Информационный женский портал

Что такое сопротивление и чему оно равно. Электрическое сопротивление

На сегодняшний день одной из важнейших характеристик любого материала является его электрическое сопротивление. Этот факт объясняется беспрецедентным в истории человечества распространением электрических машин, заставившим по-иному взглянуть на свойства окружающих материалов как искусственного, так и естественного происхождения. Понятие «электрическое сопротивление» стало таким же важным, как теплоемкость и пр. Оно применимо абсолютно ко всему, что нас окружает: вода, воздух, металл, даже вакуум.

Каждый современный человек должен иметь представление о данной характеристике материалов. На вопрос «что же такое электрическое сопротивление» можно ответить лишь в том случае, если известен смысл термина «электрический ток». С этого и начнем…

Материальным проявлением энергии является атом. Все состоит из них, соединенных в группы. Существующая в настоящее время физическая модель утверждает, что атом походит на уменьшенную модель звездной системы. В центре находится ядро, включающее в себя частицы двух типов: нейтроны и протоны. Протон несет электрический положительный заряд. На разных расстояниях от ядра по круговым орбитам вращаются другие частицы - электроны, несущие отрицательный заряд. Количество протонов всегда соответствует количеству электронов, поэтому суммарный заряд равен нулю. Чем удаленнее от ядра находится орбита электрона (валентный), тем слабее сила притяжения, удерживающая его в структуре атоме.

В генерирующей ток машине магнитное поле высвобождает из орбит Так как в утратившего электрон, остается «лишний» протон, то сила притяжения «отрывает» другой валентный электрон из внешней орбиты соседнего атома. В процесс завлекается вся структура материала. В результате появляется движение заряженных частиц (атомов с положительным зарядом и свободных электронов с отрицательным), которое и называется электрическим током.

Материал, в структуре которого электроны внешних орбит могут легко покидать атом, называется проводником. Его электрическое сопротивление мало. Это группа металлов. Например, для производства проводов в основном используют алюминий и медь. По закону Ома электрическое представляет собой отношение созданного генератором напряжения к силе проходящего тока. Кстати, в "Омах".

Легко догадаться, что существуют материалы, в которых валентных электронов очень мало или атомы сильно удалены друг от друга (газ), поэтому их внутренняя структура не может обеспечить прохождение тока. Они носят название диэлектриков и используются для изолирования проводящих линий в электротехнике. Электрическое сопротивление в них очень высоко.

Всем известно, что мокрый диэлектрик начинает проводить электрический ток. В свете этого факта особый интерес приобретает вопрос «существует ли электрическое сопротивление воды». Ответ на него противоречивый: и да, и нет. Как уже указывалось ранее, если в материале валентных электронов практически нет, а сама структура состоит больше из пустоты, чем частиц (вспоминаем таблицу Менделеева и водород с единственным электроном на орбите), то в обычных условиях проводимость существовать не может. Под это описание идеально подходит вода: соединение двух газов, называемое нами жидкостью. И действительно, будучи полностью очищенной от растворенных примесей, она является очень хорошим диэлектриком. Но так как в природе в воде всегда присутствуют растворы солей, то обеспечивается именно ими. На ее уровень влияет насыщенность раствора и температура Вот поэтому однозначного ответа на вопрос быть не может, ведь вода бывает разной.

Когда происходит замыкание электрической цепи, при наличии на зажимах разности потенциалов, то, в данном случае, возникает действие электрического тока. Сила электрического поля влияет на свободные электроны, заставляя их перемещаться вдоль проводника. Во время движения, электроны сталкиваются с атомами проводника, отдавая имеющуюся кинетическую энергию. Все электроны движутся с непрерывно изменяющейся скоростью.

Уменьшение скорости происходит, когда электроны сталкиваются с другими электронами и атомами, попадающимися на пути. В дальнейшем, под воздействием электрического , скорость движения электронов вновь увеличивается до нового столкновения.

Процесс этот непрерывный, в результате чего, поток электронов в проводнике движется равномерно. При этом, электроны, во время движения, постоянно встречают сопротивление. Это в конечном итоге, приводит к нагреванию проводника.

Что такое сопротивление проводника

Сопротивление - это свойство среды или тела, которое способствует превращению электрической энергии в тепловую, в то время, когда по нему проходит электрический ток. Изменить значение тока в цепи можно при помощи переменного электрического сопротивления, называемого реостатом. Нужное сопротивление вводится при помощи специального ползунка, установленного в определенном положении.

Проводник с большой длиной и малым поперечным сечением, обладает более высоким сопротивлением. И, наоборот, короткий проводник с большим поперечным сечением способен оказать току совсем небольшое сопротивление.

Два проводника, имеющие одинаковое сечение и длину, но изготовленные из разных материалов, совершенно по-разному проводят электрический . Отсюда следует, что материал, напрямую влияет на сопротивление.

