации. Если информация из внешней среды дает указания на существование пищевых материалов, то прежде всего происходит их апробирование - сопоставление с требуемым материалом по его качеству. Если биоценоз получает информацию о новом варианте организмов (через его деятельность), то всегда идет сопоставление нового варианта с прежней нормой. В борьбе за существование отбор нового варианта происходит не на основе количества, а только по качественным показателям (в сравнении с нормой).

Самоинструктирующий характер процесса отбора приводит к тому, что уменьшается диссипация, так как уменьшается разнообразие элементов-признаков. А это, в свою очередь, уменьшает устойчивость системы. Система не просто удаляется от равновесного состояния, а удаляется с возрастающей скоростью, так как в отборе побеждают более совершенные структуры, возникающие раньше других.

Одним из условий возникновения самоорганизации является реализация отбора информации, имеющей определенную меру качества (ценность). Информация обретает ценность в конкретном процессе ее использования. Для того чтобы начался процесс самоорганизации, необходимо, чтобы отбор происходил при определенных условиях, а именно: система должна быть далекой от равновесного состояния; интенсивность роста числа элементов должна быть достаточной для того, чтобы вывести систему из устойчивого состояния.

Если скорость роста числа новых элементов невелика, то независимо от начальных данных через определенное время установится стационарное состояние. Скорость роста числа новых элементов должна превышать скорость отмирания "старых" элементов. Процесс роста должен иметь "автокаталитический" характер, т.е. появление нового признака у одного элемента должно вызывать появление того же признака у других элементов. Если скорость роста будет меньше скорости отмирания, то система не будет обладать внутренней способностью к росту, которая необходима для отбора против менее эффективных признаков. Подобная система несла бы в себе всю бесполезную информацию предшествующих элементов-признаков, которая в конце концов блокировала бы дальнейшую эволюцию. Для реализации отбора необходима избыточность информации.

В самоорганизующейся системе возможный максимальный беспорядок увеличивается за счет присоединения новых элементов к системе. Но простое добавление элементов в систему еще не превращает ее в самоорганизующуюся. Во время добавления элементов к системе энтропия системы должна сохраняться постоянной. Для выполнения этого условия необходимо выделение отрицательной энтропии из окружающей среды, т.е. дополнительный ввод энергии, информации в систему, который выражается в передаче накопленной информации из внешней среды в систему.

С возрастанием ценности связано и возрастание способности биологической системы к отбору ценной информации. Эта способность велика у высших животных, органы чувств которых предназначены для такого отбора. Отбор ценной информации лежит в основе творческой деятельности человека. Такой отбор не требует дополнительных энергетических затрат - энергетическая стоимость одного бита информации не зависит от ее ценности.

Естественный отбор означает сравнительную оценку фенотипов применительно к данной экологической нише, т.е. поиск оптимальной ценности.

Источником одной интересной аналогии служат шахматы. Согласно теории Стейница, следует играть позиционно, накапливая малые преимущества. Когда они достаточны, шахматист должен искать комбинационный решительный путь к выигрышу. Нетривиальность этой теории, подробно аргументированной Э.Ласкером, заключается в следующем: если позиционные преимущества не используются в надлежащий момент - они рассеиваются. Ласкер писал: "У мастеров комбинационная и позиционная игра дополняют друг друга. При помощи комбинации шахматист стремится опровергнуть ложные ценности, а путем позиционной игры он старается закрепить и использовать истинные ценности".

Ласкер рассматривал шахматы как модель "жизненной борьбы", но ему не приходило в голову, что шахматы могут служить моделью естественного отбора, борьбы за существование: накопление малых преимуществ подобно микроэволюции, переход к комбинации подобен макроэволюции, своего рода фазовому переходу.

