Информационный женский портал

Что такое интеграл и зачем мне знать это. Презентация на тему "интеграл и его применение"

Cлайд 1

МКОУ «Большеатлымская средняя общеобразовательная школа» Тема: «Интеграл и его практическое применение» Сближение теории с практикой дает самые благоприятные результаты, и не одна только практика от этого выигрывает, сами науки развиваются под влиянием ее. П. Л. Чебышев

Cлайд 2

Выполнил: Ершов Николай, ученик 11 класса. Руководитель: Дедовец Надежда Артемовна, учитель математики С. Большой Атлым 2012-2013 уч. год

Cлайд 3

Цель работы: Расширить область математических знаний. Развивать логическое мышление. Вывести общие формулы, позволяющие решать задачи интегрирования. Показать, что интеграл широко применяется в различных сферах жизнедеятельности.

Cлайд 4

Задачи исследования: - собрать, изучить и систематизировать материал об интеграле; - рассмотреть, как интеграл используется при решении различных жизненных ситуаций; - использование интеграла в различных сферах жизнедеятельности. Объект исследования: область математики – интегрирование.

Cлайд 5

Немного истории -1675 г, опубликовано в 1686 г ввел Г.Лейбниц - 1675 г, Ж Лагранж 5 век до н.э. др.гр. ученый Демокрит 3-4 век до н.э. Архимед ввел метод исчерпывания

Cлайд 6

Cлайд 7

«Интеграл» придумал Я.Бернулли (1690) «восстанавливать» от латинского integro «целый» от латинского integer

Cлайд 8

Cлайд 9

Лейбниц Готфрид Вильгельм (1646-1716) « Общее искусство знаков представляет чудесное пособие, так как оно разгружает воображение… Следует заботиться о том, чтобы обозначения были удобны для открытий. Обозначения коротко выражают и отображают сущность вещей. Тогда поразительным образом сокращается работа мысли.» Лейбниц

Cлайд 10

Cлайд 11

Cлайд 12

Площадь фигуры Объем тела вращения Работа электрического заряда Работа переменной силы Масса Перемещение Дифференциальное уравнение Давление Количество теплоты

Cлайд 13

Задача.Найти объём наклонной треугольной призмы с основанием S и высотой h. 1. Введём ось ОХ перпендикулярно основаниям призмы. 2. (АВС) OX=a, a=0, (A1B1C1) OX=b, b=h 3. Проведём плоскость перпендикулярно ОХ через точку с абсциссой х. А2В2С2-треугольник, равный основаниям. Площадь А2В2С2 равна S. Ответ: V=Sh 4. S(x) непрерывна на

Cлайд 14

Из эксперимента известно, что скорость размножения бактерий пропорциональна их количеству. За какое время количество бактерий увеличится в m раз по сравнению с начальным? Решение: Пусть x(t) – количество бактерий в момент времени t. x(0) = x0. Изменение количества бактерий со временем описывается уравнением x´(t) = kx(t), k>0, ln|x| = kt+ln|C|, x=ekteln|C| , x=Cekt - общее решение уравнения. ЗАДАЧА

Cлайд 15

Уже Архимед успешно находил площади фигур, несмотря на то, что в математике его времени не было понятия интеграла Но лишь интегральное исчисление дает общий метод решения задач из различных областей наук. Недаром даже поэты воспевали интеграл. Смысл- там, где змеи интеграла Меж цифр и букв, меж d и f. Там – власть, там творческие горны! Пред волей чисел все – рабы. И солнца путь вершат, покорны Немым речам и ворожбы. В.Брюсов.

Cлайд 18

Заключение Применение физических моделей при введении понятия интеграла, рассмотрении его свойств, отработке техники интегрирования и изучении приложений способствует осознанному качественному усвоению материала, развитию правильного представления об изучаемом понятии, его огромной значимости в различных науках, формированию мировоззрения, таких специальных качеств, как умение строить математические модели реальных процессов и явлений, исследовать и изучать их, а, следовательно, способствует развитию мышления, памяти, внимания и речи.

