Информационный женский портал

Органические и неорганические вещества. Неорганические вещества клетки. Минеральные вещества клетки и их значение. Роль минеральных веществ в клетке

К ним относятся вода и минеральные соли.

Вода необходима для осуществления жизненных процессов в клетке. Ее содержание составляет 70-80% от массы клетки. Основные функции воды:

    представляет собой универсальный растворитель;

    является средой, в которой протекают биохимические реакции;

    определяет физиологические свойства клетки (упругость, объем);

    участвует в химических реакциях;

    поддерживает тепловое равновесие организма благодаря высокой теплоемкости и теплопроводности;

    является основным средством для транспорта веществ.

Минеральные соли присутствуют в клетке в виде ионов: катионы К + , Na + , Ca 2+ , Mg 2+ ; анионы – Cl - , HCO 3 - , H 2 РО 4 - .

3. Органические вещества клетки.

Органические соединения клетки состоят из многих повторяющихся элементов (мономеров) и представляют собой крупные молекулы - полимеры. К ним относят белки, жиры, углеводы и нуклеиновые кислоты. Их содержание в клетке: белки -10-20%; жиры - 1-5%; углеводы - 0,2-2,0%; нуклеиновые кислоты - 1-2%; низкомолекулярные органические вещества – 0,1-0,5%.

Белки – высокомолекулярные (с большой молекулярной массой) органические вещества. Структурной единицей их молекулы является аминокислота. В образовании белков принимают участие 20 аминокислот. В состав молекулы каждого белка входят только определенные аминокислоты в свойственном этому белку порядке расположения. Аминокислота имеет следующую формулу:

H 2 N – CH – COOH

В состав аминокислот входят NH 2 – аминогруппа, обладающая основными свойствами; СООН – карбоксильная группа с кислотными свойствами; радикалы, отличающие аминокислоты друг от друга.

Существуют первичная, вторичная, третичная и четвертичная структуры белка. Аминокислоты, соединенные между собой пептидными связями, определяют его первичную структуру. Белки первичной структуры с помощью водородных связей соединяются в спираль и образуют вторичную структуру. Полипептидные цепи, скручиваясь определенным образом в компактную структуру, образуют глобулу (шар) - третичная структура белка. Большинство белков имеет третичную структуру. Следует отметить, что аминокислоты активны только на поверхности глобулы. Белки с глобулярной структурой объединяются и формируют четвертичную структуру (например, гемоглобин). При воздействии высокой температуры, кислот и других факторов сложные белковые молекулы разрушаются – денатурация белка . При улучшении условий денатурированный белок способен восстанавливать свою структуру, если не разрушается его первичная структура. Этот процесс называется ренатурацией.

Белки отличаются видовой специфичностью: для каждого вида животных характерен набор определенных белков.

Различают белки простые и сложные. Простые состоят только из аминокислот (например, альбумины, глобулины, фибриноген, миозин и др.). В состав сложных белков, кроме аминокислот, входят и другие органические соединения, например, жиры и углеводы (липопротеиды, гликопротеиды и др.).

Белки выполняют следующие функции:

    ферментативную (например, фермент амилаза расщепляет углеводы);

    структурную (например, входят в состав мембран и др. органоидов клетки);

    рецепторную (например, белок родопсин способствует лучшему зрению);

    транспортную (например, гемоглобин переносит кислород или углекислый газ);

    защитную (например, белки иммуноглобулины участвуют в формировании иммунитета);

    двигательную (например, актин и миозин участвуют в сокращении мышечных волокон);

    гормональную (например, инсулин превращает глюкозу в гликоген);

    энергетическую (при расщеплении 1 г белка выделяется 4,2 ккал энергии).

Жиры (липиды) - соединения трёхатомного спирта глицерина и высокомолекулярных жирных кислот. Химическая формула жиров:

CH 2 -O-C(O)-R¹

CH 2 -O-C(O)-R³, где радикалы могут быть разными.

Функции липидов в клетке:

    структурная (принимают участие в построении клеточной мембраны);

    энергетическая (при распаде в организме 1 г жира выделяется 9,2 ккал энергии);

    защитная (сохраняют от потери тепла, механических повреждений);

    жир – источник эндогенной воды (при окислении 10 г жира выделяется 11 г воды);

    регуляция обмена веществ.

Углеводы – их молекулу можно представить общей формулой С n (Н 2 О) n – углерод и вода.

Углеводы делят на три группы: моносахариды (включают одну молекулу сахара - глюкоза, фруктоза и др.), олигосахариды (включают от 2 до 10 остатков моносахаридов: сахароза, лактоза) и полисахариды (высокомолекулярные соединения – гликоген, крахмал и др.).