Теория функциональных систем, сформулированная выдающимся физиологом академиком П.К. Анохиным, утверждает, что движущий стимул поведения человека и животного - полезный приспособительный результат. Им могут быть оптимальное давление крови, достаточное содержание в ней кислорода и питательных веществ, внешние факторы, скажем, пища, вода, итоги социальной деятельности. Во имя достижения поставленных целей в организме создаются временные, "рабочие" объединения структур мозга, различных органов, систем, которые мобилизованы для выполнения отдельной функции. Эта концепция описывает общие принципы, по которым складывается физиологическая архитектура таких объединений.

Поисковая активность организма - один из важнейших факторов выживания. Она повышает интенсивность обмена информацией с внешней средой, тем самым способствует повышению используемости новых организационных структур, возникших во время стресса.

Современная теория стресса, разработанная великим ученым Гансом Селье, утверждает, что под влиянием сильного внешнего стимула после кратковременного периода перестройки, так называемой адаптации, организм вступает в состояние повышенной устойчивости. Но через более или менее длительное время при продолжении внешнего воздействия этот период внезапно и без всяких дополнительных условий сменяется фазой истощения, когда сопротивляемость резко падает. Существуют факты, противоречащие этой теории. Некоторые ученые отводят решающую роль в устойчивости организма поисковой активности.

Если поиск прекращается, а потребность в нем сохранена, то невозможность ее удовлетворения приводит к отрицательным переживаниям и понижает устойчивость организма. Если же таковая потребность ослаблена или отсутствует, то низкий уровень активности может и не сопровождаться отрицательными эмоциями, но и в этом случае субъект остается повышенно уязвимым для внешних вредных воздействий.

Поисковая активность повышает интенсивность процесса возникновения новых функциональных структур, необходимых "для достижения цели", для отражения влияния вредных факторов.

Обращаясь к вышеизложенной концептуальной модели развития, отметим, что этапу преобразующего отбора соответствует состояние неустойчивости, т.е. этап зарождения и формирования новой системы. Переход от этапа формирования к эволюции отобранного состояния можно рассматривать как скачок в развитии.

Исследования процесса самоорганизации показали, что на организованность системы, т.е. на ее энтропию, влияют в основном два параметра: интенсивность роста числа элементов в системе и интенсивность использования элементов в процессе функционирования системы. Рост числа элементов в системе может привести систему в неустойчивое состояние и создаст предпосылки дня отбора наиболее ценных для развития системы элементов. Ценность же элементов определяется в процессе их использования. Чем выше интенсивность роста числа элементов в системе, тем быстрее система стремится к неустойчивому состоянию, приближая момент скачкообразных изменений. Но переход на новый качественный уровень структурной организации произойдет лишь тогда, когда интенсивность использования, которая играет роль организатора в системе, будет достаточно велика для того, чтобы уменьшить энтропию в системе и перевести систему в новое устойчивое состояние. Таким образом, изменяя параметры системы, а именно интенсивность роста числа элементов и интенсивность их использования, мы можем инициировать процесс самоорганизации в системе, замедлять или ускорять его. При этом мы можем перевести систему на новый, более совершенный уровень развития или разрушить ее.

Гибель системы может произойти в двух случаях. Во-первых, когда случайные флуктуации во внешней среде приводят к гибели отдельных элементов системы, к разрушению взаимосвязи между ними, в результате чего система уже не способна выполнять заданные функции. Во-вторых, когда нет использования информации о тех или иных свойствах элементов системы в процессе функционирования во внешней среде. Нет использования, а следовательно, и накопления информации во внешней среде, в результате чего нарушается прямая связь системы с внешней средой. Нарушается работа регулирующих механизмов, что приводит к дезорганизации системы и, как следствие, к ее гибели.

Рассмотренная модель процесса самоорганизации системы позволяет сформулировать основные требования к математической модели.

Прежде чем приступить к анализу процесса развития системы, нужно определить те признаки элементов, которые являются инвариантами для исследуемой группы элементов. И уже для этих выбранных элементов-признаков рассматривать степень упорядоченности, рассматривать рост и отмирание именно этих признаков.