Понятие интеграла широко применимо в жизни. Интегралы применяется в различных областях науки и техники. Основными задачами, вычисляемыми с помощью интегралов являются задачи на:

1. Нахождение объема тела

2. Нахождение центра масс тела.

Рассмотрим каждую из них более подробно. Здесь и далее, для обозначения определенного интеграла от некоторой функции f(x), с пределами интегрирования от a до b, будем использовать следующую запись ∫ a b f(x) .

Нахождение объема тела

Рассмотрим следующий рисунок. Допустим, имеется некоторое тело, объем которого равен V. Так же имеется прямая такая, что если мы возьмем некоторую плоскость, перпендикулярную этой прямой, на будет известна площадь сечения S данного тела этой плоскостью.

Каждая такая плоскость будет перпендикуляра оси Ох, а следовательно будет пересекать её в некоторой точке х. То есть каждой точке х, из отрезка будет поставлена в соответствие число S(x) - площадь сечения тела плоскость проходящей через эту точку.

Получается, на отрезке будет задана некоторая функция S(x). Если эта функция будет непрерывна на этом отрезке, то будет справедлива следующая формула:

V = ∫ a b S(x)dx.

Доказательство этого утверждения выходит за рамки программы школьного курса.

Вычисление центра масс тела

Центр масс чаще всего используется в физике. Например, есть некоторое тело которое движется с какой-либо скорость. Но большое тело рассматривать неудобно, и поэтому в физике рассматривается это тело, как движение точки, в предположении, что эта точка имеет такую же массу, как и все тело.

А задача вычисления цетра масс тела, является основной в этом вопросе. Потому как тело-то большое, и какую именно точку надо взять за центр масс? Может быть ту, которая находится в середине тела? Или может саму ближнюю точку к переднему краю? Тут приходит на помощь интегрирование.

Для нахождения центра масс используется следующие два правила:

1. Координата x’ центра масс некоторой системы материальных точек A1, A2,A3, … An с массами m1,m2,m3, … mn соответственно расположенных на прямой в точках с координатами x1, x2, x3, … xn находится последующей формуле:

x’ = (m1*x1 + ma*x2 + … + mn*xn)/(m1 + m2 + m3 +… + mn)

2. При вычислении координаты центра масс можно любую часть рассматриваемой фигуры заменить на материальную точку, при этом поместив ее в центр масс этой отдельной части фигуры, а массу взять равную массе этой части фигуры.

Например, если вдоль стержня - отрезка оси Ох распределена масса плотностью p(x), где p(x) есть непрерывная функция, то координата центра масс x’ будет равняться.

Владимир 2002 год

Владимирский государственный университет, Кафедра общей и прикладной физики

Вступление

Символ интеграла введен с 1675г., а вопросами интегрального исчисления занимаются с 1696г. Хотя интеграл изучают, в основном, ученые–математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений. Поэтому, я и решила исследовать интеграл и его применение.

История интегрального исчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга” круга» не может, как известно, быть решена с помощью циркуля и линейки.)

Символ ò введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summ a). Само слово интеграл придумал Я. Б е р у л л и (1690 г.) Вероятн о, оно происходит от латинского integro , которое переводится как приводи ь в прежнее состояние, восстанавливать. (Действительно, операция интегрирования восстанавливает функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина инт грал иное: слово integer означает целый.

В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что в е первообразные функции отличаются на произвольн ю постоянн ю. b

называют определенным интегралом (обо начение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эй лер).

Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т. е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 - ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.

Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольн иков стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.

С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа p (3.10/71

Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертика ьных отрезков длиной f(х), которым тем не менее приписывали площадь, равн ю бесконечно малой величине f(х) . В соответствии с таким пониманием искомая площадь считалась равной сумме

бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571-1630) в своих сочинениях “Новая астрономия”.

