Информационный женский портал

Построить три проекции точек по координатам. Алгоритм построения комплексного чертежа точки по координатам

Продолжительность : 1урок (45 минут).
Класс : 6 класс
Технологии :

  • мультимедийная презентация Microsoft Office PowerPoint, Notebook;
  • применение интеративной доски;
  • раздаточный материала для учащихся созданный с помощью Microsoft Office Word и Microsoft Office Excel .

Аннотация :
На тему «Координаты» в тематическом планировании отводится 6 часов. Это четвёртый урок по теме «Координаты». На момент проведения урока учащиеся уже познакомились с понятием «координатная плоскость» и правилами построения точки. Актуализация знаний проводится в форме фронтального опроса. На уроках повторения все ученики включены в различные виды деятельности. При этом используются все каналы восприятия и воспроизведения материала.
Усвоение теории проверяется также в ходе устной работы (задание разгадай кроссворд, в какой четверти находится точка). Для сильных учеников предусмотрены дополнительные задания.
На уроке используется мультимедийное оборудование и интерактивная доска для демонстрации презентации и заданий в Microsoft Office PowerPoint и Notebook. Для создания тестовых заданий и раздаточного материала были использованы: Microsoft Office Excel, Microsoft Office Word.
Использование интерактивной доски расширяет возможности подачи материала. В программе Notebook ученики могут самостоятельно передвигать объекты в нужное место. В программе Microsoft Office PowerPoint есть возможность задать движение объектам, поэтому предусмотрено проведение физминутки для глаз.

На уроке используются:

  • проверка домашнего задания;
  • фронтальная работа;
  • индивидуальная работа учащихся;
  • представление доклада обучающегося;
  • выполнение устных и письменных упражнений;
  • работа обучающихся с интерактивной доской;
  • самостоятельная работа.

Конспект урока.

Цель: закрепить навыки нахождения координат отмеченных точек и строить точки по заданным координатам.
Задачи урока:
образовательные:

  • обобщение знаний и умений учащихся по теме «Координатная плоскость»;
  • промежуточный контроль знаний и умений учащихся;

развивающие:

  • развитие коммуникативной компетенции учащихся;
  • развитие вычислительных навыков обучающихся;
  • развитие логического мышления;
  • развитие интереса учащихся к предмету посредством нетрадиционной формы ведения урока;
  • развитие математически грамотной речи, кругозора учащихся;
  • развитие умения самостоятельной работы с учебником и дополнительной литературой;
  • развитие эстетических чувств учащихся;

воспитательные:

  • воспитание дисциплинированности при организации работы на уроке;
  • воспитание познавательной активности, чувства ответственности, культуры общения;
  • воспитание аккуратности при выполнении построений.

Ход урока.

  • Организационный момент.

Приветствие учащихся.Сообщение темы и цели урока. Проверка готовности класса к уроку. Ставится задача: повторить, обобщить, систематизировать знания по объявленной теме.

2. Актуализация знаний.

Устный счёт.
1) Индивидуальная работа: несколько человек выполняют работу на карточках.

2) Работа с классом: вычисли примеры и составь слово. Таблица на экране интерактивной доски, буквы вписываются в таблицу электронным маркером от интерактивной доски.

Ученики поочерёдно выходят к доске и записывают буквы. Получается слово «Прометей». Один из учащихся, заранее подготовивший доклад, рассказывает, что обозначает это слово. (Древнегреческий астроном Клавдий Птолемей, пользовавшийся широтой и долготой в качестве координат уже во II веке.)

Фронтальная работа .

Задание «Разгадай кроссворд» поможет вспомнить основные понятия по теме «Координатная плоскость».
Учитель показывает на экране интерактивной доски кроссворд и предлагает учащимся решить его. Ученики с помощью электронных маркеров записывают слова в кроссворд.
1. Две координатные прямые образуют координатную ….
2. Координатные прямые - это координатные….
3. Какой угол образуется при пересечении координатных прямых?
4. Как называется пара чисел, определяющих положение точки на плоскости?
5. Как называется первое число?
6. Как называется второе число?
7. Как называется отрезок от 0 до 1?
8. На сколько частей делится координатная плоскость координатными прямыми?

3. Закрепление умений и навыков строить геометрическую фигуру по заданным координатам её вершин.

Построение геометрических фигур. Работа с учебником в тетрадях.

  • №1054а «Постройте треугольник, если известны координаты его вершин: А(0;-3), В(6:2), С(5:2). Укажите координаты точек, в которых стороны треугольника пересекают ось х».
  • Построить четырёхугольник АВСD, если А(-3;1), В(1;1), С(1;-2),D(-3;-2). Определить вид четырёхугольника. Найти координаты пересечения диагоналей.