Модель должна связывать динамические характеристики системы (интенсивность роста и использования элементов-признаков) с функцией состояния системы, которая характеризует изменение ее упорядоченности, т.е. с энтропией. Модель должна быть нелинейной, так как она должна отражать и количественные и качественные изменения в системе. В модели должен быть отражен механизм обратной связи системы со средой.

6. Самоорганизация в живой природе

Рассмотрим процесс саморегуляции в живых сообществах на достаточно простом примере. Предположим, что в некой экологической нише совместно обитают кролики и лисы.

Если в некое пространство с травой, произрастающей в достатке, поместить кроликов, то, поедая траву, они начнут усиленно размножаться, т.е. произойдет реакция: Кролик + Трава => Больше Кроликов, или К + Т => 2К (как эту реакцию записали химики). Данный процесс вполне аналогичен непрерывному подводу тепла (трава) в задаче с ячейками Бенара.

Но вот в данную экологическую нишу поместили хищных лисиц, которые питаются кроликами и размножаются: Лисица + Кролик => Больше лисиц, или химически: Л + К => 2Л.

Однако в свою очередь лисицы, как и кролики, являются жертвами. Лисицы -- жертвы человека, который отстреливает их на мех: Лисицы => Мех, или химически: Л => М.

Конечный продукт этой сложной реакции -- мех -- выводится вовне из реакционной зоны. Его можно рассматривать как носитель энергии, выводимый из системы, к которой энергия была вначале подведена, например, в виде травы. Таким образом, в экологической системе также существует поток энергии, аналогичный потоку, имеющему место в химическом реакторе.

Анализируя этот сложный процесс, можно заметить, что в нем существуют две автокаталические стадии (положительная обратная связь), играющие определенную роль в его самоорганизации. Одна из них -- «производство» (рождение) кроликов от кроликов, поедающих траву, вторая -- рождение лисиц от лисиц, поедающих кроликов. Чем больше кроликов имеется, тем больше их рождается при наличии запасов травы. И если бы не было хищных лисиц, неконтролируемое размножение кроликов привело бы к неконтролируемому увеличению их численности. Так произошло в Австралии в середине XIX в. Однако возможно такое же автокаталитическое размножение лисиц при большом количестве кроликов. Но если оно произойдет, то приведет к резкому снижению численности популяции кроликов. А это, в свою очередь, приведет к уменьшению численности популяции лисиц, так как им для размножения надо поедать кроликов. Когда численность лисиц упадет, популяция кроликов получит время для восстановления своей численности. После восстановления численности кроликов начнет восстанавливаться численность популяции лисиц и т.д. Данный анализ показывает, что система самоорганизуется во времени. В действительности будут происходить периодические колебания численности кроликов и лисиц, сдвинутые во времени, т.е. возникнет экологически устойчивая структура.

Анализ показывает, что в биосфере существует огромное количество сильно неравновесных систем, поэтому можно утверждать, что возникновение условий для их самоорганизации -- явление довольно частое. А так как условия для самоорганизации выполнены, то жизнь становится столь же предсказуемой, как неустойчивость Бенара или любое другое вероятное событие. Тот факт, что жизнь возникла на молодой Земле через ~4-10 лет после ее образования (т.е. 4-109 лет тому назад) является аргументом спонтанной самоорганизации, произошедшей при благоприятных обстоятельствах.

Исследованием поведения неравновесных систем в точках, потери устойчивости или переходов из одной формы самоорганизации в другую занимается теория бифуркаций или, как ее еще называют, теория катастроф.

Слово «бифуркация» означает раздвоение и употребляется в широком смысле для обозначения всевозможных качественных перестроек или метаморфоз различных объектов при плавном изменении параметров, от которых они зависят. Катастрофами называют скачкообразные изменения, возникающие в виде внезапного ответа системы на плавное изменение внешних условий. В результате катастрофы-взрыва система может не только скачкообразно изменить свое состояние, но и разрушиться.