(1609 г.) и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6ecконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598-1647) и Э.Торричелли (1608-1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях.

Пусть требуется найти площадь фигуры, изображенной на рисунке 1,б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения y = f(x) и y=f(x)+c.

Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b-а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е.

S = S1 = c (b – а).

Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины (рис. 1,в). Тогда площади фигур Ф1 и Ф2 равны.

Аналогичный принцип действует в стереометрии и оказывается полезн м при нахождении объемов.

В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = хn, где п - целое (т.е по существу вывел формулу ò хndx = (1/n+1)хn+1), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630-1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов.

Однако при всей значимости результатов, полученных многими чрезвычайно изобретательными математиками XVII столетия исчисления еще не было. Необходимо было выделить общие идеи лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно общий алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известным под названием формулы Ньютона - Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научится находить первообразные многих функций, дать логические нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.

Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М.В.Остроградский (1801-1862), В.Я.Буняковский (1804-1889), П.Л.Ч бышев (1821-1894). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.

Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О.Коши, одного из крупнейших математиков, немецкого ученого Б.Римана (1826-1866), французского математика Г.Дарбу (1842-1917).

Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1838-1922) теории меры.

HTML-версии работы пока нет.

Подобные документы

    Ознакомление с историей понятия интеграла. Распространение интегрального исчисления, открытие формулы Ньютона–Лейбница. Символ суммы; расширение понятия суммы. Описание необходимости выражения всех физических явлений в виде математической формулы.

    презентация , добавлен 26.01.2015

    Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.

    презентация , добавлен 05.07.2016

    История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

    курсовая работа , добавлен 16.10.2013

    Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.

    контрольная работа , добавлен 23.02.2011

    Условия существования определенного интеграла. Приложение интегрального исчисления. Интегральное исчисление в геометрии. Механические приложение определенного интеграла. Интегральное исчисление в биологии. Интегральное исчисление в экономике.

    курсовая работа , добавлен 21.01.2008

    История интегрального и дифференциального исчисления. Приложения определенного интеграла к решению некоторых задач механики и физики. Моменты и центры масс плоских кривых, теорема Гульдена. Дифференциальные уравнения. Примеры решения задач в MatLab.

    реферат , добавлен 07.09.2009

    Понятие интеграла Стилтьеса. Общие условия существования интеграла Стилтьеса, классы случаев его существования и предельный переход под его знаком. Приведение интеграла Стилтьеса к интегралу Римана. Применение в теории вероятностей и квантовой механике.

    дипломная работа , добавлен 20.07.2009

    Определение неопределенного интеграла, первообразной от непрерывной функции, дифференциала от неопределенного интеграла. Вывод формулы замены переменного в неопределенный интеграл и интегрирования по частям. Определение дробнорациональной функции.

    шпаргалка , добавлен 21.08.2009

    Ознакомление с понятием и основными свойствами определенного интеграла. Представление формулы расчета интегральной суммы для функции y=f(x) на отрезке [а, b]. Равенство нулю интеграла при условии равенства нижнего и верхнего пределов интегрирования.

    презентация , добавлен 18.09.2013

    Некоторые применения производной. Использование основных теорем дифференциального исчисления к доказательству неравенств. Первообразная и интеграл в задачах элементарной математики. Монотонность интеграла. Некоторые классические неравенства.