Функции углеводов:

    служат исходными элементами для построения разнообразных органических веществ, например, при фотосинтезе - глюкоза;

    основной источник энергии для организма, при их разложении с использованием кислорода выделяется больше энергии, чем при окислении жира;

    защитная (например, слизь, выделяемая различными железами, содержит много углеводов; она предохраняет стенки полых органов (бронхи, желудок, кишечник) от механических повреждений; обладая антисептическими свойствами);

    структурная и опорная функции: входят в состав плазматической мембраны.

Нуклеиновые кислоты – это фосфорсодержащие биополимеры. К ним относятся дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) кислоты .

ДНК - самые крупные биополимеры, их мономером является нуклеотид . Он состоит из остатков трех веществ: азотистого основания, углевода дезоксирибозы и фосфорной кислоты. Известны 4 нуклеотида, участвующие в образовании молекулы ДНК. Два азотистых основания являются производными пиримидина – тимин и цитозин. Аденин и гуанин относят к производным пурина.

Согласно модели ДНК, предложенной Дж. Уотсоном и Ф. Криком (1953), молекула ДНК представляет собой две спирально обвивающие друг друга нити.

Две нити молекулы удерживаются вместе водородными связями, которые возникают между их комплементарными азотистыми основаниями. Аденин комплементарен тимину, а гуанин – цитозину. ДНК в клетках находится в ядре, где она вместе с белками образует хромосомы . ДНК имеется также в митохондриях и пластидах, где их молекулы располагаются в виде кольца. Основная функция ДНК – хранение наследственной информации, заключенной в последовательности нуклеотидов, образующих ее молекулу, и передача этой информации дочерним клеткам.

Рибонуклеиновая кислота одноцепочечная. Нуклеотид РНК состоит из одного из азотистых оснований (аденина, гуанина, цитозина или урацила), углевода рибозы и остатка фосфорной кислоты.

Различают несколько видов РНК.

Рибосомальная РНК (р-РНК) в соединении с белком входит в состав рибосом. На рибосомах осуществляется синтез белка. Информационная РНК (и-РНК) переносит информацию о синтезе белка из ядра в цитоплазму. Транспортная РНК (т-РНК) находится в цитоплазме; присоединяет к себе определенные аминокислоты и доставляет их к рибосомам – месту синтеза белка.

РНК находится в ядрышке, цитоплазме, рибосомах, митохондриях и пластидах. В природе есть еще один вид РНК – вирусная. У одних вирусов она выполняет функцию хранения и передачи наследственной информации. У других вирусов данную функцию выполняет вирусная ДНК.

Аденозинтрифосфорная кислота (АТФ) - является особым нуклеотидом, образованным азотистым основанием аденином, углеводом рибозой и тремя остатками фосфорной кислоты.

АТФ – универсальный источник энергии, необходимой для биологических процессов, протекающих в клетке. Молекула АТФ очень неустойчива и способна отщеплять одну или две молекулы фосфата с выделением большого количества энергии. Эта энергия расходуется на обеспечение всех жизненных функций клетки – биосинтеза, движения, генерации электрического импульса и др. Связи в молекуле АТФ называются макроэргическими. Отщепление фосфата от молекулы АТФ сопровождается выделением 40 кДж энергии. Синтез АТФ происходит в митохондриях.

В клетках содержатся неорганические и органические вещества (соединения).

Неорганические вещества клетки - это вода, различные минеральные соли, углекислый газ, кислоты и основания.

Неорганические вещества клетки

Вода

(составляет 70-80% массы клетки)

Минеральные соли
(составляют 1-1,5% общей массы клетки)
  • придаёт клетке упругость и объём;
  • универсальный растворитель;
  • водные растворы образуют внутреннюю среду клетки;
  • средство транспорта для растворённых веществ в клетку и из неё;
  • служит средой, в которой протекают химические реакции;
  • является ускорителем многих химических процессов;
  • обеспечивает теплоёмкость;
  • обладает высокой теплопроводностью;
  • участвует в терморегуляции живых организмов.
  • присутствуют в виде ионов или твёрдых нерастворимых солей;
  • создают кислую или щелочную реакцию среды;
  • Ca 2+ входит в состав костей и зубов, участвует в свёртывании крови;
  • K + и Na + обеспечивают раздражимость клеток;
  • Cl - входит в состав желудочного сока;
  • Mg 2+ содержится в хлорофилле;
  • I - компонент тироксина (гормона щитовидной железы);
  • Fe 2+ входит в состав гемоглобина;
  • Cu , Mn , B участвуют в кроветворении, фотосинтезе, влияют на рост растений.

Вода является важнейшим компонентом содержимого живой клетки. Вода придает клетке упругость и объем, обеспечивает постоянство состава, участвует в химических реакциях и в построении органических молекул, делает возможным протекание всех процессов жизнедеятельности клетки. Вода является растворителем химических веществ, которые поступают в клетку и выводятся из нее.

