Информационный женский портал

Что происходит в мозге во время галлюцинаций? Что происходит в мозгу медитирующего? Единственный из всех

Они учились на одном курсе. Долгое время Ира не обращала на него никакого внимания. До того самого семинара. Олег вызвался прочитать доклад про теорию происхождения речи у первобытных людей. Сама тема уже навевала скуку. Пробудил ее от грез громкий смех соучеников. Прислушавшись, она внезапно увлеклась - Олег говорил складно, интересно, много шутил и держался перед целой сотней однокурсников очень уверенно. Взгляд Иры невольно оценивающе скользнул по его фигуре - широкие плечи, развитая мускулатура. Он повернулся, чтобы что-то нарисовать на доске, и в этот момент Ира стыдливо поймала себя на том, что смотрит на его ягодицы…

К щекам прилила кровь, а руки внезапно вспотели. Ира вспомнила, что совсем недавно читала свежее исследование, где говорилось, что женщин в мужчинах привлекает прежде всего атлетическое телосложение, очевидные признаки физической силы.

Хм, но это не про меня. Мне главное, чтобы был умным, веселым, добрым, нежным и заботливым.

И тут Олег повернулся - и посмотрел именно на нее, прямо в глаза, долго, взяв солидную паузу. Вокруг его глаз собрались озорные морщинки, а лицо как будто осветилось теплым светом.

Единственный из всех

«Почему Олег не выходит у меня из головы? - именно этот вопрос мучил Иру уже неделю. - Чем бы я ни занималась, мысли постоянно возвращаются к нему снова и снова. Более того, мне кажется, что он самый лучший среди всех парней! Единственный и неповторимый!».

«Да все просто, - пришла на выручку лучшая подруга Иры отличница Люба. - Сейчас я тебе все объясню.

Ученые полагают, что в основе любви лежат три фактора: отбор предпочитаемого партнера, установление с ним близости и сексуальное влечение. Сейчас у тебя доминирует первый фактор. Наш мозг в ходе эволюции обрел способность выделять одного потенциального партнера из многих. Почему так произошло? Существует множество гипотез, которые это объясняют, - например, про «эффект бабушек».

В какой-то момент (в позднем палеолите или раннем неолите) продолжительность жизни женщин увеличилась, пожилые дамы стали помогать заботиться о потомстве своим дочерям, что позволило последним иметь больше детей. Это в свою очередь закрепило «долгожительство» в человеческой популяции и привело также к росту продолжительности жизни мужчин. Но тут возникла опасная ситуация - старики уже были неспособны эффективно охотиться, а потому не покидали поселений, зато еще вполне могли иметь детей. В итоге из-за «эффекта бабушек» количество фертильных женщин по отношению к числу способных к продолжению рода мужчин уменьшилось (моделирование показывает, что пропорция могла достигать 156 мужчин к 100 женщинам в детородном возрасте). Все это привело к резкому обострению конкуренции за женщин, усугубленной долговременным отсутствием молодых мужчин в селениях.

Чем больше пара занимается любовью, тем больше у них вырабатывается гормонов привязанности и сильнее взаимная любовь. Кстати, тут вот два петербургских исследователя и параллельно практика йоги - физиолог Ринад Минвалеев и математик Анатолий Иванов - поставили эксперимент, в котором установили, что у женщин есть два типа профиля тонуса вегетативной нервной системы и кровообращения во время секса. При этом один из них приводит к истощению сил женщины (условно - симпатический профиль), а второй, парасимпатический, наоборот, дает энергию и жизненные силы. При этом если женщина достигает такой реакции в процессе полового акта, то и мужчина вслед за ней также «перестраивает» свой профиль реакции на парасимпатический.

Смотри, американские ученые показали, что , тем сильнее будет привязанность друг к другу в отношениях, а значит, и продлятся они дольше. Однако такая страстная любовь не может длиться больше двух-трех лет по одной простой причине - организм не может поддерживать столь высокий уровень выработки дофамина, норадреналина и фенилэтиламина на протяжении длительного времени. Вы волей-неволей взгляните друг на друга трезвыми глазами, поймете взаимные недостатки. И вот тут на первый план выйдет не страсть, а привязанность.

