Информационный женский портал

Ученые создали «наклонный» пучок электронов. Это позволит следить за реакциями в прямом эфире. Электромагнитное излучение Примеры решения задач

Cлайд 1

* Лекция № 3 Принцип корпускулярно-волнового дуализма Л. де Бройля и его экспериментальное подтверждение Лекция для студентов ФНМ, 2013 год Интерференция атомов He в двухщелевом эксперименте Н.В.Никитин О.В.Фотина, П.Р.Шарапова

Cлайд 2

* Корпускулярно – волновой дуализм для излучения Частица света: фотон – в области видимого света (термин Гильберта Льюиса, 1926 г!!!) гамма-квант – в области жёсткого (высо- коэнергичного) рентгеновского диапазона. Вопрос: e- и p – частицы. Могут ли они в определённых условиях обладать волновыми свойствами?

Cлайд 3

* Фазовая и групповая скорости волн Волна: – фазовая скорость. – размерность скорости где λ – длина волны, T – период волны. Фазовая скорость, так как u – это не скорость передачи сигнала. Сигнал передаётся с квадратом амплитуды волнового пакета. Пусть: A(k) «пикует» при k=k0 Покажем, что пакет движется с – групповой скоростью волны: Тогда: То есть сигнал действительно передаётся с групповой скоростью vg.

Cлайд 4

* Принцип корпускулярно – волнового дуализма Луи де Бройля Луи де Бройль распространил принцип корпускулярно – волнового дуализма на вещество (частицы, имеющие ненулевую массу покоя). Гипотеза де Бройля: «… быть может, каждое движущееся тело сопровождается волной, и что не возможно разделить движение тела и распространение волны» Louis-Victor-Pierre-Raymond, de Broglie (1892 - 1987) L. de Broglie. Ondes et quanta // Comptes rendus de l"Académie des sciences. - 1923. - Vol. 177. - P. 507-510. Русский перевод: Л. де Бройль. Волны и кванты // УФН. - 1967. - Т. 93. - С. 178–180. Или Л. де Бройль, «Избранные научные труды», т.1, стр. 193-196, М. «Логос», 2010 Нобелевская премия по физике (1929) за открытие волновой природы материи

Cлайд 5

* Математическая реализация гипотезы де Бройля Необходимо непротиворечивым образом каждой частице сопоставить колебатель-ный процесс. Природа этого колебательного процесса остается без ответа. Используется релятивистский подход. Колебательный процесс в К": где u – фазовая скорость волны материи. Колебательный процесс в К («волновая» точка зрения): Но и - отвечают одному и тому же колебательному процессу: Колебательный процесс в К («корпускулярная» точка зрения):

Cлайд 6

* Математическая реализация гипотезы де Бройля: фазовая и групповая скорости. Эквивалентность колебательных процессов означает, что: Положим n=0. Кроме того, x=vt. Тогда фазовая скорость волн де Бройля есть: Групповая скорость: Таким образом: vg= v, то есть групповая скорость волн де Бройля в точности равна скорости частицы, с которой эта волна ассоциирована! Триумф теории!!!

Cлайд 7

* Длина волны де Бройля Импульс релятивисткой частицы Покажем, что с точки зрения волн де Бройля, его можно записать как Действительно: Это ещё одна математическая формулировка проявления дуализма волна - частица Длина волны де Бройля: Численные оценки: а) длина волны де Бройля теннисного мячика с m =50 г и v =10 m/c размеров мячика => для макроскопических предметов волновые свойства не проявляются. б) электрон, ускоренный до энергии Ee=100 эВ. Т.к. mec2≈0,51 МэВ, то можно пользоваться нерелятивистскими формулами: ─ сравнима с длинной волны рентгеновского излучения.