Вода (оксид водорода, Н 2 O) — прозрачная жидкость, не имеющая цвета (в малом объёме), запаха и вкуса. В природных условиях содержит растворённые вещества (соли, газы). Вода имеет ключевое значение в жизни клеток и живых организмов, в формировании климата и погоды.

Количество воды в клетке составляет от 60 до 95% общей массы. Роль воды в клетке определяется её уникальными химическими и физическими свойствами, связанными с малыми размерами молекул, их полярностью и способностью образовывать водородные связи.

Вода как компонент биологических систем

  • Вода — универсальный растворитель для полярных веществ — солей, сахаров, кислот и др. Она увеличивает их реакционную способность, поэтому большая часть химических реакций в клетке протекает в водных растворах.
  • Неполярные вещества в воде нерастворимы (не происходит образования водородных связей). Притягиваясь друг к другу, гидрофобные вещества в присутствии воды образуют различные комплексы (например, биологические мембраны).
  • Высокая удельная теплоёмкость воды (т. е. поглощение большого количества энергии для разрыва водородных связей) обеспечивает поддержание теплового баланса организма при перепадах температуры окружающей среды.
  • Высокая теплота парообразования (способность молекул уносить с собой значительное количество тепла при охлаждении организма) предотвращает перегрев организма.
  • Высокое поверхностное натяжение обеспечивает передвижение растворов по тканям.
  • Вода обеспечивает выведение продуктов метаболизма.
  • У растений вода поддерживает тургор клеток, у некоторых животных выполняет опорные функции (гидростатический скелет).
  • Вода входит в состав различных биологических жидкостей (крови, слюны, слизи, желчи, слёз, спермы, синовиальной и плевральной жидкостей и др.).

Молекула воды имеет угловую форму: атомы водорода по отношению к кислороду образуют угол, равный приблизительно 104,5°.

Из-за высокой электроотрицательности атома кислорода связь О—H полярна. Атомы водорода несут частичный положительный заряд, а атом кислорода — частичный отрицательный.

Диполь создаёт вокруг себя магнитное поле на больших по сравнению с его размерами расстояниях.

При испарении воды разрушение водородных связей требует больших затрат энергии.

Содержание воды в различных организмах и органах (в %)
Растения или части растений Животные или органы животных
Водоросли до 98 Медузы до 95
Высшие растения от 70 до 80 Виноградные улитки 80
Листья деревьев от 50 до 97 Тело человека 60
Клубни картофеля 75 Кровь человека 79
Сочные плоды фруктов до 95 Мышцы человека от 77 до 83
Одревесневшие части растений от 40 до 80 Сердце человека 70
Сухие семена от 5 до 9

Неорганические вещества в клетке, кроме воды, представлены минеральными солями .

Минеральные соли составляют всего 1-1,5% общей массы клетки, но роль их значительна. В растворенном виде они являются необходимой средой для химических процессов, обусловливающих жизнь клетки.

В клетках находится много разных солей . Животные с помощью выделительной системы удаляют из организма избыточные соли, а у растений они накапливаются и кристаллизуются в различных органоидах или в вакуолях. Чаще это бывают соли кальция. Их форма в клетках растений может быть различной: иглы, ромбы, кристаллики - одиночные или сросшиеся вместе (друзы).

Молекулы солей в водном растворе распадаются на катионы и анионы. Наибольшее значение имеют катионы (К + , Na + , Са 2+ , Mg + , NH 4 +) и анионы (Сl - , Н 2 Р0 4 - , НР0 4 2- , НС0 3 - , NO 3 - , SO 4 2-).

Концентрация различных ионов неодинакова в различных частях клетки, а также в клетке и окружающей среде. Концентрация ионов натрия всегда выше вне клетки, а ионов калия и магния — внутри клетки. Разность между количеством катионов и анионов внутри клетки и на её поверхности обеспечивает активный перенос веществ через мембрану.

От концентрации солей внутри клетки зависят буферные свойства цитоплазмы — способность клетки сохранять определенную концентрацию водородных ионов в условиях постоянного образования кислых и щелочных веществ при метаболизме.

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6,9.

Угольная кислота и её анионы формируют бикарбонатную буферную систему, поддерживающую рН внеклеточной среды (плазма крови) на уровне 7,4.

Некоторые ионы участвуют в активации ферментов, создании осмотического давления в клетке, в процессах мышечного сокращения, свертывании крови и др. Ряд катионов и анионов необходим для синтеза важных органических веществ.

