Информационный женский портал

Из каких основных элементов состоит телескоп. Астрономические приборы и наблюдения с ними. Оптические телескопы – типы и устройство. Параметры выбора телескопа

Телескоп - это уникальный оптический прибор, предназначенный для наблюдения за небесными телами. Использование приборов позволяет рассмотреть самые разные объекты, не только те, которые располагаются недалеко от нас, но и те, которые находятся за тысячи световых лет от нашей планеты. Так что такое телескоп и кто его придумал?

Первый изобретатель

Телескопические устройства появились в семнадцатом веке. Однако по сей день ведутся дебаты, кто изобрел телескоп первым - Галилей или Липперсхей. Эти споры связаны с тем, что оба ученых примерно в одно время вели разработки оптических устройств.

В 1608 году Липперсхей разработал очки для знати, позволяющие видеть удаленные объекты вблизи. В это время велись военные переговоры. Армия быстро оценила пользу разработки и предложила Липперсхею не закреплять авторские права за устройством, а доработать его так, чтобы в него можно было бы смотреть двумя глазами. Ученый согласился.

Новую разработку ученого не удалось удержать втайне: сведения о ней были опубликованы в местных печатных изданиях. Журналисты того времени назвали прибор зрительной трубой. В ней использовалось две линзы, которые позволяли увеличить предметы и объекты. С 1609 года в Париже вовсю продавали трубы с трехкратным увеличением. С этого года какая-либо информация о Липперсхее исчезает из истории, а появляются сведения о другом ученом и его новых открытиях.

Примерно в те же годы итальянец Галилео занимался шлифовкой линз. В 1609 году он представил обществу новую разработку - телескоп с трехкратным увеличением. Телескоп Галилея имел более высокое качество изображения, чем трубы Липперсхея. Именно детище итальянского ученого получило название «телескоп».

В семнадцатом веке телескопы изготавливались голландскими учеными, но они имели низкое качество изображения. И только Галилею удалось разработать такую методику шлифовки линз, которая позволила увеличить четко объекты. Он смог получить двадцатикратное увеличение, что было в те времена настоящим прорывом в науке. Исходя из этого невозможно сказать, кто изобрел телескоп: если по официальной версии, то именно Галилео представил миру устройство, которое он назвал телескопом, а если смотреть по версии разработки оптического прибора для увеличения объектов, то первым был Липперсхей.

Первые наблюдения за небом

После появления первого телескопа были сделаны уникальные открытия. Галилео применил свою разработку для отслеживания небесных тел. Он первым увидел и зарисовал лунные кратеры, пятна на Солнце, а также рассмотрел звезды Млечного Пути, спутники Юпитера. Телескоп Галилея дал возможность увидеть кольца у Сатурна. К сведению, в мире до сих пор есть телескоп, работающий по тому же принципу, что и устройство Галилея. Он находится в Йоркской обсерватории. Аппарат имеет диаметр 102 сантиметра и исправно служит ученым для отслеживания небесных тел.

Современные телескопы

На протяжении столетий ученые постоянно изменяли устройства телескопов, разрабатывали новые модели, улучшали кратность увеличения. В результате удалось создать малые и большие телескопы, имеющие разное назначение.

Малые обычно применяют для домашних наблюдений за космическими объектами, а также для наблюдения за близкими космическими телами. Большие аппараты позволяют рассмотреть и сделать снимки небесных тел, расположенных в тысячах световых лет от Земли.

Виды телескопов

Существует несколько разновидностей телескопов:

  1. Зеркальные.
  2. Линзовые.
  3. Катадиоптрические.

К линзовым относят рефракторы Галилея. К зеркальным относят устройства рефлекторного типа. А что такое телескоп катадиоптрический? Это уникальная современная разработка, в которой сочетается линзовый и зеркальный прибор.

Линзовые телескопы

Телескопы в астрономии играют важную роль: они позволяют видеть кометы, планеты, звезды и другие космические объекты. Одними из первых разработок были линзовые аппараты.

В каждом телескопе есть линза. Это главная деталь любого устройства. Она преломляет лучи света и собирает их в точке, под названием фокус. Именно в ней строится изображение объекта. Чтобы рассмотреть картинку, используют окуляр.

Линза размещается таким образом, чтобы окуляр и фокус совпадали. В современных моделях для удобного наблюдения в телескоп применяют подвижные окуляры. Они помогают настроить резкость изображения.

Все телескопы обладают аберрацией - искажением рассматриваемого объекта. Линзовые телескопы имеют несколько искажений: хроматическую (искажаются красные и синие лучи) и сферическую аберрацию.