Влияние дополнительных факторов

Дополнительные факторы влияют на значение и собственную температуру проводника. При повышении температуры, наблюдается увеличение сопротивления в различных металлах. В жидкостях и угле сопротивление, наоборот, уменьшается. Существуют определенные виды сплавов, у которых, с увеличением температуры сопротивление практически не изменяется.

Таким образом, сопротивление проводника зависит от таких факторов, как его длина и сечение, а также от температуры и материала, из которого он изготовлен. Сопротивление всех проводников измеряется в омах.

При большом сопротивлении, такой проводник обладает, соответственно, меньшей проводимостью и наоборот, малое сопротивление способствует гораздо лучшей проводимости электрического тока. Поэтому, величины проводимости и сопротивления, имеют обратное значение.

Под электрическим сопротивлением понимается любое противодействие, которое обнаруживает ток при прохождении через замкнутый контур, ослабление или торможение свободного потока электрических зарядов.

Jpg?x15027" alt="Измерение сопротивления мультиметром" width="600" height="490">

Измерение сопротивления мультиметром

Физическое понятие сопротивления

Электроны при прохождении тока циркулируют в проводнике организованным образом в соответствии с сопротивлением, с которым они сталкиваются на своем пути. Чем меньше эта сопротивляемость, тем больше существующий порядок в микромире электронов. Но когда сопротивляемость высокая, они начинают сталкиваться друг с другом и выделять тепловую энергию. В связи с этим, температура проводника всегда немного повышается, на большую величину, чем выше электроны находят противодействия своему движению.

Используемые материалы

Все известные металлы обладают большей или меньшей устойчивостью к прохождению тока, включая лучшие проводники. Наименьшей сопротивляемостью обладают золото и серебро, но они дорогие, поэтому самый часто используемый материал – медь, имеющая высокую электропроводность. В меньших масштабах применяется алюминий.

Наибольшая устойчивость к прохождению тока у нихромной проволоки (сплав никеля (80%) и хрома (20%)). Она широко применяется в резисторах.

Другим широко используемым резисторным материалом является уголь. Из него фиксированные сопротивления и реостаты изготавливаются для использования в электронных схемах. Фиксированные резисторы и потенциометры применяются для регулирования значений тока и напряжения, например, при контроле громкости и тона аудиоусилителей.

Расчет сопротивлений

Для вычисления величины нагрузочного сопротивления формулу, выведенную из закона Ома, используют, как основную, если известны значения тока и напряжения:

Единицей измерения является Ом.

Для последовательного соединения резисторов общее сопротивление находится путем суммирования отдельных значений:

R = R1 + R2 + R3 + …..

При параллельном соединении используется выражение:

1/R = 1/R1 + 1/R2 + 1/R3 + …

А как найти электрическое сопротивление для провода, учитывая его параметры и материал изготовления? Для этого существует другая формула сопротивления:

R = ρ х l/S, где:

  • l – длина провода,
  • S – размеры его поперечного сечения,
  • ρ – удельное объемное сопротивление материала провода.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/03/2-1-600x417.png?.png 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-1-768x533..png 792w" sizes="(max-width: 600px) 100vw, 600px">

Формула сопротивления

Геометрические размеры провода можно измерить. Но чтобы рассчитать сопротивление по этой формуле, надо знать коэффициент ρ.

Важно! Значения уд. объемного сопротивления уже рассчитаны для разных материалов и сведены в специальные таблицы.

Значение коэффициента позволяет сравнивать сопротивление разных типов проводников при заданной температуре в соответствии с их физическими свойствами без учета размеров. Это можно проиллюстрировать на примерах.

Пример расчета электросопротивления медного провода, длиной 500 м:

  1. Если размеры сечения провода неизвестны, можно замерить его диаметр штангенциркулем. Допустим, это 1,6 мм;
  2. При расчетах площади сечения используется формула:

Тогда S = 3,14 х (1,6/2)² = 2 мм²;

  1. По таблице нашли значение ρ для меди, равное 0,0172 Ом х м/мм²;
  2. Теперь электросопротивление рассчитываемого проводника будет:

R = ρ х l/S = 0,0172 х 500/2 = 4,3 Ом.

Другой пример нихромовая проволока сечением 0,1 мм², длиной 1 м:

  1. Показатель ρ для нихрома – 1,1 Ом х м/мм²;
  2. R = ρ х l/S = 1,1 х 1/0,1 = 11 Ом.

На двух примерах наглядно видно, что нихромовая проволока метровой длины и сечением, в 20 раз меньшим, имеет электрическое сопротивление в 2,5 раза больше, чем 500 метров медного провода.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-6-768x381..jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

Удельное сопротивление некоторых металлов

Важно! На сопротивление оказывает влияние температура, с ростом которой оно увеличивается и, наоборот, уменьшается со снижением.

Импеданс

Импеданс – более общий термин сопротивления, который учитывает реактивную нагрузку. Расчет сопротивления в контуре переменного тока заключается в вычислении импеданса.