4. Физминутка для глаз.

На слайде учащиеся должны следить глазами за передвижениями объекта. В конце физминутки задаётся вопрос о геометрических фигурах, полученных в результате передвижения глаз.

5. Контроль за умениями строить точки на координатной плоскости по заданным координатам.

Самостоятельная работа. Конкурс художников.
На слайде записаны координаты точек. Также карточки распечатаны для каждого ученика. Если верно отметить точки на координатной плоскости и последовательно соединить их, то получиться рисунок. Каждый ученик выполняет задание самостоятельно. После выполнения работы, открывается правильный рисунок на экране. Каждый ученик получает оценку за самостоятельную работу.

6. Домашнее задание.

  • №1054б, №1057а.
  • Творческое задание: нарисовать на координатной плоскости рисунок по точкам и записать координаты этих точек.

7. Подведение итогов урока.

Вопросы учащимся:

  • Что такое координатная плоскость?
  • Как называются координатные оси ОХ и ОУ?
  • Какой угол образуется при пересечении координатных прямых?
  • Как называется пара чисел, определяющих положение точки на плоскости?
  • Как называется первое число?
  • Как называется второе число?

Литература и ресурсы:

  • Г.В. Дорофеев, С.Б.Суворова, И.Ф.Шарыгин “Математика. 6кл”
  • Математика. 6 класс: Поурочные планы (по учебнику Г.В. Дорофеева и др.)
  • http://www.pereplet.ru/nauka/almagest/alm-cat/Ptolemy.htm

Математика - наука довольно сложная. Изучая ее, приходится не только решать примеры и задачи, но и работать с различными фигурами, и даже плоскостями. Одной из наиболее используемых в математике является система координат на плоскости. Правильной работе с ней детей учат не один год. Поэтому важно знать, что это такое и как правильно с ней работать.

Давайте же разберемся, что представляет собой данная система, какие действия можно выполнять с ее помощью, а также узнаем ее основные характеристики и особенности.

Определение понятия

Координатная плоскость - это плоскость, на которой задана определенная система координат. Такая плоскость задается двумя прямыми, пересекающимися под прямым углом. В точке пересечения этих прямых находится начало координат. Каждая точка на координатной плоскости задается парой чисел, которые называют координатами.

В школьном курсе математики школьникам приходится довольно тесно работать с системой координат - строить на ней фигуры и точки, определять, какой плоскости принадлежит та или иная координата, а также определять координаты точки и записывать или называть их. Поэтому поговорим подробнее обо всех особенностях координат. Но прежде коснемся истории создания, а затем уже поговорим о том, как работать на координатной плоскости.

Историческая справка

Идеи о создании системы координат были еще во времена Птоломея. Уже тогда астрономы и математики думали о том, как научиться задавать положение точки на плоскости. К сожалению, в то время еще не было известной нам системы координат, и ученым приходилось пользоваться другими системами.

Изначально они задавали точки с помощью указания широты и долготы. Долгое время это был один из наиболее используемых способов нанесения на карту той или иной информации. Но в 1637 году Рене Декарт создал собственную систему координат, названную впоследствии в честь "декартовой".

Уже в конце XVII в. понятие «координатная плоскость» стало широко использоваться в мире математики. Несмотря на то что с момента создания данной системы прошло уже несколько веков, она до сих пор широко используется в математике и даже в жизни.

Примеры координатной плоскости

Прежде чем говорить о теории, приведем несколько наглядных примеров координатной плоскости, чтобы вы смогли представить ее себе. В первую очередь координатная система используется в шахматах. На доске каждый квадрат имеет свои координаты - одну координату буквенную, вторую - цифровую. С ее помощью можно определить положение той или иной фигуры на доске.

Вторым наиболее ярким примером может служить любимая многими игра «Морской бой». Вспомните, как, играя, вы называете координату, например, В3, таким образом указывая, куда именно целитесь. При этом, расставляя корабли, вы задаете точки на координатной плоскости.

Данная система координат широко применяется не только в математике, логических играх, но и в военном деле, астрономии, физике и многих других науках.

Оси координат

Как уже говорилось, в системе координат выделяют две оси. Поговорим немного о них, так как они имеют немалое значение.

Первая ось - абсцисс - горизонтальная. Она обозначается как (Ox ). Вторая ось - ординат, которая проходит вертикально через точку отсчета и обозначается как (Oy ). Именно эти две оси образуют систему координат, разбивая плоскость на четыре четверти. Начало отсчета находится в точке пересечения этих двух осей и принимает значение 0 . Только в случае если плоскость образована двумя пересекающимися перпендикулярно осями, имеющими точку отсчета, это координатная плоскость.

Также отметим, что каждая из осей имеет свое направление. Обычно при построении системы координат принято указывать направление оси в виде стрелочки. Кроме того, при построении координатной плоскости каждая из осей подписывается.

Четверти

Теперь скажем пару слов о таком понятии, как четверти координатной плоскости. Плоскость разбивается двумя осями на четыре четверти. Каждая из них имеет свой номер, при этом нумерация плоскостей ведется против часовой стрелки.

Каждая из четвертей имеет свои особенности. Так, в первой четверти абсцисса и ордината положительная, во второй четверти абсцисса отрицательная, ордината - положительная, в третьей и абсцисса, и ордината отрицательные, в четвертой же положительной является абсцисса, а отрицательной - ордината.

Запомнив эти особенности, можно с легкостью определить, к какой четверти относится та или иная точка. Кроме того, эта информация может пригодиться вам и в том случае, если придется делать вычисления, используя декартову систему.

Работа с координатной плоскостью

Когда мы разобрались с понятием плоскости и поговорили о ее четвертях, можно перейти к такой проблеме, как работа с данной системой, а также поговорить о том, как наносить на нее точки, координаты фигур. На координатной плоскости сделать это не так тяжело, как может показаться на первый взгляд.

В первую очередь строится сама система, на нее наносятся все важные обозначения. Затем уже идет работа непосредственно с точками или фигурами. При этом даже при построении фигур сначала на плоскость наносятся точки, а затем уже прорисовываются фигуры.

Правила построения плоскости

Если вы решили начать отмечать на бумаге фигуры и точки, вам понадобится координатная плоскость. Координаты точек наносятся именно на нее. Для того чтобы построить координатную плоскость, понадобится только линейка и ручка или карандаш. Сначала рисуется горизонтальная ось абсцисс, затем вертикальная - ординат. При этом важно помнить, что оси пересекаются под прямым углом.

Следующим обязательным пунктом является нанесение разметки. На каждой из осей в обоих направлениях отмечаются и подписываются единицы-отрезки. Это делается для того, чтобы затем можно было работать с плоскостью с максимальным удобством.

Отмечаем точку

Теперь поговорим о том, как нанести координаты точек на координатной плоскости. Это основа, которую следует знать, чтобы успешно размещать на плоскости разнообразные фигуры, и даже отмечать уравнения.

При построении точек следует помнить, как правильно записываются их координаты. Так, обычно задавая точку, в скобках пишут две цифры. Первая цифра обозначает координату точки по оси абсцисс, вторая - по оси ординат.

Строить точку следует таким образом. Сначала отметить на оси Ox заданную точку, затем отметить точку на оси Oy . Далее провести воображаемые линии от данных обозначений и найти место их пересечения - это и будет заданная точка.

Вам останется только отметить ее и подписать. Как видите, все довольно просто и не требует особых навыков.

Размещаем фигуру

Теперь перейдем к такому вопросу, как построение фигур на координатной плоскости. Для того чтобы построить на координатной плоскости любую фигуру, следует знать, как размещать на ней точки. Если вы умеете это делать, то разместить фигуру на плоскости не так уж и сложно.

В первую очередь вам понадобятся координаты точек фигуры. Именно по ним мы и будем наносить на нашу систему координат выбранные вами Рассмотрим нанесение прямоугольника, треугольника и окружности.

Начнем с прямоугольника. Наносить его довольно просто. Сначала на плоскость наносятся четыре точки, обозначающие углы прямоугольника. Затем все точки последовательно соединяются между собой.

Нанесение треугольника ничем не отличается. Единственное - углов у него три, а значит, на плоскость наносятся три точки, обозначающие его вершины.

Касательно окружности тут следует знать координаты двух точек. Первая точка - центр окружности, вторая - точка, обозначающая ее радиус. Эти две точки наносятся на плоскость. Затем берется циркуль, измеряется расстояние между двумя точками. Острие циркуля ставится в точку, обозначающую центр, и описывается круг.

Как видите, тут также нет ничего сложного, главное, чтобы под рукой всегда были линейка и циркуль.

Теперь вы знаете, как наносить координаты фигур. На координатной плоскости это делать не так уж и сложно, как может показаться на первый взгляд.

Выводы

Итак, мы рассмотрели с вами одно из наиболее интересных и базовых для математики понятий, с которым приходится сталкиваться каждому школьнику.

Мы с вами выяснили, что координатная плоскость - это плоскость, образованная пересечением двух осей. С ее помощью можно задавать координаты точек, наносить на нее фигуры. Плоскость разделена на четверти, каждая из которых имеет свои особенности.

Основной навык, который следует выработать при работе с координатной плоскостью, - умение правильно наносить на нее заданные точки. Для этого следует знать правильное расположение осей, особенности четвертей, а также правила, по которым задаются координаты точек.

Надеемся, что изложенная нами информация была доступна и понятна, а также была полезна для вас и помогла лучше разобраться в данной теме.

Цели: - Обобщить представления учащихся о координатной плоскости; развивать умение определять координаты точек на плоскости, находить точки по заданным координатам;

Совершенствовать умение решать текстовые задачи на движение; уравнения, примеры на порядок действий;

Развивать мышление, память, творческие способности;

Расширять кругозор учащихся.

Скачать:


Предварительный просмотр:

МБОУ СОШ № 60 города Брянска

Урок математики в 4 классе

(учебник Петерсон Л.Г.)

Тема:

«Координаты на плоскости.

Построение точек по их координатам».

Подготовила: Гирлина Н.А.

Учитель начальных классов

Высшей квалификационной категории

МБОУ СОШ № 60

Города Брянска

2016 – 2017 учебный год

Тема: Координаты на плоскости. Построение точек по их координатам.

Цели: - Обобщить представления учащихся о координатной

Плоскости; развивать умение определять координаты

Точек на плоскости, находить точки по заданным

Координатам;

Совершенствовать умение решать текстовые задачи на

Движение; уравнения, примеры на порядок действий;

Развивать мышление, память, творческие способности;

Расширять кругозор учащихся.

Оборудование: персональный компьютер, мультимедийный проектор, экран, мультимедийная презентация, раздаточный материал: лист с координатной плоскостью (каждому ученику), лист с заданиями для викторины «Хочу всё знать» (один на парту).

Ход урока:

Организационное начало.

Устные вычисления:

1) - Наш урок начнём с небольшой разминки Я задумала слово, которое вы должны отгадать, решив задания.

Слайды № 1-20

  1. (4 · 12 +12) · 3: 9 = Д.30 К.20 О15

2) 480: 3: 40 + 78 – 36 = И.36 А.44 О.46

3) 60: Х = 4 О.15 А.240 Б.12

4) Периметр квадрата равен 16см. Найди длину его стороны.

Е.4дм Р.4см Д.8см

5)Длина огорода прямоугольной формы равна 280м, ширина 100м. Найдите длину забора вокруг огорода.

Д.760м Р.380м Т.7600см

6)Длина прямоугольника равна 18см, ширина 2см. Найдите площадь этого прямоугольника.

Д.9см 2 И.36см 2 Е.36см

7)Ширина параллепипеда равна 5дм, длина 6дм, а высота равна 2дм. Найдите его объём.

К.60дм 2 И.60см 2 Н.60дм 3

8)С какой скоростью ехал мотоциклист, если за 2 часа он проехал 62км?

О.31км А.31км/ч Б.124км/ч

9)Автомобиль двигался со скоростью 60км/ч и был в пути 6 часов. Какой путь он преодолел за это время?

Т.360км Д.360км/ч Г.10км

10) За какое время поезд проедет 720км, если его скорость равна 6окм/ч?

Е.12км ы.12ч Г.12км/ч

Какое слово получилось? (координаты)

Что такое координаты? (упорядоченная пара чисел для определения положения точки на плоскости относительно оси ОХ и оси ОY)

Сообщение темы:

Слайд № 21

Учитель: «Определите тему нашего урока.»

Тема нашего урока: «Координаты на плоскости».

Как вы думаете, каковы цели нашего урока? (предположения детей)

Зачитываются цели, записанные на слайде.

Слайд № 22

Зачем надо уметь определять координаты точек?

Где нам это может пригодиться?

Работа по теме:

- А когда впервые задумались о важности координатной плоскости и координатах точек на плоскости?

а)Странички истории

Слайд № 23

Лента времени.

Сведения об учёных

Более чем за 100 лет до нашей эры греческий учёный Гиппарх предложил опоясать на карте земной шар параллелями и меридианами ввести теперь хорошо известные географические координаты: широту и долготу и обозначить их числами.

Во 2 веке нашей эры знаменитый древнегреческий астроном Клавдий Птолемей уже пользовался долготой и широтой в качестве географических координат.

Рене Декарт (1596 – 1650 г.) - французский философ, испытатель,

математик. Целью Декарта было описание природы при помощи математических законов. Автор координатной плоскости, поэтому её часто называют декартовой плоскостью.

Слайд №24

Как называются оси координатной прямой?

Как определить координаты точки на плоскости

в)Работа с учебником:

Стр.57 № 1

- Кто из ребят правильно построил точку А (3,4)?

Какой из способов наиболее удобный?

Чтение правила.

стр.58 № 2

Построить треугольник АВС, если А(1,5); В(3,9); С(9,2)

Построить четырёхугольник, если D (4.2) ; E (1.7) ; F (7.8);

K (10.5)

Раскрась цветным карандашом пересечение треугольника и четырёхугольника. Какая фигура получилась ?

Физкультминутка

г)Викторина «Хочу всё знать»

1) Я приготовила для вас много интересных заданий, которые расширят ваш кругозор. Итак, начнём!

Слайд № 25

Что вы видите на слайде? (координатную плоскость с точками)

Вспомним, как найти точку по её координатам. (первый элемент ищем на

Оси х, второй - на оси у)

Давайте потренируемся. Назвать точку по координатам: (1,5), (0,2), (3,5)

2) - Тренировка закончена. Приступаем к заданию. На листке с координатной плоскостью (раздаточный материал) внизу в пустых клетках написать название точек, координаты которых будут указаны на слайде. Если будете внимательны, сможете прочитать слова.

Самостоятельная работа учащихся

Прочитайте, что у вас получилось. (синий кит)

Слайд № 26

Синий кит - без сомнения крупнейшее животное, когда-либо существовавшее на нашей планете. Он действительно огромен! Синий кит имеет размеры, сравнимые с космическим кораблём, а вес взрослого кита может более чем в тридцать раз больше веса самца современного африканского слона.

Синий кит, как огромный космический корабль, бороздит бескрайние просторы мирового океана, мигрируя из ледяных полярных вод в субтропики Индийского, Тихого и Атлантического океанов.

3) – Попробуем нарисовать синего кита на координатной плоскости.

Слайд № 27

Учитель называет координаты, учащиеся отмечают на плоскости. На слайде дублируется.

Координаты: (0,1), (3,2), (8,2), (8,4), (9,3), (9,2), (10,1), (10,0), (8,1), (6,0), (2,0)

Полученные точки соединяются. Кита можно раскрасить.

Вычислить периметр, нарисованной фигуры.

Что для этого нужно сделать? (измерить стороны) Вычисление периметра.

4) - Вспомните девиз нашего урока. (хочу всё знать)

О ком мы сегодня говорили, кого рисовали?

Пришло время получить ценные сведения об этом удивительном животном.

«Хочу всё знать»

(14 . Х – 20) : 5 = 80(1 ученик с комментированием у доски)

Х = 30

Дополнительно 360: (С· 3 + 12) = 10 (вес новорождённого китёнка)

(разобрать условие, сделать схему на доски, проанализировать и самостоятельно записать по действиям. 1 ученик у доски с обратной стороны. Самопроверка)

Ответ: 57км

55) . 5 Ответ: 380 тонн

Итог урока

Слайд № 7

Чему учились?

Что вызвало затруднения?

Что узнали о «главном герое» нашего урока?

Домашнее задание: №9 с.59, №11(г)с.60.

«Хочу всё знать»

1)Реши уравнения и узнаешь длину в метрах взрослого синего кита:

(14 . Х – 20) : 5 = 80

  1. Реши задачу и ты узнаешь, с какой скоростью бороздит кит водные просторы:

Синий кит проплыл расстояние равное 39 километрам за 3 часа. Следующие 2 часа он плыл со скоростью на 4 км/ч меньше. Какое расстояние проплыл кит за всё это время?

3) Найди значение выражения и узнаешь массу синего кита в тоннах

270 + (4478 - 1598) : 144 – (2438 – 44 . 55) . 5

«Хочу всё знать»

1)Реши уравнения и узнаешь длину в метрах взрослого синего кита:

(14 . Х – 20) : 5 = 80

  1. Реши задачу и ты узнаешь, с какой скоростью бороздит кит водные просторы:

Синий кит проплыл расстояние равное 39 километрам за 3 часа. Следующие 2 часа он плыл со скоростью на 4 км/ч меньше. Какое расстояние проплыл кит за всё это время?

3) Найди значение выражения и узнаешь массу синего кита в тоннах

270 + (4478 - 1598) : 144 – (2438 – 44 . 55) . 5

«Хочу всё знать»

1)Реши уравнения и узнаешь длину в метрах взрослого синего кита:

(14 . Х – 20) : 5 = 80

  1. Реши задачу и ты узнаешь, с какой скоростью бороздит кит водные просторы:

Синий кит проплыл расстояние равное 39 километрам за 3 часа. Следующие 2 часа он плыл со скоростью на 4 км/ч меньше. Какое расстояние проплыл кит за всё это время?

3) Найди значение выражения и узнаешь массу синего кита в тоннах

270 + (4478 - 1598) : 144 – (2438 – 44 . 55) . 5


Построить следы плоскости, заданной ∆BCD, и определить расстояние от точки А до заданной плоскости методом прямоугольного треугольника (координаты точек А, В, С и D см. в Таблице 1 раздела Задания);

1.2. Пример выполнения задания № 1

Первое задание представляет комплекс задач по темам:

1. Ортогональное проецирование, эпюр Монжа, точка, прямая, плоскость : по известным координатам трех точек B, C, D построить горизонтальную и фронтальную проекции плоскости, заданной ∆BCD ;

2. Следы прямой, следы плоскости, свойства принадлежности прямой плоскости : построить следы плоскости, заданной ∆BCD ;

3. Плоскости общего и частного положения, пересечение прямой и плоскости, перпендикулярность прямой и плоскости, пересечение плоскостей, метод прямоугольного треугольника : определить расстояние от точки А до плоскости ∆BCD .

1.2.1. По известным координатам трех точек B, C, D построим горизонтальную и фронтальную проекции плоскости, заданной ∆BCD (Рисунок 1.1), для чего необходимо построить горизонтальные и фронтальные проекции вершин ∆BCD , а затем одноименные проекции вершин соединить.

Известно, что следом плоскости называется прямая, полученная в результате пересечения заданной плоскости с плоскостью проекций.

У плоскости общего положения 3 следа: горизонтальный, фронтальный и профильный .

Для того чтобы построить следы плоскости, достаточно построить следы (горизонтальный и фронтальный) любых двух прямых, лежащих в этой плоскости, и соединить их между собой. Таким образом, след плоскости (горизонтальный или фронтальный) будет однозначно определен, поскольку через две точки на плоскости (в данном случае этими точками будут следы прямых) можно провести прямую, и при том, только одну.

Основанием для такого построения служит свойство принадлежности прямой плоскости : если прямая принадлежит заданной плоскости, то ее следы лежат на одноименных следах этой плоскости.

Следом прямой называется точка пересечения этой прямой с плоскостью проекций.

Горизонтальный след прямой лежит в горизонтальной плоскости проекций, фронтальный – во фронтальной плоскости проекций.

Рассмотрим построение горизонтального следа прямой DB , для чего необходимо:

1. Продолжить фронтальную проекцию прямой DB до пересечения с осью X , точка пересечения М 2 является фронтальной проекцией горизонтального следа;

2. Из точки М 2 восстановить перпендикуляр (линию проекционной связи) до его пересечения с горизонтальной проекцией прямой DB М 1 и будет являться горизонтальной проекцией горизонтального следа (Рисунок 1.1), которая совпадает с самим следом М .

Аналогично выполняется построение горизонтального следа отрезка СВ прямой: точка М’ .

Чтобы построить фронтальный след отрезка CB прямой, необходимо:

1. Продолжить горизонтальную проекцию прямой CB до пересечения с осью X , точка пересечения N 1 является горизонтальной проекцией фронтального следа;

2. Из точки N 1 восстановить перпендикуляр (линию проекционной связи) до его пересечения с фронтальной проекцией прямой CB или ее продолжением. Точка пересечения N 2 и будет являться фронтальной проекцией фронтального следа, которая совпадает с самим следом N .

Соединив точки M′ 1 и M 1 отрезком прямой, получим горизонтальный след плоскости απ 1 . Точка α x пересечения απ 1 с осью X называется точкой схода следов . Для построения фронтального следа плоскости απ 2 необходимо соединить фронтальный след N 2 с точкой схода следов α x

Рисунок 1.1 — Построение следов плоскости

Алгоритм решения этой задачи может быть представлен следующим образом:

  1. (D 2 B 2 ∩ OX ) = M 2 ;
  2. (MM 1 ∩ D 1 B 1) = M 1 = M ;
  3. (C 2 B 2 ∩ OX ) = M′ 2 ;
  4. (M′ 2 M′ 1 ∩ C 1 B 1) = M′ 1 = M′ ;
  5. ( ∩ π 2) = N 2 = N ;
  6. (MM′ ) ≡ απ 1 ;
  7. (α x N ) ≡ απ 2 .

1.2.2. Для решения второй части первого задания необходимо знать, что:

  • расстояние от точки А до плоскости ∆BCD определяется длиной перпендикуляра, восстановленного из этой точки на плоскость;
  • любая прямая перпендикулярна к плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости ;
  • на эпюре проекции прямой, перпендикулярной плоскости, перпендикулярны наклонным проекциям горизонтали и фронтали этой плоскости или одноименным следам плоскости (рис. 1.2) (см. в лекциях Теорему о перпендикуляре к плоскости).

Чтобы найти основание перпендикуляра, необходимо решить задачу на пересечение прямой (в данной задаче такой прямой является перпендикуляр к плоскости) с плоскостью:

1. Заключить перпендикуляр во вспомогательную плоскость, в качестве которой следует взять плоскость частного положения (горизонтально-проецирующую или фронтально-проецирующую, в примере в качестве вспомогательной плоскости взята горизонтально-проецирующая γ, то есть перпендикулярная к π 1 , ее горизонтальный след γ 1 совпадает с горизонтальной проекцией перпендикуляра);

2. Найти линию пересечения заданной плоскости ∆BCD со вспомогательной γ (MN на рис. 1.2);

3. Найти точку пересечения линии пересечения плоскостей MN с перпендикуляром (точка К на рис. 1.2).

4. Для определения истинной величины расстояния от точки А до заданной плоскости ∆BCD следует воспользоваться методом прямоугольного треугольника : истинная величина отрезка есть гипотенуза прямоугольного треугольника, одним катетом которого является одна из проекций отрезка, а другим – разность расстояний от его концов до плоскости проекций, в которой ведётся построение .

5. Определите видимость участков перпендикуляра методом конкурирующих точек. На примере — точки N и 3 для определения видимости на π 1 , точки 4 , 5 — для определения видимости на π 2 .

Рисунок 1.2 — Построение перпендикуляра к плоскости

Рисунок 1.3 — Пример оформления контрольного задания №1

Видеопример выполнения задания №1

1.3. Варианты задания 1

Таблица 1– Значения координат точек
Вариант Координаты (x, y, z) точек
А В С D
1 15; 55; 50 10; 35; 5 20; 10; 30 70; 50; 40
2 80; 65; 50 50; 10; 55 10; 50; 25 75; 25; 0
3 95; 45; 60 130; 40; 50 40; 5; 25 80; 30; 5
4 115; 10; 0 130; 40; 40 40; 5; 25 80; 30; 5
5 55; 5; 60 85; 45; 60 100; 5; 30 50; 25; 10
6 55; 5; 60 70; 40; 20 30; 30; 35 30; 10; 10
7 60; 10; 45 80; 45; 5 35; 0; 15 10; 0; 45
8 5; 0; 0 35; 0; 25 20; 0; 55 40; 40; 0
9 50; 5; 45 65; 30; 10 30; 25; 55 20; 0; 20
10 60; 50; 35 40; 30; 0 30; 15; 30 80; 5; 20
11 65; 35; 15 50; 0; 30 20; 25; 25 5; 0; 10
12 75; 65; 50 45; 10; 35 60; 20; 10 10; 65; 0
13 95; 0; 15 85; 50; 10 10; 10; 10 55; 10; 45
14 45; 40; 40 80; 50; 10 10; 10; 10 55; 10; 45
15 80; 20; 30 55; 30; 60 15; 10; 20 70; 65; 30
16 75; 35; 35 55; 30; 60 25; 10; 20 70; 65; 30
17 75; 65; 50 45; 5; 55 5; 45; 10 70; 20; 0
18 65; 15; 20 40; 5; 60 0; 5; 25 60; 60; 20
19 70; 20; 10 45; 15; 60 5; 10; 20 60; 65; 10
20 20; 50; 45 10; 20; 10 55; 50; 10 80; 0; 60
21 0; 5; 50 50; 50; 40 5; 55; 10 45; 5; 0
22 55; 50; 65 45; 55; 5 0; 10; 45 70; 0; 40
23 65; 5; 15 40; 60; 10 0; 20; 5 60; 20; 60
24 50; 20; 45 45; 60; 30 5; 20; 10 60; 30; 5
25 55; 15; 40 40; 50; 25 5; 15; 10 50; 40; 10
26 15; 45; 40 10; 25; 5 20; 10; 30 65; 40; 35
27 70; 30; 30 55; 30; 60 20; 5; 15 65; 60; 25
28 90; 0; 15 80; 45; 10 10; 10; 10 50; 10; 45
29 110; 10; 0 120; 35; 30 35; 5; 20 70; 20; 5
30 45; 40; 40 80; 45; 10 10; 10; 10 55; 10; 40

Положение точки в пространстве может быть задано двумя её ортогональными проекциями, например, горизонтальной и фронтальной, фронтальной и профильной. Сочетание любых двух ортогональных проекций позволяет узнать значение всех координат точки, построить третью проекцию, определить октант, в котором она находится. Рассмотрим несколько типичных задач из курса начертательной геометрии.

По заданному комплексному чертежу точек A и B необходимо:

Определим сначала координаты т. A, которые можно записать в виде A (x, y, z). Горизонтальная проекция т. A – точка A", имеющая координаты x, y. Проведем из т. A" перпендикуляры к осям x, y и найдем соответственно A х, A у. Координата х для т. A равна длине отрезка A х O со знаком плюс, так как A х лежит в области положительных значений оси х. С учетом масштаба чертежа находим х = 10. Координата у равна длине отрезка A у O со знаком минус, так как т. A у лежит в области отрицательных значений оси у. С учетом масштаба чертежа у = –30. Фронтальная проекция т. A – т. A"" имеет координаты х и z. Опустим перпендикуляр из A"" на ось z и найдем A z . Координата z точки A равна длине отрезка A z O со знаком минус, так как A z лежит в области отрицательных значений оси z. С учетом масштаба чертежа z = –10. Таким образом, координаты т. A (10, –30, –10).

Координаты т. B можно записать в виде B (x, y, z). Рассмотрим горизонтальную проекцию точки B – т. В". Так как она лежит на оси х, то B x = B" и координата B у = 0. Абсцисса x точки B равна длине отрезка B х O со знаком плюс. С учетом масштаба чертежа x = 30. Фронтальная проекция точки B – т. B˝ имеет координаты х, z. Проведем перпендикуляр из B"" к оси z, таким образом найдем B z . Аппликата z точки B равна длине отрезка B z O со знаком минус, так как B z лежит в области отрицательных значений оси z. С учетом масштаба чертежа определим значение z = –20. Таким образом, координаты B (30, 0, -20). Все необходимые построения представлены на рисунке ниже.

Построение проекций точек

Точки A и B в плоскости П 3 имеют следующие координаты: A""" (y, z); B""" (y, z). При этом A"" и A""" лежат одном перпендикуляре к оси z, так как координата z у них общая. Точно также на общем перпендикуляре к оси z лежат B"" и B""". Чтобы найти профильную проекцию т. A, отложим по оси у значение соответствующей координаты, найденное ранее. На рисунке это сделано с помощью дуги окружности радиуса A у O. После этого проведем перпендикуляр из A у до пересечения с перпендикуляром, восстановленным из точки A"" к оси z. Точка пересечения этих двух перпендикуляров определяет положение A""".

Точка B""" лежит на оси z, так как ордината y этой точки равна нулю. Для нахождения профильной проекции т. B в данной задаче необходимо лишь провести перпендикуляр из B"" к оси z. Точка пересечении этого перпендикуляра с осью z есть B""".

Определение положения точек в пространстве

Наглядно представляя себе пространственный макет, составленный из плоскостей проекций П 1 , П 2 и П 3 , расположение октантов , а также порядок трансформации макета в эпюр, можно непосредственно определить, что т. A расположена в III октанте, а т. B лежит в плоскости П 2 .

Другим вариантом решения данной задачи является метод исключений. Например, координаты точки A (10, -30, -10). Положительная абсцисса x позволяет судить о том, что точка расположена в первых четырех октантах. Отрицательная ордината y говорит о том, что точка находится во втором или третьем октантах. Наконец, отрицательная аппликата z указывает на то, что т. A расположена в третьем октанте. Приведенные рассуждения наглядно иллюстрирует следующая таблица.

Октанты Знаки координат
x y z
1 + + +
2 + +
3 +
4 + +
5 + +
6 +
7
8 +

Координаты точки B (30, 0, -20). Поскольку ордината т. B равна нулю, эта точка расположена в плоскости проекций П 2 . Положительная абсцисса и отрицательная аппликата т. B указывают на то, что она расположена на границе третьего и четвертого октантов.

Построение наглядного изображения точек в системе плоскостей П 1 , П 2 , П 3

Используя фронтальную изометрическую проекцию, мы построили пространственный макет III октанта. Он представляет собой прямоугольный трехгранник, у которого гранями являются плоскости П 1 , П 2 , П 3 , а угол (-y0x) равен 45 º. В этой системе отрезки по осям x, y, z будут откладываться в натуральную величину без искажений.

Построение наглядного изображения т. A (10, -30, -10) начнем с её горизонтальной проекции A". Отложив по оси абсцисс и ординат соответствующие координаты, найдем точки A х и A у. Пересечение перпендикуляров, восстановленных из A х и A у соответственно к осям x и y определяет положение т. A". Отложив от A" параллельно оси z в сторону её отрицательных значений отрезок AA", длина которого равна 10, находим положение точки A.

Наглядное изображение т. B (30, 0, -20) строится аналогично – в плоскости П 2 по осям x и z нужно отложить соответствующие координаты. Пересечение перпендикуляров, восстановленных из B х и B z , определит положение точки B.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!