Информационный женский портал

Что такое совершенные числа. Совершенные числа, компанейские числа - удивительные числа

Наука и Жизнь 1981 №10

Каждый из нас чем-либо да увлекается. Одни коллекционируют марки, камни, спичечные коробки; другие столярничают или разводят цветы, третьи ломают голову над шахматными этюдами. А автор этих строк забавляется числами, преимущественно натуральными. Увлечению этому без малого полвека, а оно не слабеет, по-прежнему доставляет радость, приводит к неожиданным находкам. Получат ли эти находки практическое применение? Такие случаи у меня бывали. Будут ли дальше? Не знаю. Бенджамин Франклин на этот вопрос отвечает так: «А какое применение у новорожденного?» В самом деле, какое? Это покажет время. А пока расскажем об одной такой забаве, оканчивающейся довольно любопытно. И начнем издалека.

Возьмём любое многозначное натуральное число, вычислим сумму его цифр, потом вновь сложим цифры полученной суммы и будем повторять это до тех пор, пока не придем к однозначному числу. Его-то и назовём конечной суммой цифр заданного числа, а для краткости обозначим КСЦ.

Например, КСЦ числа 27816365 равна 2, так как 2+7+8+1+6+3+6+5=38, далее 3+8=11, наконец, 1+1=2.

Всякое натуральное число при делении на 9 даст в остатке КСЦ делимого. Если же число делится на 9 нацело, то, естественно, остаток равен нулю.

Пусть задано натуральное число:

10 n *a+10 n-1 *b+10 n-2 *c+...+10p+r.

Представим его в таком виде:

(10-1) n *а+(10-1) n-1 *b+(10-1) n-2 *c+...+ (10-1)*р+a+b+c+...+p+r.

Ясно, что слагаемые, содержащие множители вида (10-1) k , кратны девяти. Следующую за ними сумму цифр заданного числа (a+b+c...+p+r) также представим в виде:

(10-1) m *a 1 +(10-1) m-1 *b 1 +(10-1) m-2 *c 1 +...(10-1)*p 1 +a 1 +b 1 +c 1 +...+p 1 +r 1 (1)

Новая сумма цифр (a 1 +b 1 +c 1 +...+p 1 +r 1) уже меньше предыдущей. Продолжая этот процесс, мы непременно придём к остатку, который окажется числом однозначным, иначе говоря,- к КСЦ заданного числа.

Рассмотрим то же на вышепривдённом примере:

27816365=10*2+10*7+10*8+10*1+10*6+10*3+10*6+5=
=(10-1)*2+(10-1)*7+(10-1)*8+(10-1)*1+(10-1)*6+(10-1)*3+(10-1)*6+2+7+8+1+6+3+6+5.

Поэтому для вычисления КСЦ не обязательно складывать все цифры. Достаточно отбросить в числе все девятки: 2+7; 8+1; 6+3, а в оставшихся цифрах 6 и 5 остается отбросить 6+3. В результате получим КСЦ = 2.

Из этого следует, что разность между заданным числом (А) и его КСЦ всегда кратна девяти. Принято говорить, что А сравнимо с его КСЦ по модулю 9, а записывается это так:

А = КСЦ (mod 9), (1)

(здесь три чёрточки - знак сравнения).

Расположим теперь все натуральные числа в таблицу 1 так, чтобы в каждой строке их КСЦ была постоянна и равна крайнему левому числу строки.

1 10 19 28 37 46 55 64 73 ...
2 11 20 29 38 47 56 65 74 ...
3 12 21 30 39 48 57 66 75 ...
4 13 22 31 40 49 58 67 76 ...
5 14 23 32 41 50 59 68 77 ...
6 15 24 33 42 51 60 69 78 ...
7 16 25 34 43 52 61 70 79 ...
8 17 26 35 44 53 62 71 80 ...
9 18 27 36 45 54 63 72 81 ...

Таблица 1

Если обозначить числа первого столбца через a i (i=1..9) то любое число в i-й строке (А i) запишется так:

A i = a i (mod 9). (2)

Сравнения можно складывать (а следовательно, и перемножать и возводить в степень) как обычные равенства:

A 1 = a 1 (mod 9)
+
A 2 = a 2 (mod 9)

A 1 +A 2 = (a 1 +a 2) (mod 9) (3)

Докажем это. Из (3) следует, что

(A 1 -a 1)/9=B 1 , и (A 2 -a 2)/9=B 2

где B 1 и В 2 - числа натуральные. Значит, и сумма их также число натуральное. Отсюда и вытекает результат в равенстве (3).