Cлайд 8

* Дифракция электронов В 1927 г. Дэвиссон и Джеммер обнаружили дифракцию пучков электронов при отражении от кристалла никеля. Как было показано на предыдущем слайде, дебройлевская длина волны электронов с энергией ~ 100 эВ по порядку величины равна длине волны рентгеновского излучения. Поэтому дифракцию электронов можно наблюдать при рассеянии на кристаллах. К - монокристалл никеля; А - источник электронов; В - приёмник электронов; θ - угол отклонения электронных пучков. Пучок электронов падает перпендикулярно отшлифованной плоскости кристалла S. При поворотах кристалла вокруг оси О гальванометр, присоединённый к приёмнику В, даёт периодически возникающие максимумы

Cлайд 9

* Если ускорять электроны электрическим полем с напряжением V, то они приобретут кинетическую энергию Ee = |e|V, (е - заряд электрона), что после подстановки в формулу де Бройля даёт численное значение длины волны Здесь V выражено в В, а - в нм (1нанометр = 10-7 см). При напряжениях V порядка 100В, которые использовались в этих опытах, получаются так называемые «медленные» электроны с порядка 0,1 нм. Эта величина близка к межатомным расстояниям d в кристаллах, которые составляют десятые доли нм и менее. Поэтому получаем ~ d, что дает условие, необходимое для возник-новения дифракции.

Cлайд 10

* Эксперимент Бибермана – Сушкина – Фабриканта по дифракции одиночных электронов {ДАН СССР т.66, №2, с.185 (1949г.)} Вопрос: быть может волновые свойства микрочастиц связаны с тем, что в опытах участ-вуют пучки частиц (e-, p, γ и т.д.), а один e- или γ будут вести себя как “классический шарик”? Ответ: нет, это не так! Скорость e-: Время пролета Интенсивность пучка Время между пролетом двух e- Вероятность, что в приборе одновременно два e- На фотопластинке наблюдалась дифракционная картина от ансамбля одиночных электронов

Cлайд 11

* Эксперимент А.Тономуры по интерференции одиночных электронов (1989 г.) Для создания аналога двух щелей использовалась двой-ная электронная призма: электроны, ускоренные до 50 КэВ, проходили между двумя заземленными пластинами и отклонялись тонким проводом с положительным потенциа-лом, расположенным между ними. Детали эксперимента в работе: A.Tonomura et al., Am. J. Phys., Vol. 57, pp. 117-120 (1989).

Cлайд 12

* Результат эксперимента А. Тономуры Каждая точка обозначает попадание электрона в детектирующий экран. а) 10 электронов; б) 100 электронов; в) 3000 электронов; г) 20 000 электронов; д) 70 000 электронов.

Cлайд 13

* Интерференция нейтронов, прошедших через две щели (1991 г.) А.Цайлингер с сотрудниками наблюдали интерференцию медленных нейтронов (v= 2 км/с) на двух щелях, сделанных в нейтронопоглощающем материале. Ширина каждой из щелей – 20 мкм, расстояние между щелями – 126 мкм. Детали эксперимента см. в Amer. J. Phys. 59, p.316 (1991)

Cлайд 14

* Эксперимент по интерференции атомов He (1991, 1997 гг.) Детали эксперимента см. в работах: O.Carnal, J.Mlynek, Physical Review Letters, 66, p.2689 (1991) и Ch.Kurtsiefer, T.Pfau, J.Mlynek, Nature, 386, p.150 (1997).

Cлайд 15

Эксперимент по интерференции атомов Na (1991) * Интерферометр состоит из трех дифракционных решеток с периодом 400 нм каждая, расположенных на расстоянии 0.6 м друг от друга. Атомы Na имеют v= 1км/c, что соответствует λ=1,6*10-2 нм. Атомы дифрагируют на 1-ой решетке. Пучки нулевого и первого порядков падают на вторую решетку, на которой они претерпевают дифракцию первого и минус-первого порядков, так, что сходятся на третьей решетке. Первые две решетки образуют интерференционную картину в плоскости третьей решетки, которая используется в качестве экрана. См. детали эксперимента в работе: D.W.Keith et al., Physical Review Letters, 66, p.2693 (1991). Сравните со ссылкой на предыдущем слайде!!! Cлайд 17 * Эксперимент по интерференции молекул С60 (1999 г.) Расстояние между нулевым и первым максимумами есть: x= L / d = 31 м На рисунке а) показано распределение молекул С60 при наличии дифракционной решетки. Видна дифракция молекул фулерена на решетке. Рисунок b) соответствует ситуации, когда решетка убрана. Дифракция отсутствует. Детали эксперимента можно найти в работе: M.Arndt et al., Nature 401, p.680 (1999).