Заключение

Можно сказать, что процесс самоорганизации природных систем заключается в обретении ими все более и более совершенного динамического равновесия с окружающей средой.

Идеи универсального эволюционизма и свойства общественного человеческого сознания имеют между собой много общего. Стержнем универсального эволюционизма является схема, отражающая сквозную линию развития от низших форм движения к высшим. Эта сквозная линия допускает развитие, усложнение и усовершенствование, вследствие чего процессы и явления природы могут рассматриваться с некоторых единых позиций.

Идеи универсального эволюционизма обладают значительной гибкостью и могут принимать самые разные очертания. Как следствие этого, эволюционизм существует в виде огромного количества вариантов и версий. Идеи эволюционизма -- это каркас для целого спектра различных по существу представлений о мире.

В настоящее время все настоятельнее проявляется естественное желание использовать физические принципы становления и развития неживой и живой природы и идеи синергетического подхода для описания поведения сложных неравновесных самоорганизующихся систем и решения обществоведческих проблем гуманитарных наук.

Новая мировоззренческая парадигма, основанная на представлениях синергетики, устраняет различия между естествознанием и обществоведением и дает возможность создать универсальную эволюционно-синергетическую картину мира. Понятия синергетики и аппарат нелинейного мышления превращают изначально гуманитарно-интуитивные методы описания социальных, экономических, психологических, исторических и других объектов и систем гуманитарной природы из описательных в научно обоснованные (прогнозируемые; Футурологические перспективы развития человечества при этом основываются на возможности эволюции перехода материи от более вероятных хаотических состояний к менее вероятным, но реально возможным и более организованным, упорядоченным состояниям.

В рамках физических представлений синергетических моделей цивилизация в целом и конкретное общество в частности являются сложными неравновесными системами, устойчивость которых обеспечивается взаимодействием внешних и внутренних причин развития. Совокупность механизмов, включающих орудия и другие материальные объекты, языки, мифологию, мораль и т.д., т.е. то, что представляет собой понятие культуры, также может быть выражена в таких параметрах целостного эволюционного развития самоорганизующихся систем, как нелинейность процессов, бифуркация отдельных фаз развития и эволюционные катастрофы.

Современное естествознание становится по существу постнеклассической интегративной наукой, в которой в первую очередь должны использоваться достижения и тенденции новой синергетической физики. При этом наблюдается тенденция перехода от собственно познавательной сущности науки к научному методу решения проблем экономического, социального, политического и культурного характера и получению обоснованных прогнозов будущего развития. Н.Н. Моисеев писал:

Мы на пороге новой культуры - синтеза глобального духовного сознания и глобального научного знания.

Можно привести большое количество примеров, подтверждающих, что синергетические модели современной постнеклассической физики применяются к сложным гуманитарным системам в динамической истории цивилизаций, возникновении этносов, самоорганизации социально-экономических процессов, кризисов развития человеческого общества, принципов устойчивого развития глобализма.

В связи с этим в анализе сложных систем значительно возрастает роль физических и математических моделей и в целом моделирования процессов различной природы, рассмотрения конфликтных ситуаций и принятия решений.

Размещено на Allbest.ru

Подобные документы

    Развитие неживой и живой природы. Структура и ее роль в организации живых систем. Современный взгляд на структурную организацию материи. Проблемы самоорганизации, изучаемые в синергетике, законы построения организации и возникновения упорядоченности.

    контрольная работа , добавлен 31.01.2010

    Исследование теории самоорганизации. Основной критерий рaзвития сaмооргaнизующихся систем. Неравновесные процессы и открытые системы. Самоорганизация диссипативных структур. Химическая реакция Белоусова-Жаботинского. Самоорганизация в физических явлениях.

    реферат , добавлен 30.09.2010

    Характеристики самоорганизующихся систем. Открытость. Нелинейность. Диссипативность. Системная модель мира. Самоорганизация и эволюция сложных систем, далеких от равновесия. Основы теории самоорганизации систем. Синергетическая картина мира.