Доказательства для произведения и степени вы легко найдете сами.

А вот примеры:

21 = 3 (mod 9)
+
32 = 5 (mod 9)
=
53 = 8 (mod 9),

21*32 = 15 (mod 9),
иначе
21*32 = 6 (mod 9).

Следовательно, для того, чтобы выяснить, в какой строке таблицы 1 помещается сумма (произведение, степень) натуральных чисел, достаточно сложить (перемножить, возвести в степень) их КСЦ.

Составим ещё таблицу (2) степеней, начиная с квадратов первых девяти натуральных чисел, а в скобках запишем их КСЦ.

Из таблицы 2 видно, что КСЦ в любой строке повторяется через каждые 6 степеней. Поэтому достаточно рассмотреть степени со второй по седьмую.

1 2 =1 (1) 1 3 =1 (1) 1 4 =1 (1) 1 5 =1 (1) 1 6 =1 (1) 1 7 =1 (1) 1 8 =1 (1)
2 2 =4 (4) 2 3 =8 (8) 2 4 =16 (7) 2 5 =32 (5) 2 6 =64 (1) 2 7 =128 (2) 2 8 =256 (4)
3 2 =9 (9) 3 3 =27 (9) 3 4 =81 (9 3 5 =243 (9) 3 6 =729 (9) 3 7 =2187 (9 3 8 =6561 (9)
4 2 =16 (7) 4 3 =64 (1) 4 4 =256 (4) 4 5 =1024 (7) 4 6 =4096 (1) 4 7 =16384 (4) 4 8 =65536 (7)
5 2 =25 (7) 5 3 =125 (8) 5 4 =625 (4) 5 5 =3125 (2) 5 6 =15625 (1) 5 7 =78125 (5) 5 8 =390625 (7)
6 2 =36 (9) 6 3 =216 (9) 6 4 =1296 (9) 6 5 =7776 (9) 6 6 =46656 (1) 6 7 =279936 (9) 6 8 =1679616 (9)
7 2 =49 (4) 7 3 =343 (1) 7 4 =2401 (7) 7 5 =16807 (4) 7 6 =117649 (1) 7 7 =423543 (7) 7 8 =5764801 (4)
8 2 =64 (1) 8 3 =512 (8) 8 4 =4096 (1) 8 5 =32762 (8) 8 6 =262144 (1) 8 7 =2097152 (8) 8 8 =16777216 (1)
9 2 =81 (1) 9 3 =729 (9) 9 4 =6561 (9) 9 5 =59049 (9) 9 6 =531441 (9) 9 7 =4782969 (9) 9 8 =43046721 (9)

Таблица 2

Много любопытного обнаруживается при сопоставлении первой и второй таблиц. Например: не существует степеней (кроме первой), для которых КСЦ равнялась бы трём или шести. КСЦ для шестых степеней равно только единице или девятке, а для третьих степеней - ещё и восьмерке. Для вторых и четвертых степеней КСЦ имеют одни и те же значения - 1, 4, 7, 9,- но четвёрки и семёрки у них поменялись местами.

Или вот ещё: КСЦ=2 встречается только дважды - у 5 5 и у 2 7 , а КСЦ=5 - также в двух случаях,- у 2 5 и 5 7 . Основания степеней в обоих случаях одинаковы, а показатели их поменялись местами.

Много чего можно отыскать в этих таблицах. Однако все это присказка, сказка впереди.

Немало времени прошло, пока не обнаружилось новое и, на мой взгляд, замечательное свойство таблицы 1. Оказалось, что все чётные совершенные числа (исключая шестёрки) располагаются только в ее первой строке. (Напомню: совершенными называются числа, равные сумме всех своих младших делителей). Иначе говоря, все (кроме первого) чётные совершенные числа (S) сравнимы с единицей по модулю 9:

Совершенные числа, о которых идет речь (а других мы не знаем), вычисляются по формуле Евклида:

S=2 p-1 (2 p -1) (5)

где и p, и (2 p -1) должны быть числами простыми. (Простыми называются числа, делящиеся только на себя и на единицу.)

Итак, перейдём к доказательству. Понятно, что число p, как всякое простое (кроме двойки), нечётно. Из таблицы 2 видно, что нечётный показатель степени у двойки может быть либо 3, либо 5, либо 7. При этом КСЦ этих степеней соответственно равны 8, 5 и 2. В таком случае КСЦ у (2 p -1) равны 7, 4 и 1. Что касается показателя степени у первого множителя в (5), то есть p-1, то он равен либо 2, либо 4, либо 6, а КСЦ этих степеней 2 p -1 равны соответственно 4, 7 и 1.