Здесь также важны будут гормоны окситоцин и вазопрессин, но одновременно и совсем нематериальные вещи. Так, психологи показали, что чем больше мы идеализируем того, кого любим, тем прочнее связи на этапе, когда привязанности важнее страсти. В этом случае мы легче прощаем обнаруженные недостатки, так как образ в нашей голове сильнее.

Более того, та же Хелена Фишер и Артур Арон обнаружили пары, прожившие вместе в среднем около 21 года и утверждавшие, что все еще сохраняют романтичный настрой. Исследование их мозга показало, что, как и у влюбленных юных пар, у них сохраняется высокая активность в «системе вознаграждения» при мыслях о супруге и даже активизируется задняя часть поясной извилины!

Иными словами, они сохранили, как это не удивительно, новизну и концентрацию внимания на партнере сквозь десятилетия.

Даниил Кузнецов

Смирнова Ольга Леонидовна

Невропатолог, образование: Первый Московский государственный медицинский университет имени И.М. Сеченова. Стаж работы 20 лет.

Написано статей

Какая часть мозга отвечает за память и что влияет на этот процесс, важно знать всем. Каждый день мы получаем массу информации, часть из которой запоминается. Почему одни воспоминания остаются в памяти, а другие нет, какой механизм действия памяти?

Памятью называют способность к запоминанию, накоплению и извлечению полученных сведений. Сколько может запомнить человек, зависит от его внимания.

Память формируется несколькими участками головного мозга: корой мозга, мозжечком, лимбической системой. Но в большей степени на нее влияют височные доли мозга. Процесс запоминания происходит в гиппокампе. Если повреждена височная область с одной стороны, то память становится хуже, но при нарушениях в обеих височных долях процесс запоминания полностью прекращается.

Функционирование памяти зависит от состояния нейронов и нейромедиаторов, обеспечивающих связь между нервными клетками. Они концентрируются в области гиппокампа. К нейромедиаторам относят и ацетилхолин. Если этих веществ не хватает, то память значительно ухудшается.

Уровень ацетилхолина зависит от количества энергии, производимой в процессе окисления жиров и глюкозы. Нейромедиаторы концентрируются в органе в меньших количествах, если человек переживает стресс или страдает от депрессивных состояний.

Механизм запоминания

Мозг человека работает, как компьютер. Чтобы сохранить текущую информацию он использует оперативную память, а для длительного хранения не обойтись без жесткого диска. В зависимости от того насколько долго часть мозга отвечающая за память хранит информацию, выделяют:

  • непосредственную память;
  • кратковременную;
  • долговременную.

Интересно, что в зависимости от вида, память хранится в разных участках мозга. Кратковременные воспоминания концентрируются в , а долговременные – в гиппокампе.

Способность к запоминанию считается важной частью интеллекта. Поэтому от ее развития зависит и объем информации, которой владеет человек.

Работа памяти состоит из запоминания, сохранения и воспроизведения. Когда люди получают информацию, она поступает от одной нервной клетки к другой. Эти процессы происходят в области коры головного мозга. Данные нервные импульсы приводят к созданию нейронных связей. По этим путям в дальнейшем человек извлекает, то есть, вспоминает полученные сведения.

На то, как успешно и надолго запомнится информация, влияет то, с каким вниманием человек относится к объекту. Если это ему интересно, то он сильнее концентрируется на интересующем его предмете и процесс запоминания происходит на высоком уровне.

Вниманием и концентрацией называют такую функцию психики, которая позволяет сфокусировать все мысли на определенном объекте.

Не менее важным, чем запоминание, является забывание информации. Благодаря этому нервная система разгружается и освобождается место для новых сведений, начинают образовываться новые нейронные связи.

Какое полушарие отвечает за память, точно сказать нельзя, так как оба эти участка играют важную роль в процессе обработки и запоминания информации.

Объем памяти

Согласно недавним результатам исследований, ученым удалось выяснить, что объем памяти человеческого мозга составляет около миллиона гигабайт.

Если способности к запоминанию хорошо развиты, то творческим личностям это может доставлять много проблем.

В составе головного мозга около сотни миллиардов нервных клеток, между каждой из которых существуют тысячи нейронных связей. Информация передается в синапсе. Так называют точку, в которой контактируют нейроны. Во время взаимодействия двух нейронов, происходит формирование прочных синапсов. На ветвящихся отростках нервных клеток есть дендриты, которые увеличиваются в размерах во время получения новой информации. Эти отростки позволяют контактировать с другими клетками, во время увеличения он может воспринимать большее количество сигналов, поступающих в мозг.

