Информационный женский портал

Биология: клетки. Строение, назначение, функции. Основные типы клеток в человеческом организме и их роль Таблица клеточная структура организма

Клетки животных и растений, как многоклеточных, так и одноклеточных, в принципе сходны по своему строению. Различия в деталях строения клеток связаны с их функциональной специализацией.

Основными элементами всех клеток являются ядро и цитоплазма. Ядро имеет сложное строение, изменяющееся на разных фазах клеточного деления, или цикла. Ядро неделящейся клетки занимает приблизительно 10–20% ее общего объема. Оно состоит из кариоплазмы (нуклеоплазмы), одного или нескольких ядрышек (нуклеол) и ядерной оболочки. Кариоплазма представляет собой ядерный сок, или кариолимфу, в которой находятся нити хроматина, образующие хромосомы.

Основные свойства клетки:

  • обмен веществ
  • чувствительность
  • способность к размножению

Клетка живет во внутренней среде организма – кровь, лимфа и тканевая жидкость. Основными процессами в клетке являются окисление, гликолиз – расщепление углеводов без кислорода. Проницаемость клетки избирательна. Она определяется реакцией на высокую или низкую концентрацию солей, фаго- и пиноцитоз. Секреция – образование и выделение клетками слизеподобных веществ (муцин и мукоиды), защищающие от повреждения и участвующие в образовании межклеточного вещества.

Виды движений клетки:

  1. амебоидное (ложноножки) – лейкоциты и макрофаги.
  2. скользящее – фибробласты
  3. жгутиковый тип – сперматозоиды (реснички и жгутики)

Деление клеток:

  1. непрямое (митоз, кариокинез, мейоз)
  2. прямое (амитоз)

При митозе ядерное вещество распределяется равномерно между дочерними клетками, т.к. хроматин ядра концентрируется в хромосомах, которые расщепляются на две хроматиды, расходящиеся в дочерние клетки.

Структуры живой клетки

Хромосомы

Обязательными элементами ядра являются хромосомы, имеющие специфическую химическую и морфологическую структуру. Они принимают активное участие в обмене веществ в клетке и имеют прямое отношение к наследственной передаче свойств от одного поколения к другому. Следует, однако, иметь в виду, что, хотя наследственность и обеспечивается всей клеткой как единой системой, ядерные структуры, а именно хромосомы, занимают при этом особое место. Хромосомы, в отличие от органелл клетки, представляют собой уникальные структуры, характеризующиеся постоянством качественного и количественного состава. Они не могут взаимозаменять друг друга. Несбалансированность хромосомного набора клетки приводит в конечном счете к ее гибели.

Цитоплазма

Цитоплазма клетки обнаруживает весьма сложное строение. Введение методики тонких срезов и электронной микроскопии позволило увидеть тонкую структуру основной цитоплазмы. Установлено, что последняя состоит из параллельно расположенных сложных структур, имеющих вид пластинок и канальцев, на поверхности которых располагаются мельчайшие гранулы диаметром 100–120 Å. Эти образования названы эндоплазматическим комплексом. В состав этого комплекса включены различные дифференцированные органоиды: митохондрии, рибосомы, аппарат Гольджи, в клетках низших животных и растений – центросома, животных – лизосомы, у растений – пластиды. Кроме того, цитоплазме обнаруживается целый ряд включений, принимающих участие в обмене веществ клетки: крахмал, капельки жира, кристаллы мочевины и т. д.

Мембрана

Клетка окружена плазматической мембраной (от лат. «мембрана» – кожица, пленка). Ее функции очень разнообразны, но основная – защитная: она защищает внутреннее содержимое клетки от воздействий внешней среды. Благодаря различным выростам, складкам на поверхности мембраны клетки прочно соединяются между собой. Мембрана пронизана специальными белками, через которые могут перемещаться определенные вещества, необходимые клетке или подлежащие удалению из нее. Таким образом, через мембрану осуществляется обмен веществ. Причем, что очень важно, вещества пропускаются через мембрану избирательно, за счет чего в клетке поддерживается нужный набор веществ.

У растений плазматическая мембрана снаружи покрыта плотной оболочкой, состоящей из целлюлозы (клетчатки). Оболочка выполняет защитную и опорную функции. Она служит внешним каркасом клетки, придавая ей определенную форму и размеры, препятствуя чрезмерному набуханию.

Ядро

Расположено в центре клетки и отделено двуслойной оболочкой. Имеет шаровидную или вытянутую форму. Оболочка – кариолемма – имеет поры, необходимые для обмена веществ между ядром и цитоплазмой. Содержимое ядра жидкое – кариоплазма, в которой содержатся плотные тельца – ядрышки. В них выделяется зернистость – рибосомы. Основная масса ядра – ядерные белки – нуклеопротеиды, в ядрышках – рибонуклеопротеиды, а в кариоплазме – дезоксирибонуклеопротеиды. Клетка покрыта клеточной оболочкой, которая состоит из белковых и липидных молекул, имеющих мозаичную структуру. Оболочка обеспечивает обмен веществ между клеткой и межклеточной жидкостью.

ЭПС

Это система канальцев и полостей, на стенках которых располагаются рибосомы, обеспечивающие синтез белка. Рибосомы могут и свободно располагаться в цитоплазме. ЭПС бывают двух видов – шероховатая и гладкая: на шероховатой ЭПС (или гранулярной) располагается множество рибосом, которые осуществляют синтез белков. Рибосомы придают мембранам шероховатый вид. Мембраны гладкой ЭПС не несут рибосом на своей поверхности, в них располагаются ферменты синтеза и расщепления углеводов и липидов. Гладкая ЭПС выглядит как система тонких трубочек и цистерн.

Рибосомы

Мелкие тельца диаметром 15–20 мм. Осуществляют синтез белковых молекул, их сборку из аминокислот.

Митохондрии

Это двумембранные органоиды, внутренняя мембрана которых имеет выросты – кристы. Содержимое полостей – матрикс. Митохондрии содержат большое количество липопротеидов и ферментов. Это энергетические станции клетки.

Пластиды (свойственны только клеткам растений!)

Их содержание в клетке – главная особенность растительного организма. Различают три основных типа пластид: лейкопласты, хромопласты и хлоропласты. Они имеют разную окраску. Бесцветные лейкопласты находятся в цитоплазме клеток неокрашенных частей растений: стеблях, корнях, клубнях. Например, их много в клубнях картофеля, в которых накапливаются зерна крахмала. Хромопласты находятся в цитоплазме цветков, плодов, стеблей, листьев. Хромопласты обеспечивают желтую, красную, оранжевую окраску растений. Зеленые хлоропласты содержатся в клетках листьев, стеблей и других частях растения, а также у разнообразных водорослей. Размеры хлоропластов 4-6 мкм, они часто имеют овальную форму. У высших растений в одной клетке содержится несколько десятков хлоропластов.

Зеленые хлоропласты способны переходить в хромопласты – поэтому осенью листья желтеют, а зеленые помидоры краснеют при созревании. Лейкопласты могут переходить в хлоропласты (позеленение клубней картофеля на свету). Таким образом, хлоропласты, хромопласты и лейкопласты способны к взаимному переходу.