В то время, как резистор создает активное сопротивление для решения определенных задач, реактивная составляющая является неудачным побочным продуктом некоторых компонентов электроцепи.

Два типа реактивного сопротивления:

  1. Индуктивное. Создается катушками. Формула расчета:

X (L) = 2π x f x L, где:

  • f – частота тока (Гц),
  • L – индуктивность (Гн);
  1. Емкостное. Создается конденсаторами. Рассчитывается по формуле:

X (C) = 1/(2π x f x C),

где С – емкость (Ф).

Как и активный аналог, реактивное сопротивление выражается в омах и также ограничивает поток тока через контур. Если в цепи присутствует и емкость, и катушка индуктивности, то общее сопротивление равно:

X = X (L) – X (C).

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-3.jpg 622w" sizes="(max-width: 600px) 100vw, 600px">

Активное, индуктивное и емкостное сопротивление

Важно! Из формул реактивной нагрузки следуют интересные особенности. С увеличением частоты переменного тока и индуктивности растет X (L). И, наоборот, чем выше частоты и емкость, тем меньше X (С).

Нахождение импеданса (Z ) не является простым складыванием активной и реактивной составляющих:

Z = √ (R² + X²).

Пример 1

Катушка в контуре с током промышленной частоты обладает активным сопротивлением 25 Ом и индуктивностью 0,7 Гн. Вычислить импеданс можно:

  1. X (L) = 2π x f x L = 2 х 3,14 х 50 х 0,7 = 218,45 Ом;
  2. Z = √ (R² + X (L)²) = √ (25² + 218,45²) = 219,9 Ом.

tg φ = X (L)/R = 218,45/25 = 8,7.

Угол φ примерно равен 83 градуса.

Пример 2

Имеется конденсатор емкостью 100 мкФ и внутренним сопротивлением 12 Ом. Вычислить импеданс можно:

  1. X (C) =1/(2π x f x C) = 1/ 2 х 3,14 х 50 х 0, 0001 = 31,8 Ом;
  2. Z = √ (R² + X (С)²) = √ (12² + 31,8²) = 34 Ом.

В интернете можно найти калькулятор онлайн для упрощения вычисления сопротивлений и импеданса всей электроцепи или ее участков. Там нужно просто вести свои расчетные данные и зафиксировать результаты расчета.

Видео

Закон Ома является основным законом электрических цепей. При этом он позволяет объяснять многие явления природы. Например, можно понять, почему электричество не "бьет" птиц, которые сидят на проводах. Для физики закон Ома является крайне значимым. Без его знания невозможно было бы создавать стабильно работающие электрические цепи или вовсе не было бы электроники.

Зависимость I = I(U) и ее значение

История открытия сопротивления материалов напрямую связана с вольт-амперной характеристикой. Что это такое? Возьмем цепь с постоянным электрическим током и рассмотрим любой ее элемент: лампу, газовую трубку, металлический проводник, колбу электролита и т. д.

Меняя напряжение U (часто обозначается как V), подаваемое на рассматриваемый элемент, будем отслеживать изменение силы тока (I), проходящего через него. Как итог, мы получим зависимость вида I = I (U), которая носит название "вольт-амперная характеристика элемента" и является прямым показателем его электрических свойств.

Вольт-амперная характеристика может выглядеть по-разному для различных элементов. Самый простой ее вид получается при рассмотрении металлического проводника, что и сделал Георг Ом(1789 - 1854).

Вольт-амперная характеристика - это линейная зависимость. Поэтому ее графиком служит прямая линия.

Закон в простой форме

Исследования Ома по изучению вольт-амперных характеристик проводников показали, что сила тока внутри металлического проводника пропорциональна разности потенциалов на его концах (I ~ U) и обратно пропорциональна некоему коэффициенту, то есть I ~ 1/R. Этот коэффициент стал называться "сопротивление проводника", а единица измерения электрического сопротивления - Ом или В/А.

Стоит отметить еще вот что. Закон Ома часто используется для расчета сопротивления в цепях.

Формулировка закона

Закон Ома говорит, что сила тока (I) отдельно взятого участка цепи пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению.

Следует заметить, что в таком виде закон остается верным только для однородного участка цепи. Однородной называется та часть электрической цепи, которая не содержит источника тока. Как пользоваться законом Ома в неоднородной цепи, будет рассмотрено ниже.

Позже опытным путем было установлено, что закон остается справедливым и для растворов электролитов в электрической цепи.

Физический смысл сопротивления

Сопротивление - это свойство материалов, веществ или сред препятствовать прохождению электрического тока. Количественно сопротивление в 1 Ом означает, что в проводнике при напряжении 1 В на его концах способен проходить электрический ток силой 1 А.

Удельное электрическое сопротивление

Экспериментальным методом было установлено, что сопротивление электрического тока проводника зависит от его размеров: длина, ширина, высота. А также от его формы (сфера, цилиндр) и материала, из