Биология [Полный справочник для подготовки к ЕГЭ] Лернер Георгий Исаакович

2.3.1. Неорганические вещества клетки

В состав клетки входит около 70 элементов периодической системы элементов Менделеева, а 24 из них присутствуют во всех типах клеток. Все присутствующие в клетке элементы делятся, в зависимости от их содержания в клетке, на группы:

макроэлементы – H, O, N, C,. Mg, Na, Ca, Fe, K, P, Cl, S;

микроэлементы – В, Ni, Cu, Co, Zn, Mb и др.;

ультрамикроэлементы – U, Ra, Au, Pb, Hg, Se и др.

В состав клетки входят молекулы неорганических и органических соединений.

Неорганические соединения клетки – вода и неорганические ионы.

Вода – важнейшее неорганическое вещество клетки. Все биохимические реакции происходят в водных растворах. Молекула воды имеет нелинейную пространственную структуру и обладает полярностью. Между отдельными молекулами воды образуются водородные связи, определяющие физические и химические свойства воды.

Физические свойства воды : так как молекулы воды полярны, то вода обладает свойством растворять полярные молекулы других веществ. Вещества, растворимые в воде, называются гидрофильными . Вещества, нерастворимые в воде называются гидрофобными .

Вода обладает высокой удельной теплоемкостью. Чтобы разорвать многочисленные водородные связи, имеющиеся между молекулами воды, требуется поглотить большое количество энергии. Вспомните, как долго нагревается до кипения чайник. Это свойство воды обеспечивает поддержание теплового баланса в организме.

Для испарения воды необходима достаточно большая энергия. Температура кипения воды выше, чем у многих других веществ. Это свойство воды предохраняет организм от перегрева.

Вода может находиться в трех агрегатных состояниях – жидком, твердом и газообразном.

Водородные связи обуславливают вязкость воды и сцепление ее молекул с молекулами других веществ. Благодаря силам сцепления молекул на поверхности воды создается пленка, обладающая такой характеристикой, как поверхностное натяжение .

При охлаждении движение молекул воды замедляется. Количество водородных связей между молекулами становится максимальным. Наибольшей плотности вода достигает при 4 С?. При замерзании вода расширяется (необходимо место для образования водородных связей) и ее плотность уменьшается. Поэтому лед плавает.

Биологические функции воды . Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почвы и к водоемам.

Вода – активный участник реакций обмена веществ.

Вода участвует в образовании смазывающих жидкостей и слизей, секретов и соков в организме. Эти жидкости находятся в суставах позвоночных животных, в плевральной полости, в околосердечной сумке.

Вода входит в состав слизей, которые облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей. Водную основу имеют и секреты, выделяемые некоторыми железами и органами: слюна, слезы, желчь, сперма и т.д.

Неорганические ионы . К неорганическим ионам клетки относятся: катионы K + , Na + , Ca 2+ , Mg 2+ , NH 3 + и анионы Cl – , NO 3 - , Н 2 PO 4 - , NCO 3 - , НPO 4 2- .

Разность между количеством катионов и анионов (Nа + , Ка + , Сl -) на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения.

Анионы фосфорной кислоты создают фосфатную буферную систему , поддерживающую рН внутриклеточной среды организма на уровне 6-9.

Угольная кислота и ее анионы создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне 7-4.

Соединения азота служат источником минерального питания, синтеза белков, нуклеиновых кислот. Атомы фосфора входят в состав нуклеиновых кислот, фосфолипидов, а также костей позвоночных, хитинового покрова членистоногих. Ионы кальция входят в состав вещества костей; они также необходимы для осуществления мышечного сокращения, свертывания крови.

ПРИМЕРЫ ЗАДАНИЙ

А1. Полярностью воды обусловлена ее способность

1) проводить тепло 3) растворять хлорид натрия

2) поглощать тепло 4) растворять глицерин

А2. Больным рахитом детям необходимо давать препараты, содержащие

1) железо 2) калий 3) кальций 4) цинк

А3. Проведение нервного импульса обеспечивается ионами:

1) калия и натрия 3) железа и меди

2) фосфора и азота 4) кислорода и хлора

А4. Слабые связи между молекулами воды в ее жидкой фазе называются:

1) ковалентными 3) водородными

2) гидрофобными 4) гидрофильными

А5. В состав гемоглобина входит

1) фосфор 2) железо 3) сера 4) магний

А6. Выберите группу химических элементов, обязательно входящую в состав белков

А7. Пациентам с гипофункцией щитовидной железы дают препараты, содержащие

Часть В

В1. Выберите функции воды в клетке

1) энергетическая 4) строительная

2) ферментативная 5) смазывающая

3) транспортная 6) терморегуляционная

В2. Выберите только физические свойства воды

1) способность к диссоциации

2) гидролиз солей

3) плотность

4) теплопроводность

5) электропроводность

6) донорство электронов

Часть С

С1. Какие физические свойства воды определяют ее биологическое значение?