Основная функция хлоропластов – фотосинтез, т.е. в хлоропластах на свету осуществляется синтез органических веществ из неорганических за счет преобразования солнечной энергии в энергию молекул АТФ. Хлоропласты высших растений имеют размеры 5-10 мкм и по форме напоминают двояковыпуклую линзу. Каждый хлоропласт окружен двойной мембраной, обладающей избирательной проницаемостью. Снаружи располагается гладкая мембрана, а внутренняя имеет складчатую структуру. Основная структурная единица хлоропласта – тилакоид, плоский двумембранный мешочек, ирающий ведущую роль в процессе фотосинтеза. В мембране тилакоида расположены белки, аналогичные белкам митохондрий, которые участвуют в цепи переноса электоронов. Тилакоиды расположены стопками, напоминающие стопки монет (от 10 до 150) и называемыми гранами. Грана имеет сложное строение: в центре располагается хлорофилл, окруженный слоем белка; затем располагается слой липоидов, снова белок и хлорофилл.

Комплекс Гольджи

Это система полостей, отграниченных от цитоплазмы мембраной, может иметь разную форму. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов. Образует лизосомы.

Основной структурный элемент аппарата Гольджи – мембрана, которая образует пакеты уплощенных цистерн, крупные и мелкие пузырьки. Цистерны аппарата Гольджи соединены с каналами эндоплазматической сети. Произведенные на мембранах эндоплазматической сети белки, полисахариды, жиры переносятся к аппарату Гольджи, накапливаются внутри его структур и «упаковываются» в виде вещества, готового либо к выделению, либо к использованию в самой клетке в процессе ее жизнедеятельности. В аппарате Гольджи образуются лизосомы. Кроме того, он участвует в наращивании цитоплазматической мембраны, например во время деления клетки.

Лизосомы

Тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки. В лизосомах находится более 30 типов ферментов (вещества белковой природы, увеличивающие скорость химической реакции в десятки и сотни тысяч раз), способных расщеплять белки, нуклеиновые кислоты, полисахариды, жиры и другие вещества. Расщепление веществ с помощью ферментов называется лизисом, отсюда и происходит название органоида. Лизосомы образуются или из структур комплекса Гольджи, или из эндоплазматической сети. Одна из основных функций лизосом – участие во внутриклеточном переваривании пищевых веществ. Кроме того, лизосомы могут разрушать структуры самой клетки при ее отмирании, в ходе эмбрионального развития и в ряде других случаев.

Вакуоли

Представляют собой полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

Клеточный центр

Состоит из двух маленьких телец – центриолей и центросферы – уплотненного участка цитоплазмы. Играет важную роль при делении клеток

Органоиды движения клеток

  1. Жгутики и реснички, представляющие из себя выросты клетки и имеющие однотипное строение у животных и растений
  2. Миофибриллы – тонкие нити длиной более 1 см диаметром 1 мкм, расположенные пучками вдоль мышечного волокна
  3. Псевдоподии (выполняют функцию движения; за счет их происходит сокращение мышц)

Сходства растительных и животных клеток

К признакам, которыми похожи растительные и животные клетки, можно отнести следующие:

  1. Схожее строение системы структуры, т.е. наличие ядра и цитоплазмы.
  2. Обменный процесс веществ и энергии близки по принципу осуществления.
  3. И в животной, и в растительной клетке имеется мембранное строение.
  4. Химический состав клеток очень похож.
  5. В клетках растения и животного присутствует похожий процесс клеточного деления.
  6. Растительная клетка и животная имеет единый принцип передачи кода наследственности.

Существенные различия между растительной и животной клеткой

Помимо общих признаков строения и жизнедеятельности растительной и животной клетки, существуют и особые отличительные черты каждой из них.

Таким образом, можно сказать, что растительные и животные клетки похожи между собой содержанием некоторых важных элементов и некоторыми процессами жизнедеятельности, а также имеют существенные отличия в структуре и обменных процессах.

Клетка - это единая живая система, состоящая из двух неразрывно связанных частей - цитоплазмы и ядра (цв. табл. XII).

Цитоплазма - это внутренняя полужидкая среда, в которой расположено ядро и все органоиды клетки. Она имеет мелкозернистую структуру, пронизанную многочисленными тонкими нитями. В ней содержатся вода, растворенные соли и органические вещества. Основная функция цитоплазмы - объединять в одно целое и обеспечивать взаимодействие ядра и всех органоидов клетки.

Наружная мембрана окружает клетку тонкой пленкой, состоящей из двух слоев белка, между которыми расположен жировой слой. Она пронизана многочисленными мелкими порами, через которые осуществляется обмен ионами и молекулами между клеткой и средой. Толщина мембраны 7,5-10 нм, диаметр пор 0,8-1 нм. У растений поверх нее образуется оболочка из клетчатки. Основные функции наружной мембраны - ограничивать внутреннюю среду клетки, защищать ее от повреждений, регулировать поступление ионов и молекул, выводить продукты обмена и синтезируемые вещества (секреты), соединять клетки и ткани (за счет выростов и складок). Наружная мембрана обеспечивает проникновение в клетку крупных частиц путем фагоцитоза (см. разделы в «Зоологии» - «Простейшие», в «Анатомии» - «Кровь»). Аналогичным образом происходит поглощение клеткой капель жидкости - пиноцитоз (от греч. «пино» - пью).

Эндоплазматическая сеть (ЭПС) - это состоящая из мембран сложная система каналов и полостей, пронизывающих всю цитоплазму. ЭПС бывает двух типов - гранулированная (шероховатая) и гладкая. На мембранах гранулированной сети располагается множество мельчайших телец - рибосом; в гладкой сети их нет. Основная функция ЭПС - участие в синтезе, накоплении и транспортировке основных органических веществ, вырабатываемых клеткой. Белок синтезируется в гранулированной, а углеводы и жиры - в гладкой ЭПС.

Рибосомы - мелкие тельца, диаметром 15-20 нм, состоящие из двух частиц. В каждой клетке их сотни тысяч. Большинство рибосом располагаются на мембранах гранулированной ЭПС, а часть - в цитоплазме. В их состав входят белки и р-РНК. Основная функция рибосом - синтез белка.

Митохондрии - это мелкие тельца, размером 0,2-0,7 мкм. Их количество в клетке достигает нескольких тысяч. Они часто меняют форму, размеры и местоположение в цитоплазме, перемещаясь в наиболее активную их часть. Внешний покров митохондрии состоит из двух трехслойных мембран. Наружная мембрана гладкая, внутренняя - образует многочисленные выросты, на которых располагаются дыхательные ферменты. Внутренняя полость митохондрий заполнена жидкостью, в которой размещаются рибосомы, ДНК и РНК. Новые митохондрии образуются при делении старых. Основная функция митохондрий - синтез АТФ. В них синтезируется небольшое количество белков, ДНК и РНК.

Пластиды свойственны только клеткам растений. Различают три вида пластид - хлоропласты, хромопласты и лейкопласты. Они способны к взаимному переходу друг в друга. Размножаются пластиды путем деления.