Схема опыта Дэвиссона–Джермера (1927г.): К – монокристалл никеля; А – источник электронов; В – приёмник электронов; θ – угол отклонения электронных пучков.

Пучок электронов падает перпендикулярно отшлифованной плоскости кристалла S. При поворотах кристалла вокруг оси О гальванометр, присоединённый к приёмнику В, даёт периодически возникающие максимумы

Запись дифракционных максимумов в опыте Дэвиссона–Джермера по дифракции электронов при различных углах поворота кристалла φ для двух значений угла отклонения электронов θ и двух ускоряющих напряжений V . Максимумы отвечают отражению от различных кристаллографических плоскостей, индексы которых указаны в скобках

Эксперимент с двумя щелями в случае света и электронов

Свет или электроны

Распределение интенсивности на экране

Английский физик

Поль Андриен Морис Дирá к (Paul Adrien Maurice Dirac)

(8.08.1902-1984)

7.2.3. Принцип неопределённостинности Гейзенберга

Квантовая механика (волновая механика) –

теория, устанавливающая способ описания и законы движения микрочастиц в заданных внешних полях.

Невозможно произвести измерение, не внося в измеряемый объект какое-нибудь возмущение, хотя бы слабое. Сам акт наблюдения вносит существенную неопределённость либо в положение, либо в импульс электрона. В этом и заключается принцип неопределённости ,

впервые сформулированный Гейзенбергом в

Неравенства Гейзенберга

Dx Dp x ³ , Dy Dp y ³ , Dz Dp z ³

Dt × D(E′ - E ) ³

7.2.4. Волновые функции ии

В квантовой механике амплитуду, скажем, электронной волны называют волновой функцией

и обозначают греческой буквой «пси»: Ψ.

Таким образом, Ψ задаёт амплитуду нового типа поля, которое можно было бы назвать полем или волной материи, как функцию времени и положения.

Физический смысл функции Ψ заключается в том, что квадрат её модуля даёт плотность вероятности (вероятность, отнесённую к единице объёма) нахождения частицы в соответствующем месте пространства.

© А.В. Бармасов, 1998-2013

D. Ehberger et al. / Phys. Rev. Lett.

Физики из Германии научились получать «наклоненные» фемтосекундные пучки электронов, волновой фронт которых распространяется под углом к направлению движения пучка. Для этого ученые пропускали электроны через тонкое алюминиевое зеркало и светили на них терагерцовым излучением, растягивающим и поворачивающим пучок. Статья опубликована в Physical Review Letters , кратко о ней сообщает Physics . Этот результат позволит получить на некоторых типах электронных микроскопов значительно лучшее пространственное и временное разрешение, и даст возможность, например, следить за ходом химических реакций в режиме реального времени.

Исторически ученые используют оптические микроскопы, чтобы изучать небольшие объекты - впервые такие микроскопы были сконструированы еще в начале XVII века, и именно с их помощью биологи открыли одноклеточные организмы и изучили клеточную структуру тканей. К сожалению, возможности таких микроскопов ограничены дифракционным пределом , который не позволяет разрешить объекты с характерным размером много меньше длины волны видимого света (400–750 нанометров). С другой стороны, разрешение микроскопа можно повысить, заменяя фотоны частицами с меньшей длиной волны - например, релятивистскими электронами. Это позволяет увеличить разрешение до десятых долей ангстрема и увидеть отдельные атомы и молекулы.

В последнее время физики все больше интересуются не только пространственными, но и временны́ми характеристиками наблюдаемых процессов - например, пытаются увидеть, как атомы в пространстве или взаимодействуют друг с другом в ходе химической реакции. Чтобы ухватить такие особенности, нужно получать «сжатые» пучки электронов, характерное время движения которых (например, время, в течение которого электроны проходят через образец) не превышает характерное время исследуемого процесса. Как правило, это время равно нескольким фемтосекундам (одна фемтосекунда = 10 −15 секунд).