Зеркальные модели

Зеркальные телескопы называют рефлекторами. На них устанавливается сферическое зеркало, которое собирает световой пучок и отражает его с помощью зеркала на окуляр. Для зеркальных моделей не характерна хроматическая аберрация, так как свет не преломляется. Однако у зеркальных приборов выражена сферическая аберрация, которая ограничивает поле зрения телескопа.

В графических телескопах используются сложные конструкции, зеркала со сложными поверхностями, отличающиеся от сферических.

Несмотря на сложность конструкции, зеркальные модели легче разрабатывать, чем линзовые аналоги. Поэтому данный вид более распространен. Самый большой диаметр телескопа зеркального типа составляет более семнадцати метров. На территории России самый большой аппарат имеет диаметр шесть метров. На протяжении многих лет он считался самым большим в мире.

Характеристики телескопов

Многие покупают оптические аппараты для наблюдений за космическими телами. При выборе устройства важно знать не только то, что такое телескоп, но и то, какими характеристиками он обладает.

  1. Увеличение. Фокусное расстояние окуляра и объекта - это кратность увеличения телескопа. Если фокусное расстояние объектива два метра, а у окуляра - пять сантиметров, то такое устройство будет обладать сорокакратным увеличением. Если окуляр заменить, то увеличение будет другим.
  2. Разрешение. Как известно, свету свойственны преломление и дифракция. В идеале любое изображение звезды выглядит как диск с несколькими концентрическими кольцами, называемыми дифракционными. Размеры дисков ограничены только возможностями телескопа.

Телескопы без глаз

А что такое телескоп без глаза, для чего его используют? Как известно, у каждого человека глаза воспринимают изображение по-разному. Один глаз может видеть больше, а другой - меньше. Чтобы ученые смогли рассмотреть все, что им необходимо увидеть, применяют телескопы без глаз. Эти аппараты передают картинку на экраны мониторов, через которые каждый видит изображение именно таким, какое оно есть, без искажений. Для малых телескопов с этой целью разработаны камеры, подключаемые к аппаратам и снимающие небо.

Самыми современными методами видения космоса стало использование ПЗС камер. Это особые светочувствительные микросхемы, которые собирают информацию с телескопа и передают ее на ЭВМ. Получаемые с них данные настолько четкие, что невозможно представить, какими еще устройствами можно было бы получить такие сведения. Ведь глаз людей не может различать все оттенки с такой высокой четкостью, как это делают современные камеры.

Для измерения расстояний между звездами и другими объектами пользуются специальными приборами - спектрографами. Их подключают к телескопам.

Современный астрономический телескоп - это не одно устройство, а сразу несколько. Получаемые данные с нескольких аппаратов обрабатываются и выводятся на мониторы в виде изображений. Причем после обработки ученые получают изображения очень высокой четкости. Увидеть глазами в телескоп такие же четкие изображения космоса невозможно.

Радиотелескопы

Астрономы для своих научных разработок используют огромные радиотелескопы. Чаще всего они выглядят как огромные металлические чаши с параболической формой. Антенны собирают получаемый сигнал и обрабатывают получаемую информацию в изображения. Радиотелескопы могут принимать только одну волну сигналов.

Инфракрасные модели

Ярким примером инфракрасного телескопа является аппарат имени Хаббла, хотя он может быть одновременно и оптическим. Во многом конструкция инфракрасных телескопов схожа с конструкцией оптических зеркальных моделей. Тепловые лучи отражаются обычным телескопическим объективом и фокусируются в одной точке, где находится прибор, измеряющий тепло. Полученные тепловые лучи пропускаются через тепловые фильтры. Только после этого происходит фотографирование.

Ультрафиолетовые телескопы

При фотографировании фотопленка может засвечиваться ультрафиолетовыми лучами. В некоторой части ультрафиолетового диапазона возможно принимать изображения без обработки и засвечивания. А в некоторых случаях необходимо, чтобы лучи света прошли через специальную конструкцию - фильтр. Их использование помогает выделить излучение определенных участков.

Существуют и другие виды телескопов, каждый из которых имеет свое назначение и особые характеристики. Это такие модели, как рентгеновские, гамма-телескопы. По своему назначению все существующие модели можно разделить на любительские и профессиональные. И это далеко не вся классификация аппаратов для отслеживания небесных тел.

Представьте человеческий глаз диаметром 5 см. При этом вытянутый от зрачка к сетчатке на полметра. Примерно так устроен телескоп. Он работает как большое глазное яблоко. Наш глаз по сути – большая линза. Сами по себе предметы он не видит, а улавливает отраженный от них свет (поэтому в полной темноте мы ничего не видим). Свет попадает через хрусталик на сетчатку, импульсы передаются в мозг, и мозг формирует картинку. У телескопа линза намного больше, чем наш хрусталик. Поэтому она собирает свет от удаленных предметов, которые глаз просто не улавливает.

Принцип действия у всех телескопов одинаковый, а вот строение бывает разное.

Первый вид телескопов – рефракторы

Самый простой вариант рефрактора представляет собой трубку, в оба конца которой вставлены двояковыпуклые – вот такие () – линзы. Они собирают свет от небесных объектов, преломляют и фокусируют – и в окуляре мы видим изображение.

Телескоп-рефрактор Levenhuk Strike 80 NG:

Второй вид телескопов – рефлекторы

Рефлекторы не преломляют, а отражают лучи. Простейший рефлектор – трубка с двумя зеркалами внутри. Одно зеркало, большое, расположено на противоположном объективу конце трубки, второе, поменьше – посередине. Лучи, попадая в трубку, отражаются от большого зеркала и попадают на маленькое зеркало, которое расположено под углом и направляет свет в линзу – окуляр, куда мы можем заглянуть и увидеть небесные объекты.

Телескоп Bresser Junior Reflector. Внешне рефрактор от рефлектора отличить просто: у рефрактора окуляр расположен с торца трубы, у рефлектора – сбоку.

Что лучше – рефрактор или рефлектор – предмет настоящей холивар между любителями астрономии. У каждого свои особенности. Рефракторы проще и более неприхотливые : не боятся пыли, меньше страдают при транспортировке, позволяют вести наземные наблюдения (т.к. в них изображение не перевернутое). Рефлекторы более нежные , но зато позволяют наблюдать за объектами дальнего космоса и заниматься астрофотографией. В целом рефракторы больше подойдут новичкам, а рефлекторы – продвинутым астрономам.

Так как рефракторы проще, рассмотрим работу телескопа на их примере. За образец возьмем телескопы серии Levenhuk Strike NG – они предназначены для начинающих астрономов и сделаны с минимумом сложностей.

Это линза, которая собирает свет. Она стеклянная. Именно поэтому телескопы–рефракторы не бывают очень большими: стекло тяжелое. Самый большой рефрактор находится в Йеркской обсерватории в США. Диаметр его объектива – 1,02 м.

Через линзу видно, что труба телескопа изнутри черного цвета, чтобы не было бликов от ярких объектов.

А это – бленда, которая защищает объектив от росы. Убережет и от небольших механических повреждений (толчков, ударов). Также бленда убирает блики от фонарей и других близко расположенных объектов.

Окуляр. Через него мы смотрим на небо.

Диагональное зеркало (с окуляром и линзой Барлоу) – нужно для того, чтобы изображение было прямым (неперевернутым). Тогда в телескоп можно наблюдать не только космические, но и земные объекты, как на следующей фотографии.

Этот снимок сделан через телескоп цифровым фотоаппаратом. Камера устанавливается на телескоп с помощью переходника.

Камеру можно установить не на все рефракторы. Например, у самых младших моделей Levenhuk Strike NG за 3 тыс. руб. такой возможности нет.

И, наконец, самое интересное. Снимки, которые можно сделать с помощью телескопа:

Этот снимок сделан через рефрактор Levenhuk Strike 80 NG осенью, в ясную погоду. Луна получилась хорошо, но планеты или галактики качественно сфотографировать с помощью рефрактора вряд ли получится. Это все-таки начальная модель, с которой предполагается совершать первые шаги в астрономии. Но зато ее можно возить с собой и использовать для наблюдения и съемки наземных объектов.

(Visited 1 times, 1 visits today)

Чтобы увеличить наблюдаемый астрономический объект, нужно собрать свет от этого объекта и сфокусировать его(т.е изображение объекта) в какой-либо точке.
Это может сделать либо объектив из линз, либо специальное зеркало.

Типы телескопов

*Рефракторы - свет собирает линзовый объектив. Он же и создаёт изображение предмета в точке, которое затем рассматривается в окуляр.
*Рефлекторы - свет собирает вогнутое зеркало, затем свет отражается маленьким плоским зеркалом к поверхности трубы телескопа, где можно наблюдать изображение.
*Зеркально-линзовые (катадиоптрические) - используются вместе и линзы, и зеркала.

Выбор телескопа

Во-первых, увеличение телескопа не главная его характеристика! Основная характеристика всех телескопов - апертура = диаметр объектива(или зеркала). Большая апертура позволяет телескопу собрать больше света, следовательно, наблюдаемое светило будет более четким, лучше будут видны подробности, большие увеличения можно будет применять.

Далее нужно узнать, какие магазины в вашем городе торгуют телескопами. Лучше покупать в магазинах, специализирующихся на продаже только телескопов и других оптических приборов. Иначе, внимательно проверяйте телескоп: линзы должны быть без царапин, в комплекте - все окуляры, инструкция по сборке и т.п. Можно заказать телескоп и через интернет-магазин(например, здесь). В этом случае, у вас будет больший выбор. Не забудьте узнать способы доставки телескопа и оплаты.

Плюсы и минусы основных видов телескопов:

Рефракторы: более долговечны, для них нужен меньший уход (т.к линзы находятся в закрытой трубе). Изображение, получаемое через рефрактор, более контрастное и насыщенное. 100% пропускает свет (при просветленном объективе). Температурные перепады мало влияют на качество изображения.
-Рефракторы: дороже, чем рефлекторы, наличие хроматической аберрации. (у апохроматических рефракторов она меньше выражена, чем у ахроматических рефракторов) Небольшая светосила.

Рефлекторы: дешевле рефракторов, отсутствие хроматической аберрации, небольшая длина трубы.
-Рефлекторы: необходимость юстировки (установка всех оптических поверхностей на свои расчетные места), меньший контраст изображения, открытая труба (=>загрязнение зеркала). Серебряное покрытие главного зеркала через несколько лет может ухудшиться. При выносе телескопа из теплого помещения на холодный воздух зеркало запотевает - требуется до 30 минут простоя. Рефлекторы пропускают на 30-40% меньше света, чем рефракторы с той же апертурой.

Зеркально-линзовые: компактные, отсутствие хроматизма и некоторых других искажений, которые есть в рефлекторах. Труба закрыта.
-Зеркально-линзовые: высокие светопотери на переотражения в зеркалах, достаточно тяжелые, высокая цена.

Первый критерий при выборе телескопа - апертура. Всегда действует правило: чем больше апертура, тем лучше . Правда, на телескоп с большей апертурой, больше влияет атмосфера. Бывает, светило видно лучше в телескоп с намного меньшей апертурой, чем с большей. Однако, за городом или когда атмосфера стабильная, телескоп с большей апертурой покажет намного больше.

Не забывайте про оптику: она должна быть обязательно стеклянной и с просветлением.

Важно знать, что 100 мм рефрактор примерно соответствует 120-130 мм рефлектору (опять же из-за не 100%-го пропускания света в рефлекторе).

->Про увеличение телескопа: максимальное полезное увеличение телескопа, при котором изображение будет более-менее четким примерно 2*D, где D-апертура в мм (например, для 60 мм рефрактора максимальное полезное увеличение: 2*60=120x). Но! все зависит опять же от оптики: на 60 мм рефракторе, при нормальной оптике и атмосфере, можно получить четкое изображение и до 200x, но не более!).

->Можно встретить телескопы с различными фокусными расстояниями объектива. Длиннофокусный телескоп обычно даёт лучшее изображение, чем короткофокусный(т.к короткофокусный телескоп сложнее изготовить, чтобы не было искажений). Однако длинный фокус объектива, значит, длинная труба телескопа - увеличение габаритов

->Еще одна характеристика телескопа - относительной отверстие - отношение диаметра объектива к фокусному расстоянию. Чем больше относительное отверстие (1/5 больше 1/12), тем изображение светил будет более ярким, с другой стороны - более заметны искажения.

Рефрактор с относительным отверстием 1:10 ~ соответствует рефлектору с относительным отверстием 1:8

->Выбирайте телескоп и по габаритам: если вы будете часто переносить телескоп(выезжать за город, например) - удобнее будет небольшой телескоп, не слишком длинный и не сишком тяжелый. Если же телескоп не будет вывозиться - можно взять и большего размера.

->Стоит обратить внимание на штатив и монтировку телескопа. При слабом штативе изображение будет шататься при каждом прикосновении к телескопу (чем больше увеличение выбрано - тем больше будет шататься)

Существует два типа монтировок: азимутальная и экваториальная:

Азимутальная монтировка позволяет наводить телескоп на объект по двум осям - горизонтальной и вертикальной.
Экваториальная - одна из осей вращения телескопа параллельна оси вращения Земли.

Плюсы и минусы различных видом монтировок

Азимутальной: очень простое устройство. Дешевле, чем экваториальная. Меньше весит, чем экваториальная.
-Азимутальной: изображение светила «убегает» из поля зрения (из-за вращения Земли вокруг своей оси) - необходимо перенаводить телескоп по двум осям (чем больше увеличение, тем чаще)=> будет сложнее фотографировать светила.

Экваториальной: когда светило «убегает» - движением одной ручки монтировки, вы его "догоните".
-Экваториальной: большой вес монтировки. Поначалу будет сложно освоить и настроить монтировку (подробнее про настройку)

Существуют экваториальные монтировки с электроприводом - вам не нужно будет перенаводить телескоп - техника будет делать это за вас

Если будете покупать в магазине - не поленитесь: тщательно осматривайте телескоп: на линзах и зеркалах не должны быть царапины, сколы и другие дефекты. В комплекте должны идти все окуляры, заявленные производителем (можно посмотреть в инструкции, что должно быть в комплекте).

Телескоп – это астрономический оптический прибор, предназначенный для наблюдения небесных тел.
Телескоп имеет окуляр, объектив или главное зеркало и специальную трубу, которая прикрепляется к монтировке, она же, в свою очередь, содержит оси, благодаря которым происходит наведение на объект наблюдения.

В 1609 году Галилео Галилеем был собран первый в истории человечества оптический телескоп. (Об этом читайте на нашем сайте: Кто создал первый телескоп?).
Современные телескопы бывают нескольких типов.

Рефлекторные (зеркальные) телескопы

Если дать им самую упрощенную характеристику, то это такие устройства, которые имеют специальное вогнутое зеркало, выполняющее собирание света и его фокусирование. К достоинствам таких телескопов можно отнести простоту изготовления, хорошее качество оптики. Основным недостатком является немного бОльшая забота и обслуживание, чем у других видов телескопов.
Ну, а теперь более подробно о рефлекторных телескопах.
Рефлектор – телескоп с зеркальным объективом, который образует изображение путем отражения света от зеркальной поверхности. Рефлекторы используются в основном для фотографирования неба, фотоэлектрических и спектральных исследований, а для визуальных наблюдений они используются реже.
Рефлекторы имею некоторые преимущества перед рефракторами (телескопами с линзовым объективом), т.к. в них отсутствует хроматическая аберрация (окрашенность изображений); главное зеркало легче сделать бОльших размеров, чем линзовый объектив. Если зеркало имеет не сферическую, а параболическую форму, то можно свести к нулю сферическую аберрацию (размытость краев или середины изображения). Изготовление зеркал легче и дешевле, чем линзовых объективов, что дает возможность увеличить диаметр объектива, а значит, разрешающую способность телескопа. Из готового комплекта зеркал любители-астрономы могут создать самодельный «ньютоновский» рефлектор. Достоинство, благодаря которому система получила распространение среди любителей, - простота изготовления зеркал (главное зеркало в случае малых относительных отверстий - сфера; плоское зеркало может быть небольших размеров).

Рефлектор системы Ньютона

Был изобретен в 1662 году. Его телескоп был первым зеркальным телескопом. В рефлекторах большое зеркало называют главным зеркалом. В плоскости главного зеркала могут быть помещены фотопластинки для фотографирования небесных объектов.
В системе Ньютона объектив представляет собой вогнутое параболическое зеркало, от которого отраженные лучи небольшим плоским зеркалом направляются в окуляр, находящийся сбоку от трубы.
Картинка: Отражение сигналов, приходящих с различных направлений.

Рефлектор системы Грегори

Лучи от главного вогнутого параболического зеркала направляются на небольшое вогнутое эллиптическое зеркало, которое отражает их в окуляр, помещенный в центральном отверстии главного зеркала. Поскольку эллиптическое зеркало расположено за фокусом главного зеркала, изображение получается прямое, тогда как в системе Ньютона – перевернутое. Наличие второго зеркала увеличивает фокусное расстояние и тем самым дает возможность большого увеличения.

Рефлектор системы Кассегрена

Здесь вторичное зеркало – гиперболическое. Оно установлено перед фокусом главного зеркала и позволяет сделать трубу рефлектора более короткой. Главное зеркало – параболическое, здесь нет сферической аберрации, но есть кома (изображение точки принимает вид несимметричного пятна рассеяния) – это ограничивает поле зрения рефлектора.

Рефлектор системы Ломоносова – Гершеля

Здесь, в отличие от рефлектора Ньютона, главное зеркало наклонено таким образом, что изображение фокусируется вблизи входного отверстия телескопа, где и помещается окуляр. Эта система дала возможность исключить промежуточные зеркала и и потери света в них.

Рефлектор системы Ричи-Кретьена

Эта система представляет собой улучшенный вариант системы Кассегрена. Главное зеркало – вогнутое гиперболическое, а вспомогательное – выпуклое гиперболическое. Окуляр установлен в центральном отверстии гиперболического зеркала.
В последнее время эта система получила широкое применение.
Существую и другие рефлекторные системы: Шварцшильда, Максутова и Шмидта (зеркально-линзовые системы), Мерсена, Нессмита.

Недостаток рефлекторов

Их трубы открыты потокам воздуха, которые портят поверхность зеркал. От колебаний температуры и механических нагрузок форма зеркал слегка меняется, а из-за этого ухудшается видимость.
Один из крупнейших рефлекторов находится в Маунт-Паломарской астрономической обсерватории США. Его зеркало имеет диаметр 5 м. Крупнейший в мире астрономический рефлектор (6 м) находится в Специальной астрофизической обсерватории на Северном Кавказе.

Телескоп-рефрактор (линзовый телескоп)

Рефракторы – это телескопы, имеющие линзовый объектив, который образует изображение объектов посредством преломления лучей света.
Это известная всем классическая длинная труба в виде подзорной с большой линзой (объективом) в одном конце и окуляром в другом. Рефракторы используются для визуальных, фотографических, спектральных и других наблюдений.
Рефракторы обычно построены по системе Кеплера. Угловое зрение этих телескопом мало, не превосходит 2º. Объектив, как правило, двухлинзовый.
Линзы в объективах небольших рефракторов обычно склеивают для уменьшения бликов и потерь света. Поверхности линз подвергают специальной обработке (просветление оптики), в результате этого на стекле образуется тонкая прозрачная пленка, которая значительно уменьшает потери света вследствие отражения.
Крупнейший в мире рефрактор Йерксской астрономической обсерватории в США имеет объектив диаметром 1,02 м. На Пулковской обсерватории установлен рефрактор с диаметром объектива 0,65 м.

Зеркально-линзовые телескопы

Зеркально-линзовый телескоп предназначен для фотографирования больших областей неба. Его изобрел в 1929 немецкий оптик Б. Шмидт . Главными деталями здесь являются сферическое зеркало и Шмидта коррекционная пластинка, установленная в центре кривизны зеркала. Благодаря такому положению коррекционной пластинки все пучки лучей, проходящие через неё от разных участков неба, оказываются равноправными по отношению к зеркалу, вследствие чего телескоп свободен от аберраций оптических систем. Сферическая аберрация зеркала исправляется коррекционной пластинкой, центральная часть которой действует как слабая положительная линза, а внешняя - как слабая отрицательная линза. Фокальная поверхность, на которой образуется изображение участка неба, имеет форму сферы, радиус кривизны которой равен фокусному расстоянию. Фокальная поверхность может быть преобразована в плоскую с помощью Пиацци - Смита линзы.

Недостатком зеркально-линзовых телескопов является значительная длина трубы, вдвое превышающая фокусное расстояние телескопа. Для устранения этого недостатка предложен ряд модификаций, в том числе применение второго (дополнительного) выпуклого зеркала, приближение коррекционной пластинки к главному зеркалу и др.
Крупнейшие телескопы Шмидта установлены на Таутенбургской астрономической обсерватории в ГДР (D= 1,37м, А = 1:3), Маунт-Паломарской астрономической обсерватории в США (D = 1,22 м, А = 1:2,5) и на Бюраканской астрофизической обсерватории АН Армянской ССР (D = 1,00 м, А = 1:2, 1:3).

Радиотелескопы

Они используются для исследования космических объектов в радиодиапазоне. Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприемник и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона.
При объединении в единую сеть нескольких одиночных телескопов, расположенных в разных частях земного шара, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети.
Российский орбитальный радиотелескоп Радиоастрон планируется использовать в качестве одного из элементов гигантского интерферометра.

Космические телескопы (астрономические спутники)

Они сконструированы для проведения астрономических наблюдений из космоса. Потребность в таком виде обсерваторий возникла из-за того, что земная атмосфера задерживает гамма-, рентгеновское и ультрафиолетовое излучение космических объектов, а также большую часть инфракрасного.
Космические телескопы оборудуют устройствами для сбора и фокусировки излучения, а также системами преобразования и передачи данных, системой ориентации, иногда двигательными системами.

Рентгеновские телескопы

Предназначены для наблюдения удаленных объектов в рентгеновском спектре. Для работы таких телескопов обычно требуется поднять их над атмосферой Земли, непрозрачной для рентгеновских лучей. Поэтому телескопы размещают на высотных ракетах или на искусственных спутниках Земли.

На рисунке: Рентгеновский Телескоп - Позиционно чувствительный (АРТ-П). Был создан в отделе астрофизики высоких энергий Института космических исследований АН СССР (Москва).

Телескоп - прибор, с помощью которого наблюдают удалённые объекты. В переводе с греческого «телескоп» означает «далеко» и «наблюдаю».

Для чего же нужен телескоп?

Кто-то думает, что телескоп увеличивает объекты, а кто-то полагает, что он их приближает. Ошибаются и те, и другие. Главная задача телескопа - получить информацию о наблюдаемом объекте, собирая электромагнитное излучение.

Электромагнитное излучение - это не только видимый свет . К электромагнитным волнам относятся ещё и радиоволны , терагерцовое и инфракрасное излучение, ультрафиолетовое, рентгеновское и гамма-излучение. Телескопы созданы для всех диапазонов электромагнитного спектра.

Оптический телескоп

Главная задача телескопа - увеличить угол зрения, или видимый угловой размер удалённого объекта.

Угловым размером называют угол между линиями, соединяющими диаметрально противоположные точки наблюдаемого объекта и глаз наблюдателя. Чем дальше находится наблюдаемый объект, тем меньшим будет угол зрения.

Мысленно соединим прямыми линиями две противоположные точки стрелы башенного крана с нашим глазом. Полученный угол и будет углом зрения, или угловым размером. Проделаем такой же эксперимент с краном, стоящим в соседнем дворе. Угловой размер в этом случае будет гораздо меньше, чем в предыдущем. Все объекты кажутся нам большими или маленькими в зависимости от угловых размеров. И чем дальше расположен объект, тем меньшим будет его угловой размер.

Оптический телескоп представляет собой систему, которая изменяет угол наклона оптической оси параллельного пучка света. Такая оптическая система называется афокальной . Её особенность заключается в том, что световые лучи поступают в неё параллельным пучком, а выходят таким же параллельным пучком, но уже под другими углами, отличающимися от углов наблюдения невооружённым глазом.

Афокальная система состоит из объектива и окуляра. Объектив направлен на наблюдаемый объект, а окуляр обращён к глазу наблюдателя. Их располагают таким образом, чтобы передний фокус окуляра совпадал с задним фокусом объектива.

Оптический телескоп собирает и фокусирует электромагнитное излучение видимого спектра. Если в его конструкции используются только линзы, такой телескоп называется рефрактором , или диоптрическим телескопом. Если же только зеркала, то его называют рефлектором , или катаприческим телескопом. Существуют оптические телескопы смешанного типа, в составе которых есть и линзы, и зеркала. Их называют зеркально-линзовыми , или катадиоптрическими.

«Классическая» подзорная труба, которой пользовались ещё во времена парусного флота, состояла из объектива и окуляра. Объектив представлял собой положительную собирающую линзу, которая создавала действительное изображение объекта. Увеличенное изображение рассматривалось наблюдателем в окуляр - отрицательную рассеивающую линзу.

Чертежи простейшего оптического телескопа были созданы ещё Леонардо до Винчи в 1509 г. Автором зрительной трубы считают голландского оптика Иоанна Липперсгея , который продемонстрировал своё изобретение в Гааге в 1608 г.

В телескоп зрительную трубу превратил Галилео Галилей в 1609 г. Прибор, созданный им, имел объектив и окуляр и давал 3-хкратное увеличение. Позднее Галилей создал телескоп с 8-кратным увеличением. Но его конструкции имели очень большие размеры. Так, диаметр объектива у телескопа с 32-кратным увеличением был равен 4,5 м, а сам телескоп имел длину около метра.

Название «телескоп» приборам Галилея предложил дать греческий математик Джованни Демизиани в 1611 г.

Именно Галилей первым направил телескоп в небо и увидел пятна на Солнце, горы и кратеры на Луне, рассмотрел звёзды в Млечном пути.

Труба Галилея - пример простейшего телескопа-рефрактора. Объективом в нём служит собирающая линза. В фокальной плоскости (перпендикулярной оптической оси и проходящей через фокус) получается уменьшенное изображение рассматриваемого предмета. Окуляр, представляющий собой рассеивающую линзу, даёт возможность видеть увеличенное изображение. Труба Галилея даёт слабое увеличение удалённого объекта. В современных телескопах не используется, но подобная схема применяется в театральных биноклях.

В 1611 г. немецкий учёный Иоганн Кеплер придумал более совершенную конструкцию. Вместо рассеивающей линзы он поместил в окуляр собирающую линзу. Изображение получалось перевёрнутым. Это создавало неудобства для наблюдения наземных объектов, а для космических объектов это было вполне приемлемо. В таком телескопе за фокусом объектива имелось промежуточное изображение, В него можно было встроить измерительную шкалу или фотопластинку. Такой тип телескопа сразу же нашёл своё применение в астрономии.

В телескопах-рефлекторах собирающим элементом вместо линзы служит вогнутое зеркало, задняя фокальная плоскость которого совмещена с передней фокальной плоскостью окуляра.

Зеркальный телескоп изобрёл Исаак Ньютон в 1667 г. В его конструкции главное зеркало собирает параллельные световые лучи. Чтобы наблюдатель не перекрыл собой световой поток, на пути отражённых лучей ставят плоское, зеркало, которое отклоняет их от оптической оси. Изображение рассматривают в окуляр.

Вместо окуляра можно разместить фотоплёнку или светочувствительную матрицу, которая преобразует проецируемое на неё изображение в аналоговый электрический сигнал или в цифровые данные.

В зеркально-линзовых телескопах объективом служит сферическое зеркало, а система линз компенсирует аберрации - погрешности изображения, причиной которых служит отклонение светового луча от идеального направления. Они существуют в любой реальной оптической системе. В результате аберраций изображение точки размывается и становится нечётким.

Оптические телескопы используют астрономы для наблюдения за небесными светилами.

Но Вселенная посылает на Землю не только свет. Из космоса к нам приходят радиоволны, рентгеновское и гамма-излучение.

Радиотелескоп

Этот телескоп предназначен для приёма радиоволн, излучаемых небесными объектами в Солнечной системе, Галактике и Мегагалактике, определения их пространственной структуры, координат, интенсивности излучения и спектра. Его главные элементы - принимающая антенна и очень чувствительный приёмник - радиометр.

Антенна способна принимать миллиметровые, сантиметровые, дециметровые и метровые волны. Чаще всего это зеркальный отражатель параболической формы, в фокусе которого находится облучатель. Это устройство, в котором собирается радиоизлучение, направленное зеркалом. Далее это излучение передаётся на вход радиометра, где усиливается и преобразуется в форму, удобную для регистрации. Это может быть аналоговый сигнал, который фиксируется самописцем, или цифровой сигнал, записывающийся на жёсткий диск.

Чтобы построить изображение наблюдаемого объекта, радиотелескоп измеряет энергию излучения (яркость) в каждой его точке.

Космические телескопы

Атмосфера Земли пропускает оптическое излучение, инфракрасное и радиоизлучение. А ультрафиолетовое и рентгеновское излучения атмосферой задерживается. Поэтому наблюдать их можно наблюдать только из космоса, установив на искусственных спутниках Земли, космических ракетах или орбитальных станциях.

Рентгеновские телескопы предназначены для наблюдения объектов в рентгеновском спектре, поэтому их устанавливают на искусственных спутниках Земли или космических ракетах, так как земная атмосфера такие лучи не пропускает.

Рентгеновские лучи испускаются звёздами, скоплениями галактик и чёрными дырами.

Функции объектива в рентгеновском телескопе выполняет рентгеновское зеркало. Так как рентгеновское излучение почти полностью проходит через материал или поглощается им, то обычные зеркала в рентгеновских телескопах применять нельзя. Поэтому для фокусировки лучей чаще всего используют зеркала скользящего, или косого, падения, сделанные из металлов.

Кроме рентгеновских телескопов созданы ультрафиолетовые телескопы , работающие в ультрафиолетовом излучении.

Гамма-телескопы

Не все гамма-телескопы размещаются на космических объектах. Существуют наземные телескопы, изучающие космическое гамма-излучение сверхвысоких энергий. Но как зафиксировать гамма-излучение на поверхности Земли, если оно поглощается атмосферой? Оказывается, космические гамма-фотоны сверхвысоких энергий, попав в атмосферу, «выбивают» из атомов вторичные быстрые электроны, которые являются источниками фотонов. Возникает , которое фиксируется телескопом, находящимся на Земле.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!