Хлоропласты (60) имеют зеленый цвет, овальную форму. Размер их 4-6 мкм. С поверхности каждый хлоропласт ограничен двумя трехслойными мембранами - наружной и внутренней. Внутри он заполнен жидкостью, в которой располагаются несколько десятков особых, связанных между собой цилиндрических структур - гран, а также рибосомы, ДНК и РНК. Каждая грана состоит из нескольких десятков наложенных друг на друга плоских мешочков из мембран. На поперечном разрезе она имеет округлую форму, диаметр ее 1 мкм. В гранах сосредоточен весь хлорофилл, в них происходит процесс фотосинтеза. Образующиеся при этом углеводы вначале скапливаются в хлоропласте, затем поступают в цитоплазму, а из нее - в другие части растения.

Хромопласты определяют красную, оранжевую и желтую окраску цветов, плодов и осенних листьев. Они имеют форму многогранных кристаллов, расположенных в цитоплазме клетки.

Лейкопласты бесцветны. Они содержатся в неокрашенных частях растений (стеблях, клубнях, корнях), имеют округлую или палочковидную форму (размером 5-6 мкм). В них откладываются запасные вещества.

Клеточный центр обнаружен в клетках животных и низших растений. Он состоит из двух маленьких цилиндров - центриолей (диаметром около 1 мкм), расположенных перпендикулярно друг другу. Стенки их состоят из коротких трубочек, полость заполнена полужидким веществом. Основная их роль - образование веретена деления и равномерное распределение хромосом по дочерним клеткам.

Комплекс Гольджи получил название по имени итальянского ученого, впервые открывшего его в нервных клетках. Он имеет разнообразную форму и состоит из ограниченных мембранами полостей, отходящих от них трубочек и расположенных на их концах пузырьков. Основная функция - накопление и выведение органических веществ, синтезируемых в эндоплазматической сети, образование лизосом.

Лизосомы - округлые тельца диаметром около 1 мкм. С поверхности лизосома ограничена трехслойной мембраной, внутри ее находится комплекс ферментов, способных расщеплять углеводы, жиры и белки. В клетке имеется несколько десятков лизосом. Новые лизосомы образуются в комплексе Гольджи. Их основная функция - переваривание пищи, попавшей в клетку путем фагоцитоза, и удаление отмерших органоидов.

Органоиды движения - жгутики и реснички - представляют собой выросты клетки и имеют однотипное строение у животных и растений (общность их происхождения). Движение многоклеточных животных обеспечивается сокращениями мышц. Основной структурной единицей мышечной клетки являются миофибриллы - тонкие нити длиной более 1 см, диаметром 1 мкм, расположенные пучками вдоль мышечного волокна.

Клеточные включения - углеводы, жиры и белки - относятся к непостоянным компонентам клетки. Они периодически синтезируются, накапливаются в цитоплазме в качестве запасных веществ и используются в процессе жизнедеятельности организма.

Углеводы концентрируются в зернах крахмала (у растений) и гликогена (у животных). Их много в клетках печени, клубнях картофеля и других органах. Жиры накапливаются в виде капель в семенах растений, подкожной клетчатке, соединительной ткани и т. д. Белки откладываются в виде зерен в яйцеклетках животных, семенах растений и других органах.

Ядро - один из важнейших органоидов клетки. От цитоплазмы его отделяет ядерная оболочка, состоящая из двух трехслойных мембран, между которыми располагается узкая полоска из полужидкого вещества. Через поры ядерной оболочки осуществляется обмен веществ между ядром и цитоплазмой. Полость ядра заполнена ядерным соком. В нем находятся ядрышко (одно или несколько), хромосомы, ДНК, РНК, белки и углеводы. Ядрышко - округлое тельце размером от 1 до 10 мкм и более; в нем синтезируется РНК. Хромосомы видны только в делящихся клетках. В интерфазном (неделящемся) ядре они присутствуют в виде тонких длинных нитей хроматина (соединения ДНК с белком). В них заключена наследственная информация. Число и форма хромосом у каждого вида животных и растений строго определенные. Соматические клетки, из которых состоят все органы и ткани, содержат диплоидный (двойной) набор хромосом (2 n); половые клетки (гаметы) - гаплоидный (одинарный) набор хромосом (n). Диплоидный набор хромосом в ядре соматической клетки создается из парных (одинаковых), гомологичных хромосом . Хромосомы разных пар (негомологичные) отличаются друг от друга по форме, месту расположения центромеры и вторичных перетяжек.

Прокариоты - это организмы с мелкими, примитивно устроенными клетками, без четко выраженного ядра. К ним относятся сине-зеленые водоросли, бактерии, фаги и вирусы. Вирусы представляют собой молекулы ДНК или РНК, покрытые белковой оболочкой. Они так малы, что их можно разглядеть только в электронный микроскоп. У них отсутствуют цитоплазма, митохондрии и рибосомы, поэтому они не способны синтезировать белок и энергию, необходимые для их жизнедеятельности. Попав в живую клетку и используя чужие органические вещества и энергию, они нормально развиваются.

Эукариоты - организмы с более крупными типичными клетками, содержащие все основные органоиды: ядро, эндоплазматическую сеть, митохондрии, рибосомы, комплекс Гольджи, лизосомы и другие. К эукариотам относятся все остальные растительные и животные организмы. Их клетки имеют сходный тип строения, что убедительно доказывает единство их происхождения.

Строение клетки

Человеческий организм, как и любой другой живой организм, состоит из клеток. Они играют одну из основных ролей в нашем организме. С помощью клеток происходит рост, развитие и размножение.

Теперь давайте вспомним определение, о том, что в биологии принято называть клеткой.

Клетка – это такая элементарная единица, которая участвует в строении и функционировании всех живых организмов, за исключением вирусов. Она имеет свой собственный обмен веществ и способна не только самостоятельно существовать, но и развиваться, а также самовоспроизводиться. Вкратце можно сделать вывод, что клетка является для любого организма самым главным и необходимым строительным материалом.

Конечно же, невооруженным глазом вам вряд ли удастся разглядеть клетку. Но с помощью современных технологий у человека появилась прекрасная возможность не только под световым или электронным микроскопом рассмотреть саму клетку, но и изучить ее строение, выделить и культивировать отдельные ее тканы и даже раскодировать генетическую клеточную информацию.

А теперь, с помощью данного рисунка, давайте наглядно рассмотрим строение клетки:


Строение клетки

Но что интересно, оказывается, не все клетки имеют одинаковое строение. Между клетками живого организма и клетками растений существует некоторая разница. Ведь в клетках растений есть пластиды, оболочка и вакуоли с клеточным соком. На изображении вы можете посмотреть клеточное строение животных и растений и увидеть разницу между ними:



Более подробную информацию о строении растительных и животных клеток, вы узнаете, посмотрев видео

Как видите, клетки, хотя и имеют микроскопические размеры, но их строение довольно таки сложное. Поэтому мы с вами сейчас перейдем к более подробному изучению строения клетки.

Плазматическая мембрана клетки

Для придания формы и для того, чтобы отделить клетку от ей подобных, вокруг клетки человека находится мембрана.

Так как мембрана имеет свойство частично пропускать через себя вещества, то за счет этого в клетку поступают нужные вещества, а отходы из нее выводятся.

Условно можно сказать, что клеточная мембрана представляет собой ультрамикроскопическую плёнку, которая состоит из двух мономолекулярных слоев белка и бимолекулярного слоя липидов, который расположен между этими слоями.