К сожалению, электроны внутри пучка имеют ненулевой электрический заряд и отталкиваются друг от друга, в результате чего пучок размывается во времени и пространстве. Из-за этого получить «сжатые» пучки на практике долгое время не удавалось; впервые об успехе сообщили только в 2011 году французские физики-экспериментаторы. Кроме того, такими пучками сложно управлять, и на данный момент возможности электронной микроскопии отстают от оптической. Пока что ученые умеют ускорять , сжимать , модулировать и разделять ультракороткие электронные пучки с помощью методов, аналогичных методам оптической микроскопии, однако многие практические приложения требуют более сложной структуры пучков.

Группа исследователей под руководством Питера Баума придумала, как можно «наклонить» волновой фронт фемтосекундного электронного пучка по отношению к направлению его движения. Когда такой «наклоненный» электронный пучок падает перпендикулярно поверхности образца, по ней начинает бежать «волна» энергии с эффективной скоростью v = c /tgθ, где с - скорость пучка, а θ - угол наклона; в обычных пучках (θ = 0°) энергия высвобождается одномоментно. В оптической микроскопии получить «наклоненные» пучки очень просто - достаточно пропустить электромагнитную волну через призму, и из-за дисперсии гармоники с разной частотой будут преломляться на различные углы, формируя наклоненный волновой фронт . Как правило, такие пучки используют для возбуждения образцов. К сожалению, применить этот метод для электронных пучков нельзя.


Схема получения «наклоненного» оптического (сверху) и электронного (снизу) пучка

APS / Alan Stonebraker

Тем не менее, ученым удалось придумать способ, с помощью которого можно «наклонить» электронный пучок, используя и зеркало из металлической фольги. Суть этого метода заключается в том, что под действием электрического поля электромагнитной волны электроны пучка ускоряются, и его форма изменяется. А поскольку характерное время электромагнитных колебаний (10 −12 секунд) много больше характерного времени прохождения пучка (10 −15 секунд), поле можно считать «застывшим» во времени, а его пространственную часть описывать «мгновенным снимком» электромагнитной волны (на рисунке эта часть представлена синусоидой, которая отражает абсолютную величину вектора напряженности).

Если поле направлено перпендикулярно направлению движения пучка, его передняя и задняя часть также «растаскиваются» в противоположные стороны перпендикулярно движению, и пучок наклоняется. Если же поле направлено вдоль пучка, передняя и задняя части «прижимаются» друг к другу. Чтобы скомбинировать оба эффекта и получить сжатый наклоненный пучок, ученые использовали зеркало из тонкой алюминиевой фольги (толщина около 10 нанометров), которое свободно пропускает электроны и практически полностью отражает терагерцовое излучение. Поворачивая зеркало под нужным углом, исследователи добились того, чтобы продольная и поперечная компоненты электрического поля волны выстроились нужным образом, и повернули волновой фронт электронного пучка по отношению к направлению его движения. Частота электромагнитного излучения при этом составляла 0,3 терагерца, а кинетическая энергия электронов достигала 70 килоэлектронвольт, что отвечает скорости частиц около 0,5 от скорости света.


Искажение формы пучка под действием поперечного (слева) и продольного (справа) электрического поля

APS / Alan Stonebraker

В результате ученым удалось получить пучки с углами наклона вплоть до θ = 10 градусов (при больших значениях пучки слишком сильно размывались). Результаты эксперимента при этом хорошо согласовались с теорией. Длина волны таких пучков в сто миллионов раз меньше, чем длина волны оптических «наклоненных» пучков, что позволяет существенно повысить разрешение исследуемых объектов. Кроме того, электроны в пучке ведут себя практически независимо: их пространственная В июле 2016 года физики Андрей Рябов и Питер Баум (два из трех соавторов новой работы) новую методику микроскопии, которая основана на фемтосекундных пучках электронов и позволяет увидеть сверхбыстрые колебания электромагнитного поля. В сентябре 2017 года швейцарские исследователи и реализовали на практике метод получения трехмерных изображений нанообъектов с помощью просвечивающей электронной микроскопии; для этого ученые «сжимали» пучки электронов в узкие конусы с помощью системы фокусирующих магнитных линз. А в июле 2018 года американские физики до 0,039 нанометра разрешение изображений, получаемых с помощью просвечивающей электронной микроскопии. Для этого ученые использовали технику птихографии, то есть восстанавливали изображение по большому числу дифракционных спектров, полученных при различных параметрах съемки.