Остается перемножить КСЦ обоих сомножителей уравнения (5): 7*4; 4*7; 1*1, что даёт 28, 28 и 1. КСЦ всех этих трёх произведений равна 1. Что и требовалось доказать!

Так как мы не ставили никаких ограничений ни для множителя (2 p -1), ни для показателя p (кроме того, что он должен быть нечётным), то не только совершенные, но и все числа с нечётным p, вычисленные по формуле (5), расположены только в первой строке таблицы 1.

Не правда ли, любопытное свойство формулы Евклида?

Насколько мне известно, число приверженцев рубрики «Математические досуги», ведущейся в журнале вот уже почти 20 лет, не уменьшается, и среди них много таких читателей, кого интересуют забавы с числами. Тем же, кто ещё к этому не приобщился, советуем: играйте с числами! Не пожалеете!

Удивительные числа

4.2 Совершенные числа

Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе. Никомах Герасский, знаменитый философ и математик, писал: " Совершенные числа красивы. Но известно, что вещи редки и немногочисленны, безобразные встречаются в изобилии. Избыточными и недостаточными являются почти все числа, в то время как совершенных чисел немного" Но, сколько их, Никомах, живший в первом столетии нашей эры не знал.

Совершенным называется число, равное сумме всех своих делителей (включая 1, но исключая само число).

Первым прекрасным совершенным числом, о котором знали математики Древней Греции, было число "6". На шестом месте на званном пиру возлежал самый уважаемый, самый почетный гость. В библейских преданиях утверждается, что мир был создан в шесть дней, ведь более совершенного числа, среди совершенных чисел, чем "6", нет, поскольку оно первое среди них.

Рассмотрим число 6. Число имеет делители 1, 2, 3 и само число 6. Если сложить делители, отличные от самого числа 1 + 2 + 3 то мы получим 6. Значит, число 6 дружественно самому себе и является первым совершенным числом.

Следующим совершенным числом, известным древним, было "28". Мартин Гарднер усматривал в этом числе особый смысл. По его мнению, Луна обновляется за 28 суток, потому что число "28" - совершенное. В Риме в 1917 году при подземных работах было открыто странное сооружение: вокруг большого центрального зала расположены двадцать восемь келий. Это было здание неопифагорейской академии наук. В ней было двадцать восемь членов. До последнего времени столько же членов, часто просто по обычаю, причины которого давным-давно забыты, полагалось иметь во многих ученых обществах. До Евклида были известны только эти два совершенных числа, и никто не знал, существуют ли другие совершенные числа и сколько таких чисел вообще может быть.

Благодаря своей формуле, Евклид сумел найти еще два совершенных числа: 496 и 8128.

Почти полторы тысячи лет люди знали только четыре совершенных числа, и никто не знал, могут ли существовать еще числа, которые можно представить в евклидовской формуле, и никто не мог сказать, возможны ли совершенные числа, не удовлетворяющие формуле Евклида.

Формула Евклида позволяет без труда доказывать многочисленные свойства совершенных чисел.

Все совершенные числа треугольные. Это значит, что, взяв совершенные число шаров, мы всегда сможем сложить из них равносторонний треугольник.

Все совершенные числа, кроме 6, можно представить в виде частичных сумм ряда кубов последовательных нечетных чисел 1 3 + 3 3 + 5 3 …

Сумма обратных всем делителям совершенного числа, включая его самого, всегда равна 2.

Кроме того, совершенство чисел тесно связано с двоичностью. Числа: 4=22, 8 = 2? 2? 2, 16 = 2 ? 2 ? 2 ? 2 и т.д. называются степенями числа 2 и могут быть представлены в виде 2n, где n - число перемноженных двоек. Все степени числа 2 чуть-чуть "не достают" до того, чтобы стать совершенными, так как сумма их делителей всегда на единицу меньше самого числа.

Все совершенные числа (кроме 6) заканчиваются в десятичной записи на 16, 28, 36, 56, 76 или 96.

Властивості простих чисел

Взаємно прості числа -- натуральні або цілі числа, які не мають спільних дільників більших за 1, або, інакше кажучи, якщо їх найбільший спільний дільник дорівнює 1. Таким чином, 2 і 3 -- взаємно прості, а 2 і 4 -- ні (діляться на 2)...