Из этого мы можем сделать вывод, что мембрана клетки играет важную роль в ее строении, так как выполняет ряд определенных функций. Она играет защитную, барьерную и связующую функцию между другими клетками и для связи с окружающей средой.

А теперь давайте на рисунке рассмотрим более подробное строение мембраны:



Цитоплазма

Следующей составляющей внутренней среды клетки является цитоплазма. Она представляет собой полужидкое вещество, в котором перемещаются и растворяются другие вещества. Состоит цитоплазма из белков и воды.

Внутри клетки происходит постоянное движение цитоплазмы, которое называют циклозом. Циклоз бывает круговым или сетчатым.

Кроме этого, цитоплазма соединяет разные части клетки. В этой среде располагаются органоиды клетки.

Органоиды представляют собой постоянные клеточные структуры с определенными функциями.

К таким органоидам относятся такие структуры, как цитоплазматический матрикс, эндоплазматическая сеть, рибосомы, митохондрии и т.д.

Сейчас мы попробуем более подробно рассмотреть эти органоиды и узнать, какие функции они выполняют.


Цитоплазма

Цитоплазматический матрикс

Оной из основных частей клетки представляет цитоплазматический матрикс. Благодаря ему в клетке происходят процессы биосинтеза, а его компоненты содержат ферменты, с помощью которых вырабатывается энергия.


Цитоплазматический матрикс

Эндоплазматическая сеть

Внутри, зона цитоплазмы состоит из мелких каналов и различных полостей. Эти каналы, соединяясь друг с другом, образуют эндоплазматическую сеть. Такая сеть неоднородна по своему строению и может быть гранулярной либо гладкой.


Эндоплазматическая сеть

Клеточное ядро

Самой важной частью, которая присутствует практически во всех клетках, является клеточное ядро. Такие клетки, в которых есть ядро, называют эукариотами. В каждом клеточном ядре находится ДНК. Оно является веществом наследственности и в нем зашифрованы все свойства клетки.


Клеточное ядро

Хромосомы

Если под микроскопом рассматривать строение хромосомы, то можно увидеть, что она состоит из двух хроматид. Как правило, после деления ядра, хромосома становится однохроматидной. Но уже к началу следующего деления у хромосомы появляется еще одна хроматида.



Хромосомы

Клеточный центр

При рассмотрении клеточного центра можно увидеть, что он состоит из материнской и дочерней центриолей. Каждая такая центриоль представляет собой объект, имеющий цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество.

С помощью такого клеточного центра происходит деление клеток животных и низших растений.



Клеточный центр

Рибосомы

Рибосомы являются универсальными органеллами, как в клетках животных, так и в клетках растений. Их главной функцией является синтез белка в функциональном центре.


Рибосомы

Митохондрии

Митохондрии также являются микроскопическими органеллами, но в отличие от рибосом имеют двухмембранное строение, в которых внешняя мембрана гладкая, а внутренняя имеет различной формы выросты, которые называют кристы. Митохондрии играют роль дыхательного и энергетического центра



Митохондрии

Аппарат Гольджи

А вот с помощью аппарата Гольджи происходит накопление и транспортировка веществ. Также, благодаря этому аппарату, происходит образование лизосом и синтез липидов и углеводов.

По строению аппарат Гольджи напоминает отдельные тельца, которые имеют серповидную или палочковидную формы.


Аппарат Гольджи

Пластиды

А вот пластиды для растительной клетки играют роль энергетической станции. Им свойственно превращение из одного вида в другой. Пластиды делятся на такие разновидности, как хлоропласты, хромопласты, лейкопласты.


Пластиды

Лизосомы

Пищеварительная вакуоль, способная растворять ферменты носит название лизосомы. Они представляют собой микроскопические одномембранные органеллы, имеющие округлую форму. Их количество напрямую зависит от того, насколько клетка жизнедеятельна и какое у нее физическое состояние.

В том случае, когда происходит разрушение мембраны лизосомы, то в этом случае клетка способна переваривает сама себя..



Лизосомы

Способы питания клетки

А теперь давайте рассмотрим способы питания клеток:



Способ питания клетки

Здесь следовало бы отметить, что белки и полисахариды имеют свойство проникать в клетку, путем фагоцитоза, а вот капли жидкости – методом пиноцитоза.

Способ питания животных клеток, при котором в нее попадают питательные вещества, называют фагоцитозом. А такой универсальный способ питания любых клеток, при котором питательные вещества попадают в клетку уже в растверенном виде, называют пиноцитоз.

Клетка - элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. В последнее время принято также говорить о биологии клетки, или клеточной биологии (англ. Cell biology).

Строение клеток Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток - прокариоты (доядерные) и эукариоты (ядерные). Прокариотические клетки - более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки - более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими. Несмотря на многообразие форм организация клеток всех живых организмов подчинена единым структурным принципам. Живое содержимое клетки - протопласт - отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариотическая клетка

Прокариоты (от лат. pro - перед, до и греч. κάρῠον - ядро, орех) - организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов - линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток - митохондрии и пластиды.

Эукариотическая клетка

Эукариоты (эвкариоты) (от греч. ευ - хорошо, полностью и κάρῠον - ядро, орех) - организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты - митохондрии, а у водорослей и растений - также и пластиды.

Клеточная мембрана Клеточная мембрана - очень важная часть клетки. Она удерживает вместе все клеточные компоненты и разграничивает внутреннюю и наружную среду. Кроме того, модифицированные складки клеточной мембраны образуют многие органеллы клетки. Клеточная мембрана представляет собой двойной слой молекул (бимолекулярный слой, или бислой). В основном это молекулы фосфолипидов и других близких к ним веществ. Липидные молекулы имеют двойственную природу, проявляющуюся в том, как они ведут себя по отношению к воде. Головы молекул гидрофильные, т.е. обладают сродством к воде, а их углеводородные хвосты гидрофобны. Поэтому при смешивании с водой липиды образуют на ее поверхности пленку, аналогичную пленке масла; при этом все их молекулы ориентированы одинаково: головы молекул - в воде, а углеводородные хвосты - над ее поверхностью. В клеточной мембране два таких слоя, и в каждом из них головы молекул обращены наружу, а хвосты - внутрь мембраны, один к другому, не соприкасаясь таким образом с водой. Толщина такой мембраны ок. 7 нм. Кроме основных липидных компонентов, она содержит крупные белковые молекулы, которые способны «плавать» в липидном бислое и расположены так, что одна их сторона обращена внутрь клетки, а другая соприкасается с внешней средой. Некоторые белки находятся только на наружной или только на внутренней поверхности мембраны или лишь частично погружены в липидный бислой.