Дмитрий Трунин


Дифра кция части ц, рассеяние микрочастиц (электронов, нейтронов, атомов и т.п.) кристаллами или молекулами жидкостей и газов, при котором из начального пучка частиц данного типа возникают дополнительно отклонённые пучки этих частиц; направление и интенсивность таких отклонённых пучков зависят от строения рассеивающего объекта.

Д. ч. может быть понята лишь на основе квантовой теории. Дифракция - явление волновое, оно наблюдается при распространении волн различной природы: дифракция света, звуковых волн, волн на поверхности жидкости и т.д. Дифракция при рассеянии частиц, с точки зрения классической физики, невозможна.

направлен в сторону распространения волны, или вдоль движения частицы.

Т. о., волновой вектор монохроматической волны, связанной со свободно движущейся микрочастицей, пропорционален её импульсу или обратно пропорционален длине волны.

Поскольку кинетическая энергия сравнительно медленно движущейся частицы E = mv 2 /2, длину волны можно выразить и через энергию:

При взаимодействии частицы с некоторым объектом - с кристаллом, молекулой и т.п. - её энергия меняется: к ней добавляется потенциальная энергия этого взаимодействия, что приводит к изменению движения частицы. Соответственно меняется характер распространения связанной с частицей волны, причём это происходит согласно принципам, общим для всех волновых явлений. Поэтому основные геометрические закономерности Д. ч. ничем не отличаются от закономерностей дифракции любых волн (см. Дифракция волн). Общим условием дифракции волн любой природы является соизмеримость длины падающей волны l с расстоянием d между рассеивающими центрами: l £ d .

Опыты по дифракции частиц и их квантовомеханическая интерпретация. Первым опытом по Д. ч., блестяще подтвердившим исходную идею квантовой механики - корпускулярно-волновой дуализм, явился опыт американских физиков К. Дэвиссона и Л. Джермера (1927) по дифракции электронов на монокристаллах никеля (рис. 2 ). Если ускорять электроны электрическим полем с напряжением V , то они приобретут кинетическую энергию E = eV , (е - заряд электрона), что после подстановки в равенство (4) числовых зн ачений даёт

Здесь V выражено в в , а l - в А (1 А = 10 -8 см ). При напряжениях V порядка 100 в , которые использовались в этих опытах, получаются так называемые «медленные» электроны с l порядка 1 А. Эта величина близка к межатомным расстояниям d в кристаллах, которые составляют несколько А и менее, и соотношение l £ d , необходимое для возникновения дифракции, выполняется.

Кристаллы обладают высокой степенью упорядоченности. Атомы в них располагаются в трёхмерно-периодической кристаллической решётке, т. е. образуют пространственную дифракционную решётку для соответствующих длин волн. Дифракция волн на такой решётке происходит в результате рассеяния на системах пара ллельных кристаллографических плоскостей, на которых в строгом порядке расположены рассеивающие центры. Условием наблюдения дифракционного максимума при отражении от кристалла является Брэгга - Вульфа условие :

2d sin J = n l , (6)

здесь J - угол, под которым падает пучок электронов на данную кристаллографическую плоскость (угол скольжения), а d - расстояние между соответствующими кристаллографическими плоскостями.

В опыте Дэвиссона и Джермера при «отражении» электронов от поверхности кристалла никеля при определённых углах отражения возникали максимумы (рис. 3 ). Эти максимумы отражённых пучков электронов соответствовали формуле (6), и их появление не могло быть объяснено никаким другим путём, кроме как на основе представлений о волнах и их дифракции; т. о., волновые свойства частиц - электронов - были доказаны экспериментом.

При более высоких ускоряющих электрических напряжениях (десятках кв ) электроны приобретают достаточную кинетическую энергию, чтобы проникать сквозь тонкие плёнки вещества (толщиной порядка 10 -5 см , т. е. тысячи А). Тогда возникает так называемая дифракция быстрых электронов на прохождение, которую на поликристаллических плёнках алюминия и золота впервые исследовали английский учёный Дж. Дж. Томсон и советский физик П. С. Тартаковский.