Математика в средние века

Необходимым условием применения метода фан-чэн к системам уравнений было введение отрицательных чисел. Например, при решении системы, получаем таблицу. Следующий шаг: вычитание элементов третьего столбца справа из элементов первого...

Введем новое недействительное число, квадрат которого равен -1. Это число обозначим символом Я и назовем мнимой единицей. Итак, (2.1) Тогда. (2.2) 1. Алгебраическая форма комплексного числа Если, то число (2.3) называется комплексным числом...

Рекуррентно заданные числовые последовательности

При решении многих задач часто приходится сталкиваться с последовательностями, заданными рекуррентно, но, в отличии от последовательности Фибоначчи, не всегда возможно получить её аналитическое задание...

Решение математических задач средствами Excel

Число 6 делится на себя, а также на 1, 2 и 3, и 6 = 1+2+3.
Число 28 имеет пять делителей, кроме самого себя: 1, 2, 4, 7 и 14, причем 28 = 1+2+4+7+14.
Можно заметить, что далеко не всякое натуральное число равно сумме всех своих делителей, отличающихся от этого числа. Числа, которые обладают этим свойством были названы совершенными.

Ещё Евклидом (3 в. до н. э.) было указано, что чётные совершенные числа можно получить из формулы: 2 p –1 (2 p – 1) при условии, что р и 2 p есть числа простые. Таким путём было найдено около 20 чётных совершенных числа. До сих пор неизвестно ни одного нечётного совершенного числа и вопрос о существовании их остаётся открытым. Исследования таких чисел были начаты пифагорейцами, приписывавшими им и их сочетаниям особый мистический смысл.

Первое самое меньшее совершенное число – это 6 (1 + 2 + 3 = 6).
Может быть, именно поэтому шестое место считалось самым почетным на пирах у древних римлян.

Второе по старшинству совершенное число – это 28 (1 + 2 + 4 + 7 + 14 = 28).
В некоторых ученых обществах и академиях полагалось иметь 28 членов. В Риме в 1917 г. при выполнении подземных работ обнаружилось помещение одной из древнейших академий: зал и вокруг него 28 кабинетов – как раз по числу членов академии.

По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже. Третье совершенное число – 496 (1+2+48+16+31+62+124+248 = 496), четвёртое – 8128 , пятое – 33 550 336 , шестое – 8 589 869 056 , седьмое – 137 438 691 328 .

Первые четыре совершенные числа: 6, 28, 496, 8128 были обнаружены очень давно, 2000 лет назад. Эти числа приведены в Арифметике Никомаха Геразского, древнегреческого философа, математика и теоретика музыки.
Пятое совершенное число было выявлено в 1460 г, около 550 лет тому назад. Это число 33550336 обнаружил немецкий математик Региомонтан (XV век).

В XVI веке также немецкий ученый Шейбель нашел еще два совершенных числа: 8 589 869 056 и 137 438 691 328 . Они соответствуют р = 17 и р = 19. В начале XX века были найдены ещё три совершенных числа (для р = 89, 107 и 127). В дальнейшем поиск затормозился вплоть до середины XX века, когда с появлением компьютеров стали возможными вычисления, превосходившие человеческие возможности. Пока известно 47 чётных совершенных чисел.

Совершенный характер чисел 6 и 28 был признан многими культурами, обратившими внимание на то, что Луна совершает оборот вокруг Земли каждые 28 дней, и утверждавшими, что Бог сотворил мир за 6 дней.
В сочинении «Град Божий» Св. Августин высказал мысль о том, что хотя Бог мог сотворить мир в одно мгновенье, Он предпочел сотворить его за 6 дней, дабы поразмыслить над совершенством мира. По мнению Св. Августина, число 6 совершенно не потому, что Бог избрал его, а потому, что совершенство внутренне присуще природе этого числа. «Число 6 совершенно само по себе, а не потому, что Господь сотворил все сущее за 6 дней; скорее наоборот, Бог сотворил все сущее за 6 дней потому, что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за 6 дней».

Лев Николаевич Толстой не раз шутливо "хвастался" тем, что дата
его рождения 28 августа (по календарю того времени) является совершенным числом.
Год рождения Л.Н. Толстого (1828)– тоже интересное число: последние две цифры (28) образуют совершенное число; если обменять местами первые цифры, то получится 8128 – четвертое совершенное число.

(т. е. всех делителей, отличных от самого́ числа).