Основная функция клеточной мембраны заключается в регуляции переноса веществ в клетку и из клетки. Поскольку мембрана физически в какой-то мере похожа на масло, вещества, растворимые в масле или в органических растворителях, например эфир, легко проходят сквозь нее. То же относится и к таким газам, как кислород и диоксид углерода. В то же время мембрана практически непроницаема для большинства водорастворимых веществ, в частности для сахаров и солей. Благодаря этим свойствам она способна поддерживать внутри клетки химическую среду, отличающуюся от наружной. Например, в крови концентрация ионов натрия высокая, а ионов калия - низкая, тогда как во внутриклеточной жидкости эти ионы присутствуют в обратном соотношении. Аналогичная ситуация характерна и для многих других химических соединений. Очевидно, что клетка тем не менее не может быть полностью изолирована от окружающей среды, так как должна получать вещества, необходимые для метаболизма, и избавляться от его конечных продуктов. К тому же липидный бислой не является полностью непроницаемым даже для водорастворимых веществ, а пронизывающие его т.н. «каналообразующие» белки создают поры, или каналы, которые могут открываться и закрываться (в зависимости от изменения конформации белка) и в открытом состоянии проводят определенные иона (Na+, K+, Ca2+) по градиенту концентрации. Следовательно, разница концентраций внутри клетки и снаружи не может поддерживаться исключительно за счет малой проницаемости мембраны. На самом деле в ней имеются белки, выполняющие функцию молекулярного «насоса»: они транспортируют некоторые вещества как внутрь клетки, так и из нее, работая против градиента концентрации. В результате, когда концентрация, например, аминокислот внутри клетки высокая, а снаружи низкая, аминокислоты могут тем не менее поступать из внешней среды во внутреннюю. Такой перенос называется активным транспортом, и на него затрачивается энергия, поставляемая метаболизмом. Мембранные насосы высокоспецифичны: каждый из них способен транспортировать либо только ионы определенного металла, либо аминокислоту, либо сахар. Специфичны также и мембранные ионные каналы. Такая избирательная проницаемость физиологически очень важна, и ее отсутствие - первое свидетельство гибели клетки. Это легко проиллюстрировать на примере свеклы. Если живой корень свеклы погрузить в холодную воду, то он сохраняет свой пигмент; если же свеклу кипятить, то клетки погибают, становятся легко проницаемыми и теряют пигмент, который и окрашивает воду в красный цвет. Крупные молекулы типа белковых клетка может «заглатывать». Под влиянием некоторых белков, если они присутствуют в жидкости, окружающей клетку, в клеточной мембране возникает впячивание, которое затем смыкается, образуя пузырек - небольшую вакуоль, содержащую воду и белковые молекулы; после этого мембрана вокруг вакуоли разрывается, и содержимое попадает внутрь клетки. Такой процесс называется пиноцитозом (буквально «питье клетки»), или эндоцитозом. Более крупные частички, например частички пищи, могут поглощаться аналогичным образом в ходе т.н. фагоцитоза. Как правило, вакуоль, образующаяся при фагоцитозе, крупнее, и пища переваривается ферментами лизосом внутри вакуоли до разрыва окружающей ее мембраны. Такой тип питания характерен для простейших, например для амеб, поедающих бактерий. Однако способность к фагоцитозу свойственна и клеткам кишечника низших животных, и фагоцитам - одному из видов белых кровяных клеток (лейкоцитов) позвоночных. В последнем случае смысл этого процесса заключается не в питании самих фагоцитов, а в разрушении ими бактерий, вирусов и другого инородного материала, вредного для организма. Функции вакуолей могут быть и другими. Например, простейшие, живущие в пресной воде, испытывают постоянный осмотический приток воды, так как концентрация солей внутри клетки гораздо выше, чем снаружи. Они способны выделять воду в специальную экскретирующую (сократительную) вакуоль, которая периодически выталкивает свое содержимое наружу. В растительных клетках часто имеется одна большая центральная вакуоль, занимающая почти всю клетку; цитоплазма при этом образует лишь очень тонкий слой между клеточной стенкой и вакуолью. Одна из функций такой вакуоли - накопление воды, позволяющее клетке быстро увеличиваться в размерах. Эта способность особенно необходима в период, когда растительные ткани растут и образуют волокнистые структуры. В тканях в местах плотного соединения клеток их мембраны содержат многочисленные поры, образованные пронизывающими мембрану белками - т.н. коннексонами. Поры прилежащих клеток располагаются друг против друга, так что низкомолекулярные вещества могут перегодить из клетки в клетку - эта химическая система коммуникации координирует их жизнедеятельность. Один из примеров такой координации - наблюдаемое во многих тканях более или менее синхронное деление соседних клеток.

Цитоплазма

В цитоплазме имеются внутренние мембраны, сходные с наружной и образующие органеллы различного типа. Эти мембраны можно рассматривать как складки наружной мембраны; иногда внутренние мембраны составляют единое целое с наружной, но часто внутренняя складка отшнуровывается, и контакт с наружной мембраной прерывается. Однако даже в случае сохранения контакта внутренняя и наружная мембраны не всегда химически идентичны. В особенности различается состав мембранных белков в разных клеточных органеллах.

Структура цитоплазмы

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды. На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек, служащих внутриклеточными «дорогами» и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Эндоплазматический ретикулум

В эукариотической клетке существует система переходящих друг в друга мембранных отсеков (трубок и цистерн), которая называется эндоплазматическим ретикулумом (или эндоплазматическая сеть, ЭПР или ЭПС). Ту часть ЭПР, к мембранам которого прикреплены рибосомы, относят к гранулярному (или шероховатому) эндоплазматическому ретикулуму, на его мембранах происходит синтез белков. Те компартменты, на стенках которых нет рибосом, относят к гладкому (или агранулярному) ЭПР, принимающему участие в синтезе липидов. Внутренние пространства гладкого и гранулярного ЭПР не изолированы, а переходят друг в друга и сообщаются с просветом ядерной оболочки.

Аппарат Гольджи

Аппарат Гольджи представляет собой стопку плоских мембранных цистерн, несколько расширенных ближе к краям. В цистернах аппарата Гольджи созревают некоторые белки, синтезированные на мембранах гранулярного ЭПР и предназначенные для секреции или образования лизосом. Аппарат Гольджи асимметричен - цистерны располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки - везикулы, отпочковывающиеся от эндоплазматического ретикулума. По-видимому, при помощи таких же пузырьков происходит дальнейшее перемещение созревающих белков от одной цистерны к другой. В конце концов от противоположного конца органеллы (транс-Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

Ядро

Ядро окружено двойной мембраной. Очень узкое (порядка 40 нм) пространство между двумя мембранами называется перинуклеарным. Мембраны ядра переходят в мембраны эндоплазматического ретикулума, а перинуклеарное пространство открывается в ретикулярное. Обычно ядерная мембрана имеет очень узкие поры. По-видимому, через них осуществляется перенос крупных молекул, таких, как информационная РНК, которая синтезируется на ДНК, а затем поступает в цитоплазму. Основная часть генетического материала находится в хромосомах клеточного ядра. Хромосомы состоят из длинных цепей двуспиральной ДНК, к которой прикрепляются основные (т.е. обладающие щелочными свойствами) белки. Иногда в хромосомах имеется несколько идентичных цепей ДНК, лежащих рядом друг с другом, - такие хромосомы называются политенными (многонитчатыми). Число хромосом у разных видов неодинаково. Диплоидные клетки тела человека содержат 46 хромосом, или 23 пары. В неделящейся клетке хромосомы прикреплены в одной или нескольких точках к ядерной мембране. В обычном неспирализованном состоянии хромосомы настолько тонки, что не видны в световой микроскоп. На определенных локусах (участках) одной или нескольких хромосом формируется присутствующее в ядрах большинства клеток плотное тельце - т.н. ядрышко. В ядрышках происходит синтез и накопление РНК, используемой для построения рибосом, а также некоторых других типов РНК.