Некоторые ученые сравнивают дендриты с битами компьютерного кода, но вместо цифр применяют описательные характеристики их размеров.

Но раньше не знали и том, каких размеров способны достигать эти отростки. Ограничивались только определением маленьких, средних и больших дендритов.

Ученые из Калифорнии столкнулись с интересной особенностью, которая заставила их пересмотреть известную информацию о размерах отростков. Это произошло во время изучения гиппокампа крысы. Это отдел мозга отвечающий за память по отношению к зрительным образам.

Исследователи заметили, что один, из отростков нервной клетки, отвечающий за передачу сигналов способен взаимодействовать с двумя дендритами, принимающими информацию.

Ученые выдвинули предположение о способности дендритов принимать одинаковую информацию, если она происходит от одного аксона. Поэтому размер и прочность их должны быть идентичными.

Было произведено измерение объектов, отвечающих за формирование синаптических связей. В ходе исследования удалось выяснить, что разница между дендритами, получающими информацию от одного аксона составляет около восьми процентов. Всего удалось выявить 26 возможных размеров отростков.

Основываясь на результатах исследований, была выдвинута гипотеза о способности человеческой памяти сохранять квадриллион байт информации. Чтобы сравнить мозг с компьютером достаточно знать, что размер средней оперативной памяти устройства не больше восьми гигабайт. Тогда как мозг может сохранить миллион гигабайт.

Каждый человек знает, что полностью использовать весь объем памяти нельзя. Многие хоть раз забывали о днях рождениях друзей и родственников, испытывали трудности с изучением стихотворений или запоминанием параграфов по истории. Это явление считается нормальным. Но, если человек помнит абсолютно все, то это считается феноменом. Миру известны лишь единицы людей, которые помнили большую часть полученных сведений.

Нейроучёные не так давно начали изучать, какие процессы происходят в мозге в ходе различных видов медитации. Венди Хэзенкамп (Wendy Hasenkamp) и её коллеги из Университета Эмори изучали МРТ-сканы мозга медитирующих, пытаясь понять, какие нейронные сети активируются в процессе медитации концентрации. Участники исследования фокусировали своё внимание на дыхании.

Как правило, в процессе этой медитации ум отвлекается, и медитирующий может заметить это и вернуть внимание обратно - к наблюдению за вдохами и выдохами. Поэтому в ходе исследования, когда медитирующий понимал, что его ум блуждает, он нажимал на кнопку. Исследователи обнаружили цикл, состоящий из 4 фаз, или этапов: 1) момент, когда ум отвлекается; 2) момент, когда медитирующий начинает осознавать это отвлечение; 3) момент, когда медитирующий перенаправляет внимание обратно; и 4) возобновление концентрации внимания.

Каждая из четырёх фаз задействует определенные нейронные сети. На первом этапе, при появлении отвлечений, увеличивается активность обширной «заданной сети» (default mode network, DMN). Эта сеть включает в себя медиальную префронтальную кору, кору задней части поясной извилины, предклинье, нижнюю теменную долю и боковую височную кору. Как известно, «заданная сеть» начинает активироваться тогда, когда наш ум блуждает, а также она играет главную роль в формировании внутренней модели мира, которая строится на базе долговременных воспоминаний о себе и других.

Вторая фаза - осознание того, что ум отвлёкся - активирует другую область мозга: переднюю островковую долю большого мозга и переднюю поясную кору, также известную как «сеть выявления значимости» (salience network, SN). Эта сеть отвечает за субъективное восприятие чувств, из-за которых, к примеру, мы отвлекаемся в ходе практики, а также за нашу способность находить и замечать новые объекты и события. Похоже, что в процессе медитации именно эта сеть регулирует активность нейронных ансамблей, из которых состоят крупные нейронные сети мозга. К примеру, благодаря ей мы можем заметить, что ум блуждает, и выйти из этого состояния.

Третья фаза задействует дополнительную область, в которую входит дорсолатеральная префронтальная кора и боковая нижняя теменная доля, и медитирующий отрывается от отвлекающих стимулов и «возвращает» внимание обратно.

Наконец, в последней, четвертой фазе, дорсолатеральная префронтальная кора продолжает сохранять высокий уровень активности, в то время как внимание медитирующего остаётся направленным прямо на объект - в данном случае на дыхание.