Из книги Большая Советская Энциклопедия (ВК) автора БСЭ

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Из книги Большая Советская Энциклопедия (КА) автора БСЭ

Из книги Большая Советская Энциклопедия (НЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ПЛ) автора БСЭ

Из книги Большая Советская Энциклопедия (ПО) автора БСЭ

Из книги Большая Советская Энциклопедия (СТ) автора БСЭ

Из книги Краткая история почти всего на свете автора Брайсон Билл

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Карманный справочник медицинских анализов автора Рудницкий Леонид Витальевич

24 КЛЕТКИ Это начинается с одной клетки. Первая клетка делится, чтобы стать двумя, а две становятся четырьмя и так далее. После всего 47 удвоений у вас будет около 10 тысяч триллионов (10 000 000 000 000 000) клеток, готовых ожить в виде человека*.322 И каждая из этих клеток точно знает, что

Из книги Полный справочник анализов и исследований в медицине автора Ингерлейб Михаил Борисович

2.3. Химическая организация клетки. Взаимосвязь строения и функций неорганических и органических веществ (белков, нуклеиновых кислот, углеводов, липидов, АТФ), входящих в состав клетки. Обоснование родства организмов на основе анализа химического состава их

Из книги Как заботиться о себе, если тебе за 40. Здоровье, красота, стройность, энергичность автора Карпухина Виктория Владимировна

2.3.2. Органические вещества клетки. Углеводы, липиды Углеводы. Общая формула Сn (H2O)n. Следовательно, углеводы содержат в своем составе только три химических элемента.Растворимые в воде углеводы.Функции растворимых углеводов: транспортная, защитная, сигнальная,

Из книги Энциклопедия доктора Мясникова о самом главном автора Мясников Александр Леонидович

4.6. Неорганические вещества Неорганические вещества в плазме и сыворотке крови (калий, натрий, кальций, фосфор, магний, железо, хлор и др.), определяют физикохимические свойства крови.Количество неорганических веществ в плазме – около 1 %. В тканях организма они находятся в

Из книги автора

Из книги автора

Из книги автора

6.9. Стволовые клетки Сейчас модно рассуждать на тему стволовых клеток. Когда меня спрашивают, что я об этом думаю, то я отвечаю вопросом на вопрос: «Где? В России или в мире?».В России и в мире ситуации в этой области совершенно разные. В мире идут интенсивные исследования и

Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В таблице 1 представлены основные химические элементы, обнаруженные в клетках живых организмов.

Таблица 1. Содержание химических элементов в клетке

По содержанию в клетке можно выделить три группы элементов. В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки. Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам (от греч. макрос - большой).

Остальные элементы, представ ленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы (от греч. микро - малый).

Каких-либо элементов, присущих только живой природе, в клетке не обнаружено. Все перечисленные химические элементы входят и в состав неживой природы. Это указывает на единство живой и неживой природы.

Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров - белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор - в состав нуклеиновых кислот, железо - в состав гемоглобина, а магний - в состав хлорофилла. Кальций играет важную роль в обмене веществ.

Часть химических элементов, содержащихся в клетке, входит в со став неорганических веществ - минеральных солей и воды.

Минеральные соли находятся в клетке, как правило, в виде катионов (К + , Na + , Ca 2+ , Mg 2+) и анионов (HPO 2-/4 , H 2 PO -/4 , СI - , НСО 3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.

(У многих клеток среда слабощелочная и ее рН почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)

Из неорганических веществ в живой природе огромную роль играет вода .

Без воды жизнь невозможна. Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани - всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.

Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды - потреблением большого количества энергии при нагревании. Чем же определяется высокая теплоемкость воды?

В молекуле воды атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярна, так как атом кислорода имеет частично отрицательный заряд, а каждый из двух атомов водорода имеет

Частично положительный заряд. Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы образуется водородная связь. Водородные связи обеспечивают соединение большого числа молекул воды. При нагревании воды значительная часть энергии расходуется на разрыв водородных связей, что и определяет ее высокую теплоемкость.

Вода - хороший растворитель . Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.

Гидрофильными (от греч. гидро - вода и филео - люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).

Гидрофобными (от греч. гидро - вода и фобос - страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость . Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

Тела живой и неживой природы состоят из одинаковых химических элементов. В состав живых организмов входят неорганические вещества - вода и минеральные соли. Жизненно важные многочисленные функции воды в клетке обусловлены особенностями ее молекул: их полярностью, способностью образовывать водородные связи.

НЕОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

В клетках живых организмов встречается около 90 элементов, причем примерно 25 из обнаружены практически во всех клетках. По содержанию в клетке химические элементы подразделяются на три большие группы: макроэлементы(99%), микроэлементы(1%), ультрамикроэлементы(менее 0,001%).