Лизосомы

Лизосомы - это маленькие, окруженные одинарной мембраной пузырьки. Они отпочковываются от аппарата Гольджи и, возможно, от эндоплазматического ретикулума. Лизосомы содержат разнообразные ферменты, которые расщепляют крупные молекулы, в частности белковые. Из-за своего разрушительного действия эти ферменты как бы «заперты» в лизосомах и высвобождаются только по мере надобности. Так, при внутриклеточном пищеварении ферменты выделяются из лизосом в пищеварительные вакуоли. Лизосомы бывают необходимы и для разрушения клеток; например, во время превращения головастика во взрослую лягушку высвобождение лизосомных ферментов обеспечивает разрушение клеток хвоста. В данном случае это нормально и полезно для организма, но иногда такое разрушение клеток носит патологический характер. Например, при вдыхании асбестовой пыли она может проникнуть в клетки легких, и тогда происходит разрыв лизосом, разрушение клеток и развивается легочное заболевание.

Цитоскелет

К элементам цитоскелета относят белковые фибриллярные структуры, расположенные в цитоплазме клетки: микротрубочки, актиновые и промежуточные филаменты. Микротрубочки принимают участие в транспорте органелл, входят в состав жгутиков, из микротрубочек строится митотическое веретено деления. Актиновые филаменты необходимы для поддержания формы клетки, псевдоподиальных реакций. Роль промежуточных филаментов, по-видимому, также заключается в поддержании структуры клетки. Белки цитоскелета составляют несколько десятков процентов от массы клеточного белка.

Центриоли

Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет). Центриоль представляет собой цилиндр, боковая поверхность которого образована девятью наборами микротрубочек. Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3. Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки. Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путём синтеза новой структуры, перпендикулярной существующей. Центриоли, по-видимому, гомологичны базальным телам жгутиков и ресничек.

Митохондрии

Митохондрии - особые органеллы клетки, основной функцией которых является синтез АТФ - универсального носителя энергии. Дыхание (поглощение кислорода и выделение углекислого газа) происходит также за счёт энзиматических систем митохондрий. Внутренний просвет митохондрий, называемый матриксом отграничен от цитоплазмы двумя мембранами, наружной и внутренней, между которыми располагается межмембранное пространство. Внутренняя мембрана митохондрии образует складки, так называемые кристы. В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии. Митохондрии имеют свой собственный ДНК-геном и прокариотические рибосомы, что безусловно указывает на симбиотическое происхождение этих органелл. В ДНК митохондрий закодированы совсем не все митохондриальные белки, большая часть генов митохондриальных белков находятся в ядерном геноме, а соответствующие им продукты синтезируются в цитоплазме, а затем транспортируются в митохондрии. Геномы митохондрий отличаются по размерам: например геном человеческих митохондрий содержит всего 13 генов. Самое большое число митохондриальных генов (97) из изученных организмов имеет простейшее Reclinomonas americana.

Химический состав клетки

Обычно 70-80 % массы клетки составляет вода, в которой растворены разнообразные соли и низкомолекулярные органические соединения. Наиболее характерные компоненты клетки - белки и нуклеиновые кислоты. Некоторые белки являются структурными компонентами клетки, другие - ферментами, т.е. катализаторами, определяющими скорость и направление протекающих в клетках химических реакций. Нуклеиновые кислоты служат носителями наследственной информации, которая реализуется в процессе внутриклеточного синтеза белков. Часто клетки содержат некоторое количество запасных веществ, служащих пищевым резервом. Растительные клетки в основном запасают крахмал - полимерную форму углеводов. В клетках печени и мышц запасается другой углеводный полимер - гликоген. К часто запасаемым продуктам относится также жир, хотя некоторые жиры выполняют иную функцию, а именно служат важнейшими структурными компонентами. Белки в клетках (за исключением клеток семян) обычно не запасаются. Описать типичный состав клетки не представляется возможным прежде всего потому, что существуют большие различия в количестве запасаемых продуктов и воды. В клетках печени содержится, например, 70% воды, 17% белков, 5% жиров, 2% углеводов и 0,1% нуклеиновых кислот; оставшиеся 6% приходятся на соли и низкомолекулярные органические соединения, в частности аминокислоты. Растительные клетки обычно содержат меньше белков, значительно больше углеводов и несколько больше воды; исключение составляют клетки, находящиеся в состоянии покоя. Покоящаяся клетка пшеничного зерна, являющегося источником питательных веществ для зародыша, содержит ок. 12% белков (в основном это запасаемый белок), 2% жиров и 72% углеводов. Количество воды достигает нормального уровня (70-80%) только в начале прорастания зерна.

Методы изучения клетки

Световой микроскоп .

В изучении клеточной формы и структуры первым инструментом был световой микроскоп. Его разрешающая способность ограничена размерами, сравнимыми с длиной световой волны (0,4-0,7 мкм для видимого света). Однако многие элементы клеточной структуры значительно меньше по размерам. Другая трудность состоит в том, что большинство клеточных компонентов прозрачны и коэффициент преломления у них почти такой же, как у воды. Для улучшения видимости часто используют красители, имеющие разное сродство к различным клеточным компонентам. Окрашивание применяют также для изучения химии клетки. Например, некоторые красители связываются преимущественно с нуклеиновыми кислотами и тем самым выявляют их локализацию в клетке. Небольшая часть красителей - их называют прижизненными - может быть использована для окраски живых клеток, но обычно клетки должны быть предварительно зафиксированы (с помощью веществ, коагулирующих белок) и только после этого могут быть окрашены. Перед проведением исследования клетки или кусочки ткани обычно заливают в парафин или пластик и затем режут на очень тонкие срезы с помощью микротома. Такой метод широко используется в клинических лабораториях для выявления опухолевых клеток. Помимо обычной световой микроскопии разработаны и другие оптические методы изучения клетки: флуоресцентная микроскопия, фазово-контрастная микроскопия, спектроскопия и рентгеноструктурный анализ.

Электронный микроскоп .

Электронный микроскоп имеет разрешающую способность ок. 1-2 нм. Этого достаточно для изучения крупных белковых молекул. Обычно необходимо окрашивание и контрастирование объекта солями металлов или металлами. По этой причине, а также потому, что объекты исследуются в вакууме, с помощью электронного микроскопа можно изучать только убитые клетки.

Если добавить в среду радиоактивный изотоп, поглощаемый клетками в процессе метаболизма, то его внутриклеточную локализацию можно затем выявить с помощью авторадиографии. При использовании этого метода тонкие срезы клеток помещают на пленку. Пленка темнеет под теми местами, где находятся радиоактивные изотопы.

Центрифугирование .

Для биохимического изучения клеточных компонентов клетки необходимо разрушить - механически, химически или ультразвуком. Высвобожденные компоненты оказываются в жидкости во взвешенном состоянии и могут быть выделены и очищены с помощью центрифугирования (чаще всего - в градиенте плотности). Обычно такие очищенные компоненты сохраняют высокую биохимическую активность.

Клеточные культуры .