Затем в лаборатории в Висконсине были рассмотрены различные паттерны мозговой активности, которые зависели от того, насколько опытным был медитатор. «Ветераны» медитации с более чем 10 000 часами практики демонстрировали большую активность в областях мозга, связанных с вниманием, по сравнению с начинающими практиками. Парадоксально, но самые опытные из них показывали меньшую активность этих областей.

Это говорит о том, что продвинутые практики обрели тот уровень мастерства, который позволяет им сохранять внимание сконцентрированным без лишних усилий. Это похоже на мастерство профессиональных музыкантов и атлетов, способных «быть в потоке» - и им не требуется дополнительных усилий, чтобы сохранять это состояние.

В ходе изучения влияния медитации концентрации на человеческий мозг также были исследованы добровольцы до и после трёхмесячного ретрита, в течение которого они посвящали практике по меньшей мере 8 часов в день. После завершения ретрита участникам выдали наушники и попросили концентрироваться на звуках, которые в течение 10 минут играли в одном ухе и довольно часто прерывались вкраплениями высокочастотных тонов.

В результате сравнения этих результатов с их же результатами до ретрита и с результатами контрольной группы немедитирующих, было обнаружено, что прошедших ретрит почти не отвлекали внезапно возникающие резкие звуки. Это означает, что у медитирующих растёт способность сохранять бдительность. Электрический ответ мозга на высокочастотные звуки оставался более стабильным только у медитирующих, что позволяло им сохранять более устойчивое внимание.

Для того чтобы достичь полного понимания биологических основ сознания, понадобится, возможно, еще несколько столетий. Но если всего лишь пару десятков лет назад к решению этой задачи приступать даже не решались, сегодня появились научные методы исследований в данной области.

Если отвечать вкратце, то ответ будет таков: наука пока не имеет удовлетворительного объяснения этого процесса. Удовлетворительного в том смысле, который имел в виду Ричард Фейнман, когда говорил: «То, что я не могу построить, я не могу понять». Мы не можем пока создать устройство, которое мыслит, и это в значительной степени связано не с техническими сложностями, а с тем, что мы не способны пока понять, как устроен мозг.

Что известно сейчас? Мы не можем сказать, как рождается мысль, но мы уже очень много знаем о том, что происходит в мозге при ее рождении, какие уникальные условия работы мозга создаются, когда возникает мысль. Исследуется это в специальных экспериментах, когда сравнивают предъявление мозгу каких-то осознаваемых ситуаций (рождающих мысль) и тех же ситуаций, которые он осознать не может. Например, если событие слишком коротко: зрительные и слуховые компоненты происходящего поступают в мозг, но до уровня сознания не доходят. Когда ученые сравнивают, что происходит в мозге при сознательной и неосознаваемой переработке информации, оказывается, что осознание связано с несколькими вещами.
Что происходит при осознании:

📎 во-первых, когда мы осознаем что-то, в коре головного мозга работает значительно больше нейронов в тех зонах, которые уже участвовали в обработке неосознанной информации.

📎 во-вторых, в момент осознания активируются те зоны, которые раньше не участвовали в неосознаваемой обработке сенсорных данных. Это зоны, связанные с передними областями мозга.

📎 в-третьих, между зонами, которые активируются в момент появления сознания (мысли), и зонами, которые связаны с нашим восприятием окружающего мира, начинают устанавливаться быстрые циклические взаимодействия - реверберации.

📎 в-четвертых, только после того как начинается циркуляция возбуждений по этой сети, появляется момент осознания. Мы не всегда понимаем это, но наше сознание очень сильно отстает от момента реакции мозга на какие-то события. Если точно известно, в какую миллисекунду предъявлена на экране фотография или слово, можно убедиться, что осознание появляется примерно через полсекунды (200–400 миллисекунд) после показа. А реакция областей мозга, которые воспринимают информацию неосознанно (ранняя реакция), возникает заметно раньше, то есть через 60–100 миллисекунд. Все эти четыре компонента складываются в общую картину. Когда у нас появляется вспышка сознания, это происходит из-за того, что разные области мозга - и те, которые связаны с умственным напряжением, вниманием (передние), и те, которые связаны с восприятием внешнего мира - синхронизуются вместе в специальных циклах циркуляции информации. Синхронизация устанавливается на поздних фазах действия внешнего сигнала (через полсекунды), и в этот момент появляется сознание.