Первое совершенное число - 6 (1 + 2 + 3 = 6 ), следующее - 28 (1 + 2 + 4 + 7 + 14 = 28 ). По мере того как возрастают, совершенные числа встречаются всё реже. Третье совершенное число - 496, четвёртое - 8 128, пятое - 33 550 336, шестое - 8 589 869 056.

История изучения

Совершенный характер чисел 6 и 28 был признан многими культурами, обратившими внимание на то, что совершает оборот вокруг каждые 28 дней, и утверждавшими, что сотворил мир за 6 дней. В сочинении «Град Божий» высказал мысль о том, что хотя Бог мог сотворить мир в одно мгновенье, Он предпочел сотворить его за 6 дней, дабы поразмыслить над совершенством мира. По мнению Св. Августина, число 6 совершенно не потому, что Бог избрал его, а потому, что совершенство внутренне присуще природе этого числа. «Число 6 совершенно само по себе, а не потому, что Господь сотворил все сущее за 6 дней; скорее наоборот, Бог сотворил все сущее за 6 дней потому, что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за 6 дней».

Совершенные числа были предметом пристального внимания пифагорейцев, хотя в их время были известны только 2 первых совершенных числа. В частности, заметил, что совершенные числа не только равны сумме своих делителей, но и обладают некоторыми другими изящными свойствами. Например, совершенные числа всегда равны сумме последовательных натуральных чисел, начиная с единицы (т. е. являются ):

6 = 1 + 2 + 3 ,
28 = 1 + 2 + 3 + 4 + 5 + 6 + 7 ,
496 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + ... + 30 + 31 ,
8128 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + ... + 126 + 127 .

Кроме того, одно из его открытий состояло в том, что совершенство чисел тесно связано с «двоичностью». Числа 4=2\cdot2 , 8=2\cdot2\cdot2 , 16=2\cdot2\cdot2\cdot2 и т. д. называются степенями числа 2 и могут быть представлены в виде 2 n , где n - число перемноженных двоек. Все степени числа 2 чуть-чуть «не достают» до того, чтобы стать совершенными, так как сумма их делителей всегда на единицу меньше самого числа, т. е. все степени двойки :

2 2 =2\cdot2 = 4 , 1 + 2 = 3 ,
2 3 =2\cdot2\cdot2 = 8 , 1 + 2 + 4 = 7 ,
2 4 =2\cdot2\cdot2\cdot2 = 16 , 1 + 2 + 4 + 8 = 15 ,
2 5 =2\cdot2\cdot2\cdot2\cdot2 = 32 , 1 + 2 + 4 + 8 + 16 = 31 ,

Так как каждому чётному совершенному числу соответствует некоторое простое число Мерсенна (и наоборот), то открытие новых чётных совершенных чисел равносильно открытию новых простых чисел Мерсенна, распределённым поиском которых занимается проект . На данный момент (ноябрь 2006) известно 44 простых числа Мерсенна, а значит, и 44 чётных совершенных числа.

Примеры

  • 1-е совершенное число - имеет следующие собственные делители: 1, 2, 3; их сумма 1 + 2 + 3 равна 6.
  • 2-е совершенное число - имеет следующие собственные делители: 1, 2, 4, 7, 14; их сумма 1 + 2 + 4 + 7 + 14 равна 28.
  • 3-е совершенное число - имеет следующие собственные делители: 1, 2, 4, 8, 16, 31, 62, 124, 248; их сумма 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 равна 496.
  • 4-е совершенное число - имеет следующие собственные делители: 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064; их сумма 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064 равна 8128.

История изучения

Чётные совершенные числа

Алгоритм построения чётных совершенных чисел описан в IX книге Начал Евклида , где было доказано, что число является совершенным, если число является простым (т. н. простые числа Мерсенна) . Впоследствии Леонард Эйлер доказал, что все чётные совершенные числа имеют вид, указанный Евклидом.

Первые четыре совершенных числа приведены в Арифметике Никомаха Геразского . Пятое совершенное число 33 550 336 обнаружил немецкий математик Региомонтан (XV век). В XVI веке немецкий ученый Шейбель нашел ещё два совершенных числа: 8 589 869 056 и 137 438 691 328. Они соответствуют р = 17 и р = 19. В начале XX века были найдены ещё три совершенных числа (для р = 89, 107 и 127). В дальнейшем поиск затормозился вплоть до середины XX века, когда с появлением компьютеров стали возможными вычисления, превосходившие человеческие возможности.