    реферат , добавлен 18.11.2007

    Обмен веществ как главное отличие живых объектов и процессов от неживых. Два основных типа биополимеров в составе живых систем: белки и нуклеиновые кислоты (ДНК и РНК). Необходимые для жизни физические и химические условия. Свойства живых систем.

    контрольная работа , добавлен 22.05.2009

    Современное понятие "открытая система". Проблема анализа целостных свойств открытых систем в зависимости от времени. Общность процессов типа 1/f (процессов типа фликкер-шума) для всех систем. Старое и новое математическое описание процессов типа 1/f.

    курсовая работа , добавлен 23.11.2011

    Дриопитеки как животные предки человека. Представители человеческой линии эволюции - австралопитеки. Эволюция рода человек. Самоорганизация как основа эволюции. Основные условия и положения самоорганизации систем. Две теории о происхождении материков.

    контрольная работа , добавлен 10.08.2009

    Синергетика – наука о процессах развития и самоорганизации сложных систем произвольной природы. Характеристика структурных принципов бытия и становления (гомеостатичности, иерархичности, незамкнутости, неустойчивости, эмерджентности, наблюдаемости).

    реферат , добавлен 14.03.2011

    Основные особенности и внутрисистемные связи живых систем. Наличие собственной программы их развития и способность к активному оперированию информацией. Периодический закон развития живых систем. Иерархическая функционально-структурная организация.

    курсовая работа , добавлен 22.07.2009

    Кибернетика и ее принципы. Самоорганизующиеся системы. Связь кибернетики с процессом самоорганизации. Синергетика как новое направление междисциплинарных исследований. Отличие синергетики от кибернетики. Структурные компоненты процесса самоорганизации.

    реферат , добавлен 09.09.2008

    Теория самоорганизации в современном естествознании. Энгельс о гипотезе тепловой смерти Вселенной и превращении форм движения. Второй закон термодинамики - закон деградации энергии. Принцип существования энтропии. Необратимость природных процессов.

САМООРГАНИЗУЮЩАЯСЯ СИСТЕМА

САМООРГАНИЗУЮЩАЯСЯ СИСТЕ́МА

С. с. впервые начали исследоваться в кибернетике. Термин "С. с." ввел в 1947 Эшби (см. "Principles of self-organizing dynamic system" в "J. Gen. Psychol.", 1947, v. 37, p. 125–28). Широкое изучение С. с. началось в конце 50-х гг. В понятии С. с. фокусируется целый проблем и специфич. трудностей, стоящих перед теоретич. кибернетикой и др. связанными с ней отраслями совр. науки и техники. С одной стороны, изучение таких систем открывает совершенно новые принципы построения технич. устройств с высокой надежностью, способных работать в широком диапазоне внешних условий. С , именно на этом пути возможна передача машине ряда логич. операций, считающихся до сих пор исключит. привилегией человека. В наст. понятие самоорганизации вышло далеко за рамки кибернетики и все более широко применяется в биологии, а также социальных науках. Характерно, напр., рассмотрение отд. нейрона как С. с. либо как ее элемента в структуре функционально выделенного участка нейронной сети (работы группы Мак-Каллока – Питса в США, Напалкова и др. в СССР). Это направление составляет осн. нейрокибернетики.

В наст. время в науке исследуются различные типы С. с. Их определяется выделением той или иной группы св-в в качестве ведущей: саморегулирующиеся, самонастраивающиеся, самообучающиеся, самоалгоритмизирующиеся системы.