К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.
К микроэлеметам относятся марганец, медь, цинк, йод, фтор.
К ультрамикроэлементам относятся серебро, золото, бром, селен.

ЭЛЕМЕНТЫ СОДЕРЖАНИЕ В ОРГАНИЗМЕ (%) БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ
Макроэлементы:
O.C.H.N 62-3 Входят в состав всех органических веществ клетки, воды
Фосфор Р 1,0 Входят в состав нуклеиновых кислот, АТФ (образует макроэргические связи), ферментов, костной ткани и эмали зубов
Кальций Са +2 2,5 У растений входит в состав оболочки клетки, у животных - в состав костей и зубов, активизирует свертываемость крови
Микроэлементы: 1-0,01
Сера S 0,25 Входит в состав белков, витаминов и ферментов
Калий К + 0,25 Обуславливает проведение нервных импульсов; активатор ферментов белкового синтеза, процессов фотосинтеза, роста растений
Хлор CI - 0,2 Является компонентом желудочного сока в виде соляной кислоты, активизирует ферменты
Натрий Na + 0,1 Обеспечивает проведение нервных импульсов, поддерживает осмотическое давление в клетке, стимулирует синтез гормонов
Магний Мg +2 0,07 Входит в состав молекулы хлорофилла, содержится в костях и зубах, активизирует синтез ДНК, энергетический обмен
Йод I - 0,1 Входит в состав гормона щитовидной железы - тироксина, влияет на обмен веществ
Железо Fе+3 0,01 Входит в состав гемоглобина, миоглобина, хрусталика и роговицы глаза, активатор ферментов, участвует в синтезе хлорофилла. Обеспечивает транспорт кислорода к тканям и органам
Ультрамикроэлементы: менее 0,01, следовые количества
Медь Си +2 Участвует в процессах кроветворения, фотосинтеза, катализирует внутриклеточные окислительные процессы
Марганец Мn Повышает урожайность растений, активизирует процесс фотосинтеза, влияет на процессы кроветворения
Бор В Влияет на ростовые процессы растений
Фтор F Входит в состав эмали зубов, при недостатке развивается кариес, при избытке - флюороз
Вещества:
Н 2 0 60-98 Составляет внутреннюю среду организма, участвует в процессах гидролиза, структурирует клетку. Универсальный растворитель, катализатор, участник химических реакций

ОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

ВЕЩЕСТВА СТРОЕНИЕ И СВОЙСТВА ФУНКЦИИ
Липиды
Сложные эфиры высших жирных кислот и глицерина. В состав фосфолипидов входит дополнительно остаток Н 3 РО4.Обладают гидрофобными или гидрофильно-гидрофобными свойствами, высокой энергоемкостью Строительная - образует билипидный слой всех мембранных.
Энергетическая .
Терморегуляторная .
Защитная .
Гормональная (кортикостероиды, половые гормоны).
Компоненты витаминов D,E. Источник воды в организме.Запасное питательное вещество
Углеводы
Моносахариды:
глюкоза,
фруктоза,
рибоза,
дезоксирибоза
Хорошо растворимы в воде Энергетическая
Дисахариды:
сахароза,
мальтоза (солодовый сахар)
Растворимы в воде Компоненты ДНК, РНК, АТФ
Полисахариды:
крахмал,
гликоген,
целлюлоза
Плохо растворимы или нерастворимы в воде Запасное питательное вещество. Строительная - оболочка растительной клетки
Белки Полимеры. Мономеры - 20 аминокислот. Ферменты - биокатализаторы.
I структура - последовательность аминокислот в полипептидной цепи. Связь - пептидная - СО- NH- Строительная - входят в состав мембранных структур, рибосом.
II структура - a -спираль, связь - водородная Двигательная (сократительные белки мышц).
III структура - пространственная конфигурация a -спирали (глобула). Связи - ионные, ковалентные, гидрофобные, водородные Транспортная (гемоглобин). Защитная (антитела).Регуляторная (гормоны, инсулин)
IV структура характерна не для всех белков. Соединение нескольких полипептидных цепей в единую суперструктуруВ воде плохо растворимы. Действие высоких температур, концентрированных кислот и щелочей, солей тяжелых металлов вызывает денатурацию
Нуклеиновые кислоты: Биополимеры. Состоят из нуклеотидов
ДНК - дезокси-рибонуклеино-вая кислота. Состав нуклеотида: дезоксирибоза, азотистые основания - аденин, гуанин, цитозин, тимин, остаток Н 3 РО 4 . Комплементарность азотистых оснований А = Т, Г = Ц. Двойная спираль. Способна к самоудвоению Образуют хромосомы. Хранение и передача наследственной информации, генетического кода. Биосинтез РНК, белков. Кодирует первичную структуру белка. Содержится в ядре, митохондриях, пластидах
РНК - рибонуклеиновая кислота. Состав нуклеотида: рибоза, азотистые основания - аденин, гуанин, цитозин, урацил, остаток Н 3 РО 4 Комплементарность азотистых оснований А = У, Г = Ц. Одна цепь
Информационная РНК Передача информации о первичной структуре белка, участвует в биосинтезе белка
Рибосомальная РНК Строит тело рибосомы
Транспортная РНК Кодирует и переносит аминокислоты к месту синтеза белка - рибосомам
Вирусная РНК и ДНК Генетический аппарат вирусов

Ферменты.