Некоторые ткани удается разделить на отдельные клетки так, что клетки при этом остаются живыми и часто способны к размножению. Этот факт окончательно подтверждает представление о клетке как единице живого. Губку, примитивный многоклеточный организм, можно разделить на клетки путем протирания сквозь сито. Через некоторое время эти клетки вновь соединяются и образуют губку. Эмбриональные ткани животных можно заставить диссоциировать с помощью ферментов или другими способами, ослабляющими связи между клетками. Американский эмбриолог Р.Гаррисон (1879-1959) первым показал, что эмбриональные и даже некоторые зрелые клетки могут расти и размножаться вне тела в подходящей среде. Эта техника, называемая культивированием клеток, была доведена до совершенства французским биологом А.Каррелем (1873-1959). Растительные клетки тоже можно выращивать в культуре, однако по сравнению с животными клетками они образуют большие скопления и прочнее прикрепляются друг к другу, поэтому в процессе роста культуры образуются ткани, а не отдельные клетки. В клеточной культуре из отдельной клетки можно вырастить целое взрослое растение, например морковь.

Микрохирургия .

С помощью микроманипулятора отдельные части клетки можно удалять, добавлять или каким-то образом видоизменять. Крупную клетку амебы удается разделить на три основных компонента - клеточную мембрану, цитоплазму и ядро, а затем эти компоненты можно вновь собрать и получить живую клетку. Таким путем могут быть получены искусственные клетки, состоящие из компонентов разных видов амеб. Если принять во внимание, что некоторые клеточные компоненты представляется возможным синтезировать искусственно, то опыты по сборке искусственных клеток могут оказаться первым шагом на пути к созданию в лабораторных условиях новых форм жизни. Поскольку каждый организм развивается из одной единственной клетки, метод получения искусственных клеток в принципе позволяет конструировать организмы заданного типа, если при этом использовать компоненты, несколько отличающиеся от тех, которые имеются у ныне существующих клеток. В действительности, однако, полного синтеза всех клеточных компонентов не требуется. Структура большинства, если не всех компонентов клетки, определяется нуклеиновыми кислотами. Таким образом, проблема создания новых организмов сводится к синтезу новых типов нуклеиновых кислот и замене ими природных нуклеиновых кислот в определенных клетках.

Слияние клеток .

Другой тип искусственных клеток может быть получен в результате слияния клеток одного или разных видов. Чтобы добиться слияния, клетки подвергают воздействию вирусных ферментов; при этом наружные поверхности двух клеток склеиваются вместе, а мембрана между ними разрушается, и образуется клетка, в которой два набора хромосом заключены в одном ядре. Можно слить клетки разных типов или на разных стадиях деления. Используя этот метод, удалось получить гибридные клетки мыши и цыпленка, человека и мыши, человека и жабы. Такие клетки являются гибридными лишь изначально, а после многочисленных клеточных делений теряют большинство хромосом либо одного, либо другого вида. Конечный продукт становится, например, по существу клеткой мыши, где человеческие гены отсутствуют или имеются лишь в незначительном количестве. Особый интерес представляет слияние нормальных и злокачественных клеток. В некоторых случаях гибриды становятся злокачественными, в других нет, т.е. оба свойства могут проявляться и как доминантные, и как рецессивные. Этот результат не является неожиданным, так как злокачественность может вызываться различными факторами и имеет сложный механизм.

Формы клеток очень разнообразны. У одноклеточных каждая клетка - отдельный организм. Ее форма и особенности строения связаны с условиями среды, в которых обитает данное одноклеточное, с его образом жизни.

Различия в строении клеток

Тело каждого многоклеточного животного и растения слагается из клеток, различных по внешнему виду, что связано с их функциями. Так, у животных сразу можно отличить нервную клетку от мышечной или эпителиальной клетки (эпителий-покровная ткань). У растений неодинаково строение клетки листа, стебля и т. д.
Столь же изменчивы и размеры клеток. Самые мелкие из них (некоторые ) не превышают 0,5 мкм Величина клеток многоклеточных организмов колеблется от нескольких микрометров (диаметр лейкоцитов человека 3-4 мкм, диаметр эритроцитов - 8 мкм) до огромных размеров (отростки одной нервной клетки человека имеют длину более 1 м). У большинства клеток растений и животных величина их диаметра колеблется от 10 до 100 мкм.
Несмотря на разнообразие строения форм и размеров, все живые клетки любого организма сходны по многим признакам внутреннего строения. Клетка - сложная целостная физиологическая система, в которой осуществляются все основные процессы жизнедеятельности: и энергии, раздражимость, рост и самовоспроизведение.

Основные компоненты в строение клетки

Основные общие компоненты клетки - наружная мембрана, цитоплазма и ядро. Клетка может жить и нормально функционировать лишь при наличии всех этих компонентов, которые тесно взаимодействуют друг с другом и с окружающей средой.

Рисунок. 2. Строение клетки: 1 - ядро, 2 - ядрышко, 3 - ядерная мембрана, 4 - цитоплазма, 5 - аппарат Гольджи, 6 - митохондрии, 7 - лизосомы, 8-эндоплазматическая сеть, 9 - рибосомы, 10 - клеточная мембрана

Строение наружной мембраны. Она представляет собой тонкую (около 7,5 нм2 толщиной) трехслойную оболочку клетки, видимую лишь в электронном микроскопе. Два крайних слоя мембраны состоят из белков, а средний образован жироподобными веществами. В мембране есть очень мелкие поры, благодаря чему она легко пропускает одни вещества и задерживает другие. Мембрана принимает участие в фагоцитозе (захватывание клеткой твердых частиц) и в пиноцитозе (захватывание клеткой капелек жидкости с растворенными в ней веществами). Таким образом мембрана сохраняет целостность клетки и регулирует поступление веществ из окружающей среды в клетку и из клетки в окружающую ее среду.
На своей внутренней поверхности мембрана образует впячивания и разветвления, глубоко проникающие внутрь клетки. Через них наружная мембрана связана с оболочкой ядра, С другой стороны, мембраны соседних клеток, образуя взаимно прилегающие впячивания и складки, очень тесно и надежно соединяют клетки в многоклеточные ткани.

Цитоплазма представляет собой сложную коллоидную систему. Ее строение: прозрачный полужидкий раствор и структурные образования. Общими для всех клеток структурными образованиями цитоплазмы являются: митохондрии, эндоплазматическая сеть, комплекс Гольджи и рибосомы (рисунок. 2). Все они вместе с ядром представляют собой центры тех или иных биохимических процессов, в совокупности составляющих в клетке. Эти процессы чрезвычайно разнообразны и протекают одновременно в микроскопически малом объеме клетки. С этим связана общая особенность внутреннего строения всех структурных элементов клетки: несмотря на малые размеры, они имеют большую поверхность, на которой располагаются биологические катализаторы (ферменты) и осуществляются различные биохимические реакции.

Митохондрии (рисунок. 2, 6) - энергетические центры клетки. Это очень мелкие, но хорошо видимые в световом микроскопе тельца (длина 0,2- 7,0 мкм). Они находятся в цитоплазме и значительно варьируют по форме и числу в разных клетках. Жидкое содержимое митохондрий заключено в две трехслойные оболочки, каждая из которых имеет такое же строение, как и наружная мембрана клетки. Внутренняя оболочка митохондрии образует многочисленные впячивания и неполные перегородки внутри тела митохондрии (рисунок. 3). Эти впячивания называются кристами. Благодаря им при малом объеме достигается резкое увеличение поверхностей, на которых осуществляются биохимические реакции и среди них прежде всего реакции накопления и освобождения энергии при помощи ферментативного превращения адено-зиндифосфорной кислоты в аденозинтрифосфорную кислоту и наоборот.