Уже первые работы по созданию теории С. с. показали, что здесь столкнулась с принципиально новым классом познават. задач, для решения к-рых необходима выработка существенно новых средств и методов анализа. Одна из первых задач в исследовании таких систем состоит в том, чтобы определить и ограничить тех реальных объектов, относительно к-рых можно адекватно употреблять понятие самоорганизации. Поскольку "самоорганизующийся" означает не только организующийся , но и организующийся для себя, постольку даже обнаружение естеств. С. с. оказывается сложной исследовательской задачей. Чтобы выявить самоорганизующийся объекта, исследователь должен так построить с ним, чтобы на "вход" подавать определ. последовательность сигналов и на "выходе" получать последовательность ответов, на основании к-рой можно было бы судить о структуре поведения системы. Иными словами, исследования здесь должен рассматриваться как взаимодействие двух С. с. – объекта и исследователя, причем это взаимодействие является значимым для обеих этих систем. Впервые на это обратил известный англ. кибернетик Г. Паск (см. его ст. в рус. пер. – "Естеств. цепей", в сб.: С. с., М., 1964), к-рый назвал такой исследования "стратегией естествоиспытателя", в отличие от традиционно применяемой "стратегии специализированного наблюдателя".

Тот , что организации С. с. преследует свои "цели", должен приниматься во внимание и при конструировании искусств. технич. устройств, основанных на принципе самоорганизации: параллельно с методами построения таких систем должны создаваться и методы управления их поведением. В противном случае либо нельзя будет использовать их самоорганизующийся характер, либо пойдет в направлении, противоположном замыслам создателей такой системы (см. вэтой связи Н. Винер, Останется машина рабой человека?, "Америка", 1963, No 80, а также У. Росс Эшби, Принципы самоорганизации, в сб.: Принципы самоорганизации, пер. с англ., М., 1966). Еще не так давно подобная перспектива казалась утопической, но практич. конструирование С. с., поставленное совр. наукой в дня, делает такую постановку проблемы реальной и необходимой. Опасные последствия, к-рые могут возникнуть при создании искусств. систем, осуществляющих собств. цели и трудно контролируемых человеком, рассматривает, напр., С. Лем (см. ст. "Введение в интеллектронику", ж. "Знание – ", 1965, No 3). В общем виде теоретич. здесь такова: либо создание С. с. для реализации заранее заданного диапазона задач без выхода за их пределы и, следовательно, планируемое существ. возможностей и направления самоорганизации, либо создание неполностью С. с. в том смысле, что система может функционировать лишь после получения задач извне. Понятно, что естеств. С. с. не связано с этой проблемой.

Наиболее абстрактную схему С. с. можно представить след. образом. Имеется элементов и связей между ними; связи двух типов: жесткие и изменяющиеся (следует отметить, что до наст. времени не удалось выделить связи, специфические для С. с.). Нек-рый управляет изменением связей и (в общем случае) элементов. Большинство исследователей рассматривает механизм как ту часть системы, к-рая определяет ее самоорганизующийся характер, "несет " за управление и самоорганизацию, однако о физич. сущности этого механизма остается открытым. Наиболее распространена т. зр., согласно к-рой механизм воплощается материально как определ. регулирующий " ", однако отд. исследователи считают, что этот механизм можно рассматривать как нек-рый логич. , к-рому следует система. К этим последним можно, в частности, отнести Эшби, к-рый утверждает, что каждую изолированную динамич. систему, подчиняющуюся постоянному закону, можно считать самоорганизующейся. У др. ученых в качестве такого механизма выступает " ", "идеал" и т.п. По-видимому, возможно и совмещение обоих этих подходов, когда в системе регулятор к.-л. физич. природы является вместе с тем логич. механизмом, обусловливающим ее функционирование и развитие. В исследованиях С. с. у этих последних выделяются и специально описываются такие аспекты, как к обучению; самовоспроизведение структуры согласно нек-рому "проекту" (эталону); взаимодействие С. с. с ее окружением (рассматриваемое по типу взаимодействия организма со средой); надежность систем, созданных из элементов, каждый из к-рых ненадежен; (деятельность) системы при решении задач и т.п. Исторически изучение каждой из этих проблем началось раньше, чем развилось понятие С. с. Поэтому на такого рода проблем в связи со спецификой самоорганизации сильное влияние оказывает предшеств. , к-рая в ряде случаев затрудняет анализ, приводит к односторонности в подходе исследователя, что особенно сказывается на методах и языке, применяемых в попытках построить теорию самоорганизации.