Тайны нервного кода
Мы также знаем, что воздействие на разные этапы этих четырех компонентов (иногда они наблюдаются в медицине, при травмах, кроме того, их можно вызывать искусственно при магнитной симуляции) способно разрушить сознание, и человек окажется в области подсознательного либо попросту в коме.

Мозг часто сравнивают с компьютером, но это очень грубая и неточная аналогия. Нервный код устроен совсем по-другому, нежели коды Тьюринговской машины. Мозг не работает на бинарной логике, он не работает как тактовый процессор, он функционирует как массивная параллельная сеть, где основным элементом кода является момент синхронизации разных клеток с их опытом, в результате чего и возникает то субъективное ощущение, мысль или действие, которые занимают в этот миг театр сознания, поле нашего внимания. Это код синхронизации многих элементов, а не ход пошаговых вычислений.

Нейроны и образы
В момент образования связей между клетками не передается что-то похожее на психическую информацию. Между ними передаются химические вещества, которые позволяют нейронам объединиться в ту или иную систему. Каждая из этих систем уникальна, потому что клетки специализированы. Например, это клетки, воспринимающие образ синего неба, белой оконной рамы, лица и т. д. Все вместе они дают на какое-то короткое время тот осознаваемый образ, который и занимает наше внимание. Такие «кадры» могут очень быстро меняться, и следующие несколько десятков миллисекунд в мозгу появится другая конфигурация клеток, которая связана с другим набором нейронов. И это постоянный поток, лишь небольшая часть которого осознается посредством возникающих синхронизаций. Есть масса вещей, которые работают при этом параллельно центральному звену. Они не осознаются и построены на автоматизированных процессах. Я сижу, балансирую, поддерживаю температуру тела, давление, дыхание. Это всё управляется массой функциональных систем, которые не должны идти в широковещание на весь мозг.

Мозг под управлением ОС
Однако при всей несхожести нервного и бинарного кодов некие параллели между мозгом и компьютером все же можно провести.

Мозг обладает подобием операционной системы, и на этот счет существует несколько гипотез. В одной из них - теории функциональных систем - существует понятие операционной архитектоники системы. Это некий синтез сенсорных и мотивационных сигналов, извлечений из памяти, который вовлекает все эти компоненты в единое рабочее пространство - то, где ставится цель и принимается решение. Есть также теория сознания как глобального рабочего пространства. Согласно ей существует определенная операциональная архитектура, которая как операционная система способна вовлекать разные клетки в процессы осознания. Она вовлекает нейроны передних областей коры, которые имеют длинные проекции во все остальные области коры, и когда происходит «зажигание» этих нейронов, они начинают «крутить» информацию по всем остальным областям. Это некий центральный процессор, и он включается, только когда есть сознание. Во всем остальном мозг может работать автоматически. Вы можете вести машину, а ваше сознание будет занято некими внутренними вопросами, и «процессор» будет работать для них. И лишь в тот момент, когда происходит что-то неожиданное (кто-то перебегает дорогу, например), операционная система начинает работать на режим внешнего мира.

Константин Владимирович Анохин, российский ученый, нейробиолог, профессор, член-корреспондент РАН и РАМН. Лауреат премий Ленинского комсомола, имени Де Вида Нидерландской академии наук, Президиума Российской академии медицинских наук и Национальной премии «Человек года» в номинации «Потенциал и перспектива в науке»

Что делает одних людей более уязвимыми к галлюцинациям, чем других? Впервые ответ на этот вопрос дал эксперимент, осуществленный с помощью мозгового сканера.

Оказалось: у людей, которые чаще слышат голоса, которых не существует, мозжечок менее активный. А именно этот участок мозга выполняет функцию защитника от ошибочного восприятия. Если его работоспособность ослабляется, то слишком сильные ожидания могут привести к возникновению галлюцинаций, информируют ученые в журнале «Science».

Во время галлюцинаций люди воспринимают вещи, которые существуют только в их голове. Это становится возможно, потому что их мозг просто перестает обрабатывать раздражители. Вместо этого он интерпретирует и согласовывает их с ожиданиями, что уже присутствуют в сознании человека. При галлюцинациях эти процессы протекают без стимуляции сигнала-раздражителя. Этот «холостой ход» чаще случается у людей с психозами или высокой температурой, но может быть спровоцирован у здоровых лиц, например, в результате длительного лишения раздражителей.