Вскоре после этого удалось наблюдать и явления дифракции атомов и молекул. Атомам с массой М , находящимся в газообразном состоянии в сосуде при абсолютной температуре Т , соответствует, по формуле (4), длина волны

Количественно рассеивающую способность атома характеризуют величиной, которая называется атомной амплитудой рассеяния f (J ), где J - угол рассеяния, и определяется потенциальной энергией взаимодействия частиц данного сорта с атомами рассеивающего вещества. Интенсивность рассеяния частиц пропорциональна f 2 (J ).

Если атомная амплитуда известна, то, зная взаимное расположение рассеивающих центров - атомов вещества в образце (т. е. зная структуру рассеивающего образца), можно рассчитать общую картину дифракции (которая образуется в результате интерференции вторичных волн, исходящих из рассеивающих центров).

Теоретический расчёт, подтверждённый экспериментальными измерениями, показывает, что атомная амплитуда рассеяния электронов f э максимальна при J = 0 и спадает с увеличением J . Величина f э зависит также от заряда ядра (атомного номера) Z и от строения электронных оболочек атома, в среднем возрастая с увеличением Z приблизительно как Z 1/3 для малых J и как Z 2/3 при больших з начениях J , но обнаруживая колебания, связанные с периодическим характером заполнения электронных оболочек.

Атомная амплитуда рассеяния нейтронов f H для тепловых нейтронов (нейтронов с энергией в сотые доли эв ) не зависит от угла рассеяния, т. е. рассеяние таких нейтронов ядром одинаково во всех направлениях (сферически симметрично). Это объясняется тем, что атомное ядро с радиусом порядка 10 -13 см является «точкой» для тепловых нейтронов, длина волны которых составляет 10 -8 см . Кроме того, для рассеяния нейтронов нет явной зависимости от заряда ядра Z . Вследствие наличия у некоторых ядер так называемых резонансных уровней с энергией, близкой к энергии тепловых нейтронов, f H для таких ядер отрицательны.

Атом рассеивает электроны значительно сильнее, чем рентгеновские лучи и нейтроны: абсолютные значения амплитуды рассеяния электронов f э sub> - это величины порядка 10 -8 см , рентгеновских лучей - f p ~ 10 -11 см , нейтронов - f H ~ 10 -12 см . Т. к. интенсивность рассеяния пропорциональна квадрату амплитуды рассеяния, электроны взаимодействуют с веществом (рассеиваются) примерно в миллион раз сильнее, чем рентгеновские лучи (и тем более нейтроны). Поэтому образцами для наблюдения дифракции электронов обычно служат тонкие плёнки толщиной 10 -6 -10 -5 см , тогда как для наблюдения дифракции рентгеновских лучей и нейтронов нужно иметь образцы толщиной в несколько мм .

Дифракцию на любой системе атомов (молекуле, кристалле и т.п.) можно рассчитать, зная координаты их центров r i и атомные амплитуды f i для данного сорта частиц.

Наиболее ярко эффекты Д. ч. выявляются при дифракции на кристаллах. Однако тепловое движение атомов в кристал ле несколько изменяет условия дифракции, и интенсивность дифрагированных пучков с увеличением угла J в формуле (6) уменьшается. При Д. ч. жидкостями, аморфными телами или молекулами газов, упорядоченность которых значительно ниже кристаллической, обычно наблюдается несколько размытых дифракционных максимумов.

Д. ч., сыгравшая в своё время столь большую роль в установлении двойственной природы материи - корпускулярно-волнового дуализма (и тем самым послужившая экспериментальным обоснованием квантовой механики), давно уже стала одним из главных рабочих методов для изучения строения вещества. На Д. ч. основаны два важных современных метода анализа атомной структуры вещества - электронография и нейтронография .

Лит.: Блохинцев Д. И., Основы квантовой механики, 4 изд., М., 1963, гл. 1, § 7, 8; Пинскер З. Г., Дифракция электронов, М. - Л., 1949; Вайнштейн Б. К., Структурная электронография, М., 1956; Бэкон Дж., Дифракция нейтронов, пер. с англ., М., 1957; Рамзей Н., Молекулярные пучки, пер. с англ., М., 1960.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!