Обычно С. с. производится в спец. терминах и понятиях той или иной науч. дисциплины. Напр., Г. фон Ферстер оперирует понятиями теории информации и термодинамики, Эшби описывает самоорганизацию с помощью понятий теоретич. кибернетики, Паск – при помощи языка теорий игр, сов. исследователи Напалков, Брайнес и Свечинский идут к проблеме самоорганизации от нейрофизиологии и свойственного ей аппарата; большое исследователей привлекает для описания С. с. аппарат биологии, в той или иной мере связанный с кибернетическим ( нейронных сетей, цитология, генетика , эмбриология и др.). Все эти методы позволяют успешно решать ряд важных проблем, однако оказываются недостаточными для построения общей теории С. с. Это особенно относится к анализу поведения С. с. Обычно в кибернетике поведение системы изучается как "история выхода" для "черного ящика", т.е. как совокупность реакций системы в ответ на входные воздействия. Но применительно к С. с. такой подход позволяет фиксировать не само поведение с его механизмом, а лишь результаты, итог поведения. В качестве простейшего элемента, единицы поведения у большинства исследователей выступают отд. состояния системы, а цели системы рассматриваются как логич. связи. Однако такой подход оказывается малоперспективным. Паск (см. Г. Паск, Модель эволюции, в сб.: Принципы самоорганизации, пер. с англ., М., 1966) предпринял попытку произвести расчленение структуры поведения иным путем: в качестве элементов у него выступают отд. характеристики (св-ва автоматов); связи можно интерпретировать как логич. механизмы модели поведения системы, объясняющие изменения св-в. Такой способ позволил обосновать ряд интересных особенностей рассматриваемой Паском системы автоматов – корреляцию стратегий отд. автоматов, объединение их в колонии (домены) и т.п. Однако логич. этих св-в не доказывается. Тем не менее в таком подходе можно усмотреть новой логики – логики поведения систем, т.е. методов и способов обобщенного описания поведения, необходимых как для теории С. с., так и для науч.-технич. практики.

Лит.: Полетаев И. Α., Сигнал. О нек-рых понятиях кибернетики, М., 1958; Брайнес С. Н., Напалков А. В., Некоторые вопросы теории самоорганизующихся систем, "ВФ", 1959, No 6; Тьюринг Α., Может ли машина мыслить?, пер. с англ., М., 1960; Гаазе-Рапопорт М. Г., Автоматы и живые организмы, М., 1961; Беркович Д. М., Машины управляют машинами, М., 1962; Принципы построения самообучающихся систем, К., 1962; Брайнес С. Н., Напалков А. В., Свечинский В. Б., Нейрокибернетика, М., 1962; Винер Н., Новые главы кибернетики, пер. с англ., М., 1963; Глушков В. М., Самоорганизация и самонастройка, К., 1963: Автоматизация производства и промышленная электроника. Энциклопедия совр. техники, т. 3, М., 1964, с. 293; Возможное и невозможное в кибернетике. Сб. ст., М., 1964; Зуев А. К., Самонастройка в технике и живой природе, Рига, 1964; Самонастраивающиеся автоматич. системы, М., 1964; Самоорганизующиеся системы, пер. с англ., М., 1964; Проблемы бионики, пер. с англ., М., 1965; Смолян Г. Л., Техника и мозг, "ВФ", 1965, No 5; Self-organizing systems, eds. M. С. Yovits, G. T. Jacobi, G. D. Goldstein, Wash., 1962.

Википедия

Самоорганизующаяся система - Самоорганизующаяся система: система, обладающая свойством изменяться в целях самосовершенствования (например, в целях улучшения или сохранения стабильности параметров, характеризующих эту систему)...



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!