Важнейшая функция белков - каталитическая. Белковые молекулы, увеличивающие на несколько порядков скорость химических реакции в клетке, называют ферментами . Ни один биохимический процесс в организме не происходит без участия ферментов.

В настоящее время обнаружено свыше 2000 ферментов. Их эффективность во много раз выше, чем эффективность неорганических катализаторов, используемых в производстве. Так, 1 мг железа в составе фермента каталазы заменяет 10 т неорганического железа. Каталаза увеличивает скорость разложения пероксида водорода (Н 2 О 2) в 10 11 раз. Фермент, катализирующий реакцию образования угольной кислоты (СО 2 +Н 2 О = Н 2 СО 3), ускоряет реакцию в 10 7 раз.

Важным свойством ферментов является специфичность их действия, каждый фермент катализирует только одну или небольшую группу сходных реакций.

Вещество, на которое воздействует фермент, называют субстратом . Структуры молекулы фермента и субстрата должны точно соответствовать друг другу. Этим объясняется специфичность действия ферментов. При соединении субстрата с ферментом пространственная структура фермента изменяется.

Последовательность взаимодействия фермента и субстрата можно изобразить схематично:

Субстрат+Фермент - Фермент-субстратный комплекс - Фермент+Продукт.

Из схемы видно, что субстрат соединяется с ферментом с образованием фермент-субстратного комплекса. При этом субстрат превращается в новое вещество - продукт. На конечном этапе фермент освобождается от продукта и вновь вступает во взаимодействие с очередной молекулой субстрата.

Ферменты функционируют лишь при определенной температуре, концентрации веществ, кислотности среды. Изменение условий приводит к изменению третичной и четвертичной структуры белковой молекулы, а, следовательно, и к подавлению активности фермента. Как это происходит? Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром . Активный центр содержит от 3 до 12 аминокислотных остатков и формируется в результате изгиба полипептидной цепи.

Под влиянием разных факторов изменяется структура молекулы фермента. При этом нарушается пространственная конфигурация активного центра, и фермент теряет свою активность.

Ферменты - это белки, играющие роль биологических катализаторов. Благодаря ферментам на несколько порядков возрастает скорость химических реакций в клетках. Важное свойство ферментов - специфичность действия в определенных условиях.

Нуклеиновые кислоты.

Нуклеиновые кислоты были от крыты во второй половине XIX в. швейцарским биохимиком Ф. Мишером, который выделил из ядер клеток вещество с высоким содержанием азота и фосфора и назвал его "нуклеином" (от лат. нуклеус - ядро).

В нуклеиновых кислотах хранится наследственная информация о строении и функционировании каждой клетки и всех живых существ на Земле. Существует два типа нуклеиновых кислот - ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты, как и белки, обладают видовой специфичностью, то есть организмам каждого вида присущ свой тип ДНК. Чтобы выяснить причины видовой специфичности, рассмотрим строение нуклеиновых кислот.

Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.

Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин - А, тимин - Т, гуанин - Г или цитозин - Ц), а также угле вод дезоксирибоза и остаток фосфорной кислоты.

Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.

Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.

Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потребовалась бы книга объемом около 820000 страниц. Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК. Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации обо всех признаках организмов.

В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.

Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды. Нуклеотиды парные, то есть число адениновых нуклеотидов в любой молекуле ДНК равно числу тимидиновых нуклеотидов (А-Т), а число цитозиновых нуклеотидов равно числу гуаниновых нуклеотидов (Ц-Г). Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с Тимином другой цепи, а гуанин - тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг друга.

Молекулы нуклеиновых кислот - ДНК и РНК состоят из нуклеотидов. В состав нуклеотидов ДНК входит азотистое основание (А, Т, Г, Ц), углевод дезоксирибоза и остаток молекулы фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, состоящую из двух цепей, соединенных водородными связями по принципу комплементарности. Функция ДНК - хранение наследственной информации.

В клетках всех организмов имеются молекулы АТФ - аденозинтрифосфорной кислоты. АТФ - универсальное вещество клетки, молекула которого имеет богатые энергией связи. Молекула АТФ - это один своеобразный нуклеотид, который, как и другие нуклеотиды, состоит из трех компонентов: азотистого основания - аденина, углевода - рибозы, но вместо одного содержит три остатка молекул фосфорной кислоты (рис. 12). Связи, обозначенные на рисунке значком, - богаты энергией и называются макроэргическими . Каждая молекула АТФ содержит две макроэргические связи.

При разрыве макроэргической связи и отщеплении с помощью ферментов одной молекулы фосфорной кислоты освобождается 40 кДж/моль энергии, а АТФ при этом превращается в АДФ - аденозиндифосфорную кислоту. При отщеплении еще одной молекулы фосфорной кислоты освобождается еще 40 кДж/моль; образуется АМФ - аденозинмонофосфорная кислота. Эти реакции обратимы, то есть АМФ может пре вращаться в АДФ, АДФ - в АТФ.

Молекулы АТФ не только расщепляются, но и синтезируются, по этому их содержание в клетке относительно постоянно. Значение АТФ в жизни клетки огромно. Эти молекулы играют ведущую роль в энергетическом обмене, необходимом для обеспечения жизнедеятельности клетки и организма в целом.

Рис. 12. Схема строения АТФ.
аденин -

Молекула РНК, как правило, одиночная цепь, состоящая из четырех типов нуклеотидов - А, У, Г, Ц. Известны три основных вида РНК: иРНК, рРНК, тРНК. Содержание молекул РНК в клетке непостоянно, они участвуют в биосинтезе белка. АТФ - универсальное энергетическое вещество клетки, в котором имеются богатые энергией связи. АТФ играет центральную роль в обмене энергии в клетке. РНК и АТФ содержатся как в ядре, так и в цитоплазме клетки.

Задачи и тесты по теме "Тема 4. "Химический состав клетки"."

  • полимер, мономер;
  • углевод, моносахарид, дисахарид, полисахарид;
  • липид, жирная кислота, глицерин;
  • аминокислота, пептидная связь, белок;
  • катализатор, фермент, активный центр;
  • нуклеиновая кислота, нуклеотид.
  • Перечислить 5-6 причин, которые делают воду столь важным компонентом живых систем.
  • Назвать четыре главных класса органических соединений содержащихся в живых организмах; охарактеризовать роль каждого из них.
  • Объяснить, почему контролируемые ферментами реакции зависят от температур, рН и присутствием коферментов.
  • Рассказать о роли АТФ в энергетическом хозяйстве клетки.
  • Назвать исходные вещества, основные этапы и конечные продукты реакций, вызываемых светом и реакции фиксации углерода.
  • Дать краткое описание общей схемы клеточного дыхания, из которого было бы ясно, какое место занимают реакции гликолиза, цикла Г.Кребса (цикла лимонной кислоты) и цепь переноса электронов.
  • Сравнить дыхание и брожение.
  • Описать строение молекулы ДНК и объяснить почему число остатков аденина равно числу остатков тимина, а число остатков гуанина равно числу остатков цитозина.
  • Составить краткую схему синтеза РНК на ДНК (транскрипция) у прокариот.
  • Описать свойства генетического кода и объяснить, почему он должен быть триплетным.
  • Исходя из данной цепи ДНК и таблицы кодонов определить комплементарную последовательность матричной РНК, указать кодоны транспортной РНК и аминокислотную последовательность, которая образуется в результате трансляции.
  • Перечислить этапы белкового синтеза на уровне рибосом.
  • Алгоритм решения задач.

    Тип 1. Самокопирование ДНК.

    Одна из цепочек ДНК имеет такую последовательность нуклеотидов:
    АГТАЦЦГАТАЦТЦГАТТТАЦГ...
    Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы?

    Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность:
    ТАЦТГГЦТАТГАГЦТАААТГ...

    Тип 2. Кодирование белков.

    Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин...
    С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

    Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько.
    АААЦАААЦУГЦГГЦУГЦГААГ

    С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов:
    АЦГЦЦЦАТГГЦЦГГТ...

    По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК:
    УГЦГГГУАЦЦГГЦЦА...

    Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту:
    Цистеин-глицин-тирозин-аргинин-пролин-...

    Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

    • Тема 4. "Химический состав клетки." §2-§7 стр. 7-21
    • Тема 5. "Фотосинтез." §16-17 стр. 44-48
    • Тема 6. "Клеточное дыхание." §12-13 стр. 34-38
    • Тема 7. "Генетическая информация." §14-15 стр. 39-44


    Понравилась статья? Поделитесь с друзьями!
    Была ли эта статья полезной?
    Да
    Нет
    Спасибо, за Ваш отзыв!
    Что-то пошло не так и Ваш голос не был учтен.
    Спасибо. Ваше сообщение отправлено
    Нашли в тексте ошибку?
    Выделите её, нажмите Ctrl + Enter и мы всё исправим!