Но почему некоторые люди больше склонны к галлюцинациям, чем другие? Неужели их мозг работает иначе? Чтобы это выяснить, Альберт Поверс (Albert Powers) и его коллеги из Йельского университета пригласили принять участие в эксперименте четыре различные группы испытуемых: психически здоровых людей, которые регулярно слышат голоса, людей, которые слышат голоса и страдают от психозов, а также здоровых и больных, которые еще никогда не имели голосовых галлюцинаций.

Все участники смотрели на экран, на котором постоянно блимала шахматная доска. Параллельно с этим в течение секунды включали звук - но не всегда: сначала шахматная доска сопровождалась звуком, позже он становился тише и потом исчезал совсем. Каждый раз, когда испытуемые считали, что слышат звук, пришлось нажать на кнопку - чем дольше, тем они были более определенными, что слышат звук. Во время опыта ученые записывали мозговую активность испытуемых с помощью функциональной магнитно-резонансной томографии (фМРТ).

Результат: в начале постоянная комбинация шахматной доски и звука почти у всех участников исследования провоцировала так называемые рефлекторные галлюцинации: люди верили, что слышат звук тогда, когда его не было. Причина: поскольку сначала оба стимула появлялись вместе, мозг приучился к этому и ожидал дальнейшем такого сочетания.

«Люди воспринимают то, что ожидают, а не то, что рассказывают нам собственные ощущения», - пояснил Поверс . Иначе говоря: цепь обработки информации в мозге сочетает визуальные стимулы с акустическими ожиданиями. Учитывая то, что гипотетически шахматную доску сопровождал звук, наш мозг добавил его тогда, когда в действительности ничего не звучало.

Восхищает то, что не все испытуемые были в равной степени уязвимы к этим рефлекторным галлюцинациям. У участников, которые ранее уже слышали голоса, такие галлюцинации возникали в пять раз чаще. Эти субъекты исследования были на 28 % более уверены, что звуки на самом деле были.

Зато здоровые испытуемые без предыстории галлюцинаций во второй части разведки замечали, что акустический сигнал все чаще отсутствовал. Поэтому они реже давили на кнопку «да» и в целом были менее уверены, что слышат звук.

Собственно это может объяснить, какие люди более уязвимы к галлюцинациям: обычно наш мозг способен сменить некогда сформированные ожидания. Он их постоянно проверяет с помощью актуального чувственного опыта. Если ожидания и стимулы не подходят друг к другу, то ожидания подстраиваются. Но не у людей с психозами или в тех, что склонны к галлюцинациям: здесь проверка функционирует хуже. Их мозг оценивает события в соответствии с уже накопленных ожиданий и на чувственные стимулы извне обращает мало внимания. «Этот разлад между ожиданиями и чувственными стимулами может впоследствии продуцировать галлюцинации», - говорит Поверс .

Доказательствами взаимосвязи между надстабильными ожиданиями и галлюцинациями ученые считают и результаты сканирования мозга: чем чаще и стабильнее подопытные имели рефлекторные галлюцинации, тем менее активным был их мозжечок. Он играет важную роль при планировании и координации движений и вынужден постоянно согласовывать информацию с чувственными раздражителями извне, объяснили ученые. У людей с психозами и людей, склонных к галлюцинациям, это согласование тормозится, а мозжечок - менее активный. «То есть мозжечок определяющий страж истинного восприятия», - пояснил Поверс.

Другой участок мозга - гиппокамп - также функционирует с отклонениями, когда люди слышат голоса. Обычно он согласовывает чувственные раздражители с воспоминаниями и полученным опытом. Также этот участок мозга играет важную роль при проверке предпосылок, объяснили ученые. В эксперименте активность гиппокампа была тем выше, чем более неопределенными были подопытные относительно того, прозвучал ли звук .

Так, разведка дает ценные показания о механизмах, которые провоцируют галлюцинации и то, что делает некоторых людей особенно склонными к ним. Поверс и его коллеги объяснили, что однажды эти знания помогут заблаговременно идентифицировать склонных к таким психическим расстройствам людей. Одновременно получение свидетельства про вовлеченные мозговые регионы могут помочь разработать целенаправленную терапию против акустических галлюцинаций.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!