Определение Интеграл функции аналог суммы бесконечно большого количества бесконечно малых слагаемых. В простейшем случае имеется в виду разбиение области интегрирования, являющейся отрезком, на бесконечно малые отрезки, и сумма произведений значения функции аргумента, принадлежащего каждому отрезку, и длины соответствующего бесконечно малого отрезка области интегрирования, в пределе, при бесконечно мелком разбиении:


Интеграл в древности Интегрирование прослеживается ещё в древнем Египте, примерно в 1800 г. до н. э. Московский математический папирус демонстрирует знание формулы объёма усечённой пирамиды. Первым известным методом для расчёта интегралов является метод исчерпывания Евдокса (примерно 370 до н. э.), который пытался найти площади и объёмы, разрывая их на бесконечное множество частей, для которых площадь или объём уже известны. Этот метод был подхвачен и развит Архимедом, и использовался для расчёта площадей парабол и приближённого расчёта площади круга. Аналогичные методы были разработаны независимо в Китае в 3-м веке н. э. Лю Хуэйем, который использовал их для нахождения площади круга. Этот метод впоследствии использовали Цзу Чунчжи и Цзу Гэн для нахождения объёма шара. Следующий крупный шаг в исчисление интегралов был сделан в Ираке, в XI веке, математиком Ибн ал-Хайсамом (известным как Alhazen в Европе), в своей работе «Об измерении параболического тела» он приходит к уравнению четвёртой степени. Решая эту проблему, он проводит вычисления, равносильные вычислению определённого интеграла, чтобы найти объём параболоида. Используя математическую индукцию, он смог обобщить свои результаты для интегралов от многочленов до четвёртой степени. Таким образом, он был близок к поиску общей формулы для интегралов от полиномов, но он не касается любых многочленов выше четвёртой степени. Следующий значительный прогресс в исчислении интегралов появится лишь в XVI веке. В работах Кавальери с его методом неделимых, а также в работах Ферма, были заложены основы современного интегрального исчисления. Дальнейшие шаги были сделаны в начале XVII века Барроу и Торричелли, которые указали на связь между интегрированием и дифференцированием.


Зачем нужны интегралы? Ученые стараются все физические явления выразить в виде математической формулы. Как только у нас есть формула, дальше уже можно при помощи нее посчитать что угодно. А интеграл это один из основных инструментов работы с функциями. Например, если у нас есть формула круга, мы можем при помощи интеграла посчитать его площадь. Если у нас есть формула шара, то мы можем посчитать его объем. При помощи интегрирования находят энергию, работу, давление, массу, электрический заряд и многие другие величины.


Применение в науке Все процессы в природе, в которых постоянно меняются какие-то параметры, например время, температура, давление, координаты, изучаются и вычисляются только с помощью дифференциального и интегрального исчисления. Интегралы при этом только азы. Без них не вычислишь даже площадь какой-либо криволинейной поверхности. Математика вообще развивает логическое мышление, что всем полезно. Конечно, они забываются, если эти знания по жизни не востребованы. Но это не значит, что их вообще не нужно изучать.


При обучении важно понять смысл мат. аппарата в целом и научиться применять его к решению бытовых задач, выработать определенный стиль мышления при котором ты не будешь полагаться на интуицию при принятии каких-то решений, а сможешь точно оценить результат и следствия поступков. Большинство интегралов получены как мат. модели каких-либо естественных процессов в рамках медицины, биологии, химии, экономики, и т.д. Конкретно математический анализ, внутри которого выводятся методы решения интегралов, помогает понять откуда что взялось.


Применение в технике Так же интегралы нашли себе широкое применение в технике. Например в ПИД-регуляторе с использованием его интегральной составляющей. Её используют для устранения статической ошибки. Она позволяет регулятору со временем учесть статическую ошибку.


Вот примерный принцип работы интегральной составляющей. Интегрирующая составляющая пропорциональна интегралу по времени от отклонения регулируемой величины. Её используют для устранения статической ошибки. Она позволяет регулятору со временем учесть статическую ошибку. Если система не испытывает внешних возмущений, то через некоторое время регулируемая величина стабилизируется на заданном значении, сигнал пропорциональной составляющей будет равен нулю, а выходной сигнал будет полностью обеспечиваться интегрирующей составляющей. Тем не менее, интегрирующая составляющая также может приводить к автоколебаниям при неправильном выборе её коэффициента.




Список используемых источников



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!