Рисунок. 3. Схема строения митохондрии: 1 - наружная оболочка. 2 - внутренняя оболочка, 3 - гребни оболочки, направленные внутрь митохондрии

Эндоплазматическая сеть (рисунок. 2, 8) представляет собой многократно разветвленные впячивания наружной мембраны клетки. Мембраны эндоплазматической сети обычно расположены попарно, а между ними образуются канальцы, которые могут расширяться в более значительные полости, заполненные продуктами биосинтеза. Вокруг ядра мембраны, слагающие эндоплазматическую сеть, непосредственно переходят в наружную мембрану ядра. Таким образом, эндоплазматическая сеть связывает воедино все части клетки. В световом микроскопе, при осмотре строения клетки, эндоплазматическая сеть не видна.

В строение клетки различают шероховатую и гладкую эндоплазматическую сеть. Шероховатая эндоплазматическая сеть густо окружена рибосомами, где происходит синтез белков. Гладкая эндоплазматическая сеть лишена рибосом и в ней осуществляются синтез жиров и углеводов. По канальцам эндоплазматической сети осуществляется внутриклеточный обмен веществами, синтезируемыми в различных частях клетки, а также обмен между клетками. Вместе с тем эндоплазматическая сеть как более плотное структурное образование выполняет функцию остова клетки, придавая ее форме определенную устойчивость.

Рибосомы (рисунок. 2, 9) находятся как в цитоплазме клетки, так и в ее ядре. Это мельчайшие зернышки диаметром около 15-20 им, что делает их невидимыми в световом микроскопе. В цитоплазме основная масса рибосом сосредоточена на поверхности канальцев шероховатой эндоплазматической сети. Функция рибосом заключается в самом ответственном для жизнедеятельности клетки и организма в целом процессе — в синтезе белков.

Комплекс Гольджи (рисунок. 2, 5) сначала был найден только в животных клетках. Однако в последнее время и в растительных клетках обнаружены аналогичные структуры. Строение структуры комплекса Гольджи близка к структурным образованиям эндоплазматической сети: это различной формы канальцы, полости и пузырьки, образованные трехслойными мембранами. Помимо того, в комплекс Гольджи входят довольно крупные вакуоли. В них накапливаются некоторые продукты синтеза, в первую очередь ферменты и гормоны. В определенные периоды жизнедеятельности клетки эти зарезервированные вещества могут быть выведены из данной клетки через эндоплазматическую сеть и вовлечены в обменные процессы организма в целом.

Клеточный центр - образование, до сих пор описанное только в клетках животных и низших растений. Он состоит из двух центриолей , строение каждой из которых представляет собой цилиндрик размером до 1 мкм. Центриоли играют важную роль в митотическом делении клеток. Кроме описанных постоянных структурных образований, в цитоплазме различных клеток периодически появляются те или иные включения. Это капельки жира, крахмальные зерна, кристаллики белков особой формы (алейроновые зерна) и др. В большом количестве такие включения встречаются в клетках запасающих тканей. Однако и в клетках других тканей такие включения могут существовать как временный резерв питательных веществ.

Ядро (рисунок. 2, 1), как и цитоплазма с наружной мембраной,- обязательный компонент подавляющего большинства клеток. Лишь у некоторых бактерий, при рассмотрении строения их клеток, не удалось выявить структурно оформленного ядра, но в их клетках обнаружены все химические вещества, присущие ядрам других организмов. Нет ядер в некоторых специализированных клетках, потерявших способность делиться (эритроциты млекопитающих, ситовидные трубки флоэмы растения). С другой стороны, существуют многоядерные клетки. Ядро играет очень важную роль в синтезе белков-ферментов, в передаче наследственной информации из поколения в поколение, в процессах индивидуального развития организма.

Ядро неделящейся клетки имеет ядерную оболочку. Она состоит из двух трехслойных мембран. Наружная мембрана связана через эндоплазматическуго сеть с клеточной мембраной. Через всю эту систему осуществляется постоянный обмен веществами между цитоплазмой, ядром и средой, окружающей клетку. Кроме того, в оболочке ядра есть поры, через которые также осуществляется связь ядра с цитоплазмой. Внутри ядро заполнено ядерным соком, в котором находятся глыбки хроматина, ядрышко и рибосомы. Хроматин образован белком и ДНК. Это тот материальный субстрат, который перед делением клетки оформляется в хромосомы, видимые в световом микроскопе.

Хромосомы - постоянные по числу и форме образования, одинаковые для всех организмов данного вида. Перечисленные выше функции ядра в первую очередь связаны с хромосомами, а точнее - с ДНК, входящей в их состав.

Ядрышко (рисунок. 2,2) в количестве одного или нескольких присутствует в ядре неделящейся клетки и хорошо видно в световом микросколе. В момент деления клетки оно исчезает. В самое последнее время выяснена огромная роль ядрышка: в нем формируются рибосомы, которые затем из ядра поступают в цитоплазму и там осуществляют синтез белков.

Все сказанное в равной мере относится и к клеткам животных, и к клеткам растений. В связи со спецификой обмена веществ, роста и развития растении и животных в строении клеток тех и других имеются дополнительные структурные особенности, отличающие растительные клетки от клеток животных. Подробнее об этом написано в разделах «Ботаника» и «Зоология»; здесь же отметим лишь самые общие различия.

Клеткам животных, кроме перечисленных составных частей, в строени клетки, присущи особые образования - лизосомы . Это ультрамикроскопические пузырьки в цитоплазме, наполненные жидкими пищеварительными ферментами. Лизосомы осуществляют функцию расщепления веществ пищи на более простые химические вещества. Есть отдельные указания, что лизосомы встречаются и в растительных клетках.
Самые характерные структурные элементы растительных клеток (кроме тех общих, которые присущи всем клеткам) - пластиды . Они существуют в трех формах: зеленые хлоропласты, красно-оранжево-желтые
хромопласты и бесцветные лейкопласты . Лейкопласты при определенных условиях могут превращаться в хлоропласты (позеленение клубня картофеля), а хлоропласты в свою очередь могут становиться хромопластами (осеннее пожелтение листьев).

Рисунок. 4. Схема строения хлоропласта: 1 - оболочка хлоропласта, 2 - группы пластинок, в которых совершается процесс фотосинтеза

Хлоропласты (рисунок 4) представляют собой «фабрику» первичного синтеза органических веществ из неорганических за счет солнечной энергии. Это небольшие тельца довольно разнообразной формы, всегда зеленого цвета благодаря присутствию хлорофилла. Строение хлоропластов в клетке: имеют внутреннюю структуру, которая обеспечивает максимальное развитие свободных поверхностей. Эти поверхности создаются многочисленными тонкими пластинками, скопления которых находятся внутри хлоропласта.
С поверхности хлоропласт, как и другие структурные элементы цитоплазмы, покрыт двойной мембраной. Каждая из них в свою очередь трехслойна, как и наружная мембрана клетки.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!