На апрель 2010 года известно 47 простых чисел Мерсенна и соответствующих им чётных совершенных чисел, поиском новых простых чисел Мерсенна занимается проект распределённых вычислений GIMPS .

Нечётные совершенные числа

Нечётных совершенных чисел до сих пор не обнаружено, однако не доказано и то, что их не существует. Неизвестно также, бесконечно ли множество всех совершенных чисел.

Доказано, что нечётное совершенное число, если оно существует, имеет не менее 9 различных простых делителей и не менее 75 простых делителей с учетом кратности. Поиском нечётных совершенных чисел занимается проект распределённых вычислений OddPerfect.org .

Свойства

Примечательные факты

Особенный («совершенный») характер чисел 6 и 28 был признан в культурах, базирующихся на авраамических религиях , - утверждающих, что Бог сотворил мир за 6 дней и обративших внимание на то, что Луна совершает оборот вокруг Земли примерно за 28 дней.

«Не менее важна идея, выраженная числом 496. Это „теософское расширение“ числа 31 (то есть сумма всех целых чисел от 1 до 31). Помимо всего прочего, это сумма слова Малькут , означающего „Царство“. Таким образом, Царство, полное проявление первичной идеи Бога, предстает в гематрии как естественное дополнение или проявление числа 31, которое является числом имени 78».

"Число 6 совершенно само по себе, а не потому, что Господь сотворил все сущее за 6 дней; скорее наоборот, Бог сотворил все сущее за 6 дней потому, что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за 6 дней."

См. также

  • Слегка избыточные числа (квазисовершенные числа)

Примечания

Ссылки

  • Депман И. Совершенные числа // Квант . - 1991. - № 5. - С. 13-17.

Wikimedia Foundation . 2010 .

Смотреть что такое "Совершенное число" в других словарях:

    СОВЕРШЕННОЕ ЧИСЛО, см. ЧИСЛО СОВЕРШЕННОЕ …

    Натуральное число, равное сумме всех своих правильных (т. е. меньших этого числа) делителей. Напр., 6=1+2+3 и 28=1+2+4+7+14 суть совершенные числа … Большой Энциклопедический словарь

    Натуральное число, равное сумме всех своих правильных (то есть меньших этого числа) делителей. Например, 6 = 1 + 2 + 3 и 28 = 1 + 2 + 4 + 7 + 14 суть совершенного числа. * * * СОВЕРШЕННОЕ ЧИСЛО СОВЕРШЕННОЕ ЧИСЛО, натуральное число, равное сумме… … Энциклопедический словарь

    Целое положительное число, обладающее свойством, что оно совпадает с суммой всех своих положительных делителей, отличных от самого этого числа. Таким образом, целое число является С. ч., если С. ч. являются, напр., числа 6, 28, 496, 8128,33550336 … Математическая энциклопедия

    ЧИСЛО, СОВЕРШЕННОЕ, ЦЕЛОЕ число, равное сумме своих ДЕЛИТЕЛЕЙ, включая 1. Например, число 28 является совершенным числом, поскольку его делителями являются числа 1, 2, 4, 7 и 14 (не считая само число 28), а их сумма равна 28. Не известно,… … Научно-технический энциклопедический словарь

    Числа вида Mn = 2n 1, где n натуральное число. Названы в честь французского математика Мерсенна. Последовательность чисел Мерсенна начинается так: 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, ... (последовательность A000225 в OEIS) Иногда числами… … Википедия

    Число - С древнейших времен различным числам приписывали тайные значения. Философы, последователи Пифагора (около 500 г. до Р.Хр.), утверждали, что числа являются основным началом и сущностью вещей и подробно определили качества и роды чисел. По их… … Словарь библейских имен

    Непрерывное замкнутое отображение топологич. пространств, при к ром прообразы всех точек бикомпактны. С. о. во многом аналогичны непрерывным отображениям бикомпактов в хаусдорфовы пространства (каждое такой отображение совершенно), но сферой… … Математическая энциклопедия

    Шестиугольное число фигурное число. n ое шестиугольное число число точек в шестиугольнике, на каждой стороне которого ровно n точек. Формула для n го шестиугольного числа … Википедия

    У этого термина существуют и другие значения, см. 6 (значения). 6 шесть 3 · 4 · 5 · 6 · 7 · 8 · 9 Факторизация: 2×3 Римская запись: VI Двоичное: 110 Восьмеричное: 6 Шестна … Википедия




Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!