Информационный женский портал

Зачем китам чудесная артериальная сеть. Чудесная сеть сосудов. Строение нефронов, их функции. Чудесная артериальная сеть

Человеку, долгое время пробывшему на глубине более 20 м, при всплытии угрожает кессонная болезнь. На глубине, при большом давлении, азот воздуха растворяется в крови. При резком подъеме давление падает, растворимость азота уменьшается, и в крови и тканях образуются пузырьки газа. Они закупоривают мелкие кровеносные сосуды, причиняют сильную боль, а в центральной нервной системе их выделение может привести к смерти, поэтому для водолазов и ныряльщиков разработаны специальные меры безопасности: они всплывают очень медленно или дышат специальными газовыми смесями, не содержащими азот.


Как избегают кессонной болезни животные, которые постоянно ныряют: тюлени, пингвины, киты? Этот вопрос давно интересовал физиологов, и они, разумеется, нашли объяснения: пингвины ныряют ненадолго, тюлени перед погружением выдыхают, у китов воздух на глубине выдавливается из легких в большую несжимаемую трахею. А если в легких нет воздуха, то азот не попадает в кровь. Еще одно объяснение отсутствия у китов кессонной болезни предложили недавно специалисты из Университета Тромсё (University of Tromso) и Университета Осло (University of Oslo). По мнению ученых, китов защищает разветвленная сеть тонкостенных артерий, снабжающая кровью головной мозг.

Эту обширную сосудистую сеть, которая занимает значительную часть грудной клетки, пронизывает позвоночник, область шеи и основание головы китообразных, впервые описал в 1680 году английский анатом Эдвард Тайсон в труде «Анатомия морской свиньи, вскрытой в Грешем-колледже; с предварительным обсуждением анатомии и естественной истории животных», и назвал ее чудесной сетью - retia mirabilia. Впоследствии эту сеть описывали разные ученые у разных видов, в том числе у бутылконосого дельфина Tursiops truncates, нарвала Monodon monoceros, белуги Delphin-apterus leucas и кашалота Physetermac-rocephalus. Исследователи выдвигали разные предположения о функциях чудесной сети, самая популярная заключается в том, что она регулирует артериальное давление.


Норвежские ученые вернулись к объекту Тайсона, морской свинье Phocoena phocoena. Им достались две некрупные самки - 32 и 36 кг, убитые рыбаками во время промышленного лова в районе Лофотенских островов. Детальное исследование грудного отдела retia mirabilia показало, что относительно толстые артерии, образующие видимую невооруженным глазом сеть, дробятся на множество мельчайших сосудов, которые сообщаются друг с другом через тонкостенные синусы. Эти сосудистые структуры утоплены в жировую ткань. Именно через эту сеть проходит кровь, поступающая в мозг.

В стенках артерий сети мало мышечных клеток, и они не иннервируются, т.е. просвет сосудов всегда постоянен. Но исследователи отмечают, что он и не нуждается в регуляции, поскольку мозгу необходимо постоянное количество крови.

Общая площадь сечения всех сосудов и сосудиков так велика, что скорость течения крови в сети падает почти до нуля, что существенно увеличивает возможности обмена между кровью и окружающей жировой тканью через сосудистую стенку. Исследователи предположили, что у выныривающих китообразных азот из перенасыщенной крови диффундирует в жир, в котором он растворим в шесть раз лучше, чем в воде. Таким образом диффузия в retia mirabilia предотвращает образование азотных пузырьков, которые могут достичь мозга и вызвать кессонную болезнь.

Среди работ, на которые ссылаются норвежские исследователи, есть и статья ведущего научного сотрудника Тихоокеанского океанологического института им. В.И. Ильичева ДВО РАН Владимира Васильевича Мельникова, который в 1997 году вскрывал кашалота. Он пишет, что retia mirabilia у кашалота развита сильнее, чем у других китообразных (разумеется, тех, которых анатомировали). А ведь именно кашалот - чемпион среди китообразных по глубине и длительности погружения. Возможно, этот факт косвенно подтверждает гипотезу норвежских ученых.

Фото из статьи Arnoldus Schytte Blix, Lars Walloe and Edward B. Mes-selt «On how whales avoid decompression sickness and why they sometimes strand» J Exp Biol, 2013, doi:10.1242/ jeb.087577

Почки. Почки (renes) - парный экскреторный и инкреторный орган, выполняющий посредством функции мочеобразования регуляцию химического гомеостаза организма. АНАТОМО-ФИЗИОЛОГИЧЕСКИЙ ОЧЕРК Почки расположены в...

  • Схема строения стенок артерий: 1 - артерия мышечного типа; 2 - сосуды сосудистой стенки; 3 - мышечные тяжи стенки артерии (располагаются по спирали); ...
  • Новости о Чудесная сеть

    • Грошев С. Студент 6 курса леч. отд. мед. фака ОшГУ, Кыргызская республика Исраилова З.А. Ассистент кафедры акушерства и гинекологии Общие данные. Акушерские кровотечения всегда были основной причиной материнской летальности, поэтому знание этого осложнения беременности является об
    • Акад. РАМН, проф. А.П. Нестеров Российский государственный медицинский университет Changes of the eye fundus in arterial hypertension Nesterov A.P. The article consists of the lecture for physicians and ophthalmologists. Symptoms of functional changes in the central retinal vessels,

    Обсуждение Чудесная сеть

    • Мне 26 лет. По результатам РЭГ крайне снижено кровенаполнение основных бассеинов головного мозга. Тонус всех артерий изменен по дистоническому типу. Рентген шейного отдела показал: Выпрямлен физиологический шейный лордоз. Других патологий на рентгене не обнаружено. Скажите пожалуйста может ли быть в
    • Кирилл Вам необходимо читать монографии по интересующему Вас вопросу. Артериальная гипертония сегодня ВВЕДЕНИЕ Повышенное артериальное давление или гипертония сегодня является наиболее распространенным хроническим заболеванием. Общеизвестно, что гипертония - лидирующий фактор риска в развитии инс

    Почка, ren , - парный орган, в котором постоянно образуется моча путем фильтрации жидкости из капилляров в капсулу Шумлянского-Боумена.

    Почки выполняют разнообразные функции: - Регулируют обмен воды и электролитов; - Поддерживают кислотно-основное состояние организма; - Осуществляют экскрецию конечных продуктов обмена (мочевина, мочевая кислота, креатинин и другие) и посторонних веществ из крови и их выведение с мочой; - Синтезируют глюкозу из неуглеводных компонентов (глюконеогенез); - Продуцируют гормоны (ренин, эритропоэтин и другие).

    Почка взрослого человека имеет бобовидную форму с ярко-коричневым цветом. Ее вес колеблется от 120 до 200 г, длина - 10-12 см, ширина - 5-6 см, толщина - 3-4 см. Различают две поверхности почки: переднюю и заднюю, два края: латеральный и медиальный, направленный в сторону позвоночного столба; а также два конца (полюса): закругленный верхний. Медиальный край почки в средней части имеет углубления, почечную пазуху. Вход в пазуху ограничен передней и задней губами и называется воротами почки, в которых расположена почечная ножка, состоящая из почечной артерии, почечной вены, почечной лоханки, почечного нервного сплетения и лимфатических сосудов.

    Почки располагаются в верхнем отделе забрюшинного пространства по обеим сторонам позвоночника. По отношению к задней брюшной стенке почки лежат в поясничной области. По отношению к брюшине они лежат экстраперитонеально. На переднюю брюшную стенку почки проецируются в подреберных областях, частично в надчревной; правая почка нижним концом может достигать правой боковой области. Правая почка, как правило, располагается ниже левой, чаще всего на 1,5-2 см.

    Каждую минуту через почки походит около 1, 2 литра крови, что составляет до 25 % крови, поступающей в аорту. Почечная артерия отходит непосредственно от брюшной аорты. В воротах почки она разветвляется на более мелкие артерии до артериол. Конечные их ветви называют приносящими артериолами. Каждая из данных артериол входит в капсулу Шумлянского-Боумена, где распадается на капилляры и образует сосудистый клубочек - первичную капиллярную сеть почки. Многочисленные капилляры первичной сети в свою очередь собираются в выносящую артериолу , диаметр которой в два раза меньше диаметра приносящей. Таким образом, кровь из артериального сосуда попадает в капилляры, а затем в другой артериальный сосуд. Практически во всех органах после капиллярной сети кровь собирается в венулы. Поэтому этот фрагмент интраорганного сосудистого русла получил название «чудесная сеть почки». Выносящая артериола вновь распадается на сеть капилляров, оплетающих канальцы всех отделов нефрона. Тем самым образуется вторичная капиллярная сеть почки. Следовательно, в почке имеются две системы капилляров, что связано с функцией мочеобразования. Капилляры, оплетающие канальцы, окончательно сливаются и образуют венулы. Последние, поэтапно сливаясь и переходя в интраорганные вены, формируют почечную вену.

    Иннервация почек осуществляется почечным нервным сплетением. Источниками его формирования являются nn. splanchnicimajoretminor, ветви поясничного отдела trunc.us sympaticus, ветки брюшного, верхнего брыжеечного сплетения и почечно-аортальные ганглии. Афферентная иннервация осуществляется за счет чувствительных узлов блуждающего нерва и спинномозговых узлов, в которых расположены чувствительные нейроны. Эфферентные нервные волокна вегетативной нервной системы (симпатические и парасимпатические) достигают гладких мышечных клеток стенок кровеносных сосудов почки, чашечек и лоханки. В воротах почки почечное сплетение делится на околососудистое сплетение, сопровождающие сосуды почки и вместе с ними проникают в паренхиму почки. В мозговом и корковом веществе нервные волокна оплетают пирамиды и дольки почки, сопровождают приносящие клубочковые артериолы и достигают капсул клубочков. К стенкам мочевых канальцев и почечным чашечкам подходят (безмиелиновые) нервные волокна.

    Нефрон является основной структурно-функциональной единицей почек. Он отвечает за выработку мочи. В организме человека находится примерно 1,2 миллиона нефронов.

    Нефроны функционируют периодично: сначала работают одни нефроны, а другие в это время не участвуют в работе, затем наоборот. Состоит нефрон из отделов находящихся в мозговом и корковом веществе почек.

    Мочеобразование проходит в три этапа:

    1) канальцевая секреция;

    2) клубочковая фильтрация;

    3) канальцевая реабсорбция.

    Почки - это парный главный орган выделительной системы человека.

    Анатомия . Почки располагаются на задней стенке брюшной полости по боковым поверхностям позвоночного столба на уровне XII грудного - III поясничного позвонков. Правая почка обычно расположена несколько ниже левой. Почки имеют бобовидную форму, вогнутой стороной обращены кнутри (к ). Верхний полюс почки ближе к позвоночнику, чем нижний. По внутреннему ее краю находятся ворота почки, куда входит почечная артерия, идущая от аорты, и выходит почечная вена, впадающая в нижнюю полую вену; от почечной лоханки отходит (см.). почки покрыта плотной фиброзной капсулой (рис. 1), поверх которой находится жировая капсула, окруженная почечной . Задней поверхностью почки прилежат к задней стенке брюшной полости, а спереди покрыты брюшиной и, таким образом, располагаются полностью внебрюшинно.

    Рис. 1. Правая почка взрослого человека (сзади; часть вещества почки удалена, синус почки раскрыт): 1 - малые чашечки; 2 - фиброзная капсула почки; 3 - большие чашечки; 4 - мочеточник; 5 - лоханка; 6 - почечная вена; 7 - почечная артерия.

    Паренхима почки состоит из двух слоев - коркового и мозгового. Корковый слой состоит из почечных телец, образованных почечными клубочками вместе с капсулой Шумлянского - Боумена, мозговой слой состоит из канальцев. Канальцы образуют пирамиды почки, заканчивающиеся почечным сосочком, открывающимся в малые чашечки. Малые чашечки впадают в 2-3 большие чашечки, образующие почечную лоханку.

    Структурной единицей почки является нефрон, состоящий из клубочка, образованного кровеносными капиллярами, капсулы Шумлянского - Боумена, окружающей клубочек, извитых канальцев, петли Генле, прямых канальцев и собирательных трубочек, впадающих в почечный сосочек; общее количество нефронов в почке до 1 млн.

    В нефроне происходит образование мочи, т. е. выделение продуктов обмена и чужеродных веществ, регуляция водно-солевого равновесия организма.

    В полости клубочков жидкость, поступающая из капилляров, аналогична кровяной плазме, за 1 минуту ее выделяется около 120 мл - первичная моча, а в лоханки за 1 минуту 1 мл мочи. При прохождении через канальцы нефрона происходит обратное всасывание воды и выделение шлаков.

    В регулировании процессов мочеобразования принимают участие нервная система и железы внутренней секреции, главным образом гипофиз.

    Почки (лат. ren, греч. nephros) - парный орган выделения, расположенный на задней стенке брюшной полости по бокам от позвоночного столба.

    Эмбриология. Почки развиваются из мезодермы. После стадии предпочки (pronephros) нефротомы почти всех туловищных сегментов объединяются симметрично справа и слева в виде двух первичных почек (mesonephros), или вольфовых тел, которые не подвергаются дальнейшей дифференциации как органы выделения. Мочевые канальцы в них сливаются, отводящие трубочки формируют правый и левый общие (или вольфовы) протоки, открывающиеся в мочеполовой синус. На втором месяце утробной жизни возникает окончательная почка (metanephros). Клеточные балки превращаются в почечные канальцы. На концах их формируются двустенные капсулы, окружающие сосудистые клубочки. Другие концы канальцев сближаются с трубчатыми выростами почечной лоханки и открываются в них. Капсула и строма почки развиваются из наружного слоя мезенхимы нефротомов, а почечные чашечки, лоханка и мочеточник - из дивертикула вольфова протока.

    Ко времени рождения ребенка почки имеют дольчатое строение, которое исчезает к 3 годам (рис. 1).


    Рис. 1. Постепенное исчезновение эмбриональной дольчатости почки человека: 1 - почка ребенка 2 месяцев; 2 - почка ребенка 6 месяцев; 3 - почка ребенка 2 лет; 4 - почка ребенка 4 лет; 5 - почка ребенка 12 лет.


    Рис. 2. Левая почка взрослого спереди (1) и сзади (2).

    Анатомия
    Почка имеет форму крупного боба (рис. 2). Различают выпуклый латеральный и вогнутый медиальный края почки, переднюю и заднюю поверхности, верхний и нижний полюсы. С медиальной стороны вместительное углубление - синус почки - открывается воротами (hilus renalis). Здесь идут почечные артерия и вена (a. et v. renalis) и мочеточник, продолжающийся в лоханку почки (pelvis renalis) (рис. 3). Лежащие между ними лимфатические сосуды прерываются лимфатическими узлами. По сосудам распространяется почечное нервное сплетение (цветн. рис. 1).


    Рис. 1. Почечное нервное сплетение и регионарные лимфатические узлы с отводящими почечными лимфатическими сосудами (левая почка разрезана по фронтальной плоскости): 1 - diaphragma; 2 - oesophagus (перерезан); 3 - n. splanchnicus major sin.; 4 - capsula fibrosa; 5 - pyramides renales; 5 - columna renalis; 7 - medulla renis; 8 - cortex renis; 9 - m. quadratus lumborum; 10 - calyx renalis major; 11 - pelvis renalis; 12 - nodi lymphatici; 13 - hilus renalis dext.; 14 - gangl. renalia (plexus renalis); 15 - gl. suprarenalis; 16 - v. cava inf. (перерезана).




    Рис. 2а и 26. Зоны соприкосновения правой (рис. 1а) и левой (рис. 16) почек с соседними органами: 1 - надпочечниковая зона; 2 - дуоденальная зона; 3, 4 и 7 - ободочно-кишечная зона; 5 - печеночная зона; 6 - селезеночная зона; 8 - тощекишечная зона; 9 - панкреатическая зона; 10 - желудочная зона. Рис. 3. Схема расположения кровеносных сосудов в почке: 1 - capsula fibrosa с кровеносными сосудами; 2 - vv. stellatae; 3 - v. interlobularis; 4 и 6 - vv. arcuatae; 5 - петля Генле; 7 - собирательный проток; 8 - papilla renalis; 9 и 11 - аа. interlobularis; 10 - аа. et vv. rectae; 12 - a. perforans; 13 - a. capsulae adiposae.

    Задняя поверхность почки (facies posterior) вплотную прилегает к задней брюшной стенке на границе квадратной мышцы поясницы и поясничной мышцы. По отношению к скелету почка занимает уровень четырех позвонков (XII грудного, I, II, III поясничных). Правая почка находится на 2-3 см ниже левой (рис. 4). Верхушка почки (extremitas superior) как бы накрыта надпочечником и прилегает к диафрагме. Почка лежит позади брюшины. С передней поверхностью почки (facies anterior) соприкасаются: справа - печень, двенадцатиперстная кишка и ободочная кишка; слева - желудок, поджелудочная железа, отчасти селезенка, тонкая кишка и нисходящая ободочная кишка (цветн. рис. 2а и 26). Почка покрыта плотной фиброзной капсулой (capsula fibrosa), которая посылает в паренхиму органа пучки соединительнотканных волокон. Поверх располагается жировая капсула (capsula adiposa), а затем почечная фасция. Листки фасции - передний и задний - срастаются по наружному краю; медиально они переходят по сосудам к срединной плоскости. Почечная фасция фиксирует почку к задней брюшной стенке.


    Рис. 4. Скелетотопия почки (отношение к позвоночнику и двум нижним ребрам; вид сзади): 1 - левая почка; 2 - диафрагма; 3 - XII ребро; 4 - XI ребро; 5 - париетальная плевра; 6 - правая почка.


    Рис. 5. Формы почечных лоханок: А - ампулярная; Б - дендрическая; 7 - чашечки; 2 - лоханка; 3 - мочеточник.

    Паренхима почки состоит из двух слоев - наружного, коркового (cortex renis), и внутреннего, мозгового (medulla renis), отличающегося более ярким красным цветом. Корковый слой содержит почечные тельца (corpuscula renis) и подразделяется на дольки (lobuli corticales). Мозговой слой состоит из прямых и собирательных канальцев (tubuli renales recti et contorti) и делится на 8-18 пирамид (pyramides renales). Между пирамидами тянутся почечные столбы (columnae renales), отделяющие доли почки (lobi renales). Суженная часть пирамиды обращена в виде сосочка (papilla renalis) в синус и пронизана 10-25 отверстиям (foramina papillaria) собирательных протоков, открывающихся в малые чашечки (calices renales minores). До 10 таких чашечек объединяются в 2-3 большие чашечки (calices renales majores), которые переходят в почечную лоханку (рис. 5). В стенке чашечек и лоханки имеются тонкие мышечные пучки. Лоханка продолжается в мочеточник.

    Каждая почка получает ветвь аорты - почечную артерию. Первые ветви этой артерии носят название сегментарных; их 5 по числу сегментов (верхушечный, передний верхний, средний передний, задний и нижний). Сегментарные артерии разделяются на междолевые (аа. interlobares renis), которые делятся на дугообразные артерии (аа. arcuatae) и междольковые артерии (аа. interlobulares). Междольковые артерии отдают артериолы, которые ветвятся на капилляры, образующие почечные клубочки (glomeruli).

    Человеку, долгое время пробывшему на глубине более 20 м, при всплытии угрожает кессонная болезнь. На глубине, при большом давлении, азот воздуха растворяется в крови. При резком подъеме давление падает, растворимость азота уменьшается, и в крови и тканях образуются пузырьки газа. Они закупоривают мелкие кровеносные сосуды, причиняют сильную боль, а в центральной нервной системе их выделение может привести к смерти, поэтому для водолазов и ныряльщиков разработаны специальные меры безопасности: они всплывают очень медленно или дышат специальными газовыми смесями, не содержащими азот.

    Как избегают кессонной болезни животные, которые постоянно ныряют: тюлени, пингвины, киты? Этот вопрос давно интересовал физиологов, и они, разумеется, нашли объяснения: пингвины ныряют ненадолго, тюлени перед погружением выдыхают, у китов воздух на глубине выдавливается из легких в большую несжимаемую трахею. А если в легких нет воздуха, то азот не попадает в кровь. Еще одно объяснение отсутствия у китов кессонной болезни предложили недавно специалисты из Университета Тромсё (University of Tromsø ) и Университета Осло (University of Oslo ). По мнению ученых, китов защищает разветвленная сеть тонкостенных артерий, снабжающая кровью головной мозг.

    Эту обширную сосудистую сеть, которая занимает значительную часть грудной клетки, пронизывает позвоночник, область шеи и основание головы китообразных, впервые описал в 1680 году английский анатом Эдвард Тайсон в труде «Анатомия морской свиньи, вскрытой в Грешем-колледже; с предварительным обсуждением анатомии и естественной истории животных», и назвал ее чудесной сетью - retia mirabilia . Впоследствии эту сеть описывали разные ученые у разных видов, в том числе у бутылконосого дельфина Tursiops truncates , нарвала Monodon monoceros , белухи Delphinapterus leucas и кашалота Physeter macrocephalus . Исследователи выдвигали разные предположения о функциях чудесной сети, самая популярная заключается в том, что она регулирует артериальное давление.

    Норвежские ученые вернулись к объекту Тайсона, морской свинье Phocoena phocoena . Им достались две некрупные самки - 32 и 36 кг, убитые рыбаками во время промышленного лова в районе Лофотенских островов. Детальное исследование грудного отдела retia mirabilia показало, что относительно толстые артерии, образующие видимую невооруженным глазом сеть, дробятся на множество мельчайших сосудов, которые сообщаются друг с другом через тонкостенные синусы. Эти сосудистые структуры утоплены в жировую ткань. Именно через эту сеть проходит кровь, поступающая в мозг.

    В стенках артерий сети мало мышечных клеток, и они не иннервируются, т. е. просвет сосудов всегда постоянен. Но исследователи отмечают, что он и не нуждается в регуляции, поскольку мозгу необходимо постоянное количество крови.

    Общая площадь сечения всех сосудов и сосудиков так велика, что скорость течения крови в сети падает почти до нуля, что существенно увеличивает возможности обмена между кровью и окружающей жировой тканью через сосудистую стенку. Исследователи предположили, что у выныривающих китообразных азот из перенасыщенной крови диффундирует в жир, в котором он растворим в шесть раз лучше, чем в воде. Таким образом диффузия в retia mirabilia предотвращает образование азотных пузырьков, которые могут достичь мозга и вызвать кессонную болезнь.

    Среди работ, на которые ссылаются норвежские исследователи, есть и статья ведущего научного сотрудника Тихоокеанского океанологического института им. В. И. Ильичева ДВО РАН Владимира Васильевича Мельникова, который в 1997 году вскрывал кашалота. Он пишет, что retia mirabilia у кашалота развита сильнее, чем у других китообразных (разумеется, тех, которых анатомировали). А ведь именно кашалот - чемпион среди китообразных по глубине и длительности погружения. Возможно, этот факт косвенно подтверждает гипотезу норвежских ученых.

    Фото из статьи: Arnoldus Schytte Blix, Lars Walløe and Edward B. Messelt. On how whales avoid decompression sickness and why they sometimes strand // J. Exp Biol , 2013, doi:10.1242/ jeb.087577.



    Понравилась статья? Поделитесь с друзьями!
    Была ли эта статья полезной?
    Да
    Нет
    Спасибо, за Ваш отзыв!
    Что-то пошло не так и Ваш голос не был учтен.
    Спасибо. Ваше сообщение отправлено
    Нашли в тексте ошибку?
    Выделите её, нажмите Ctrl + Enter и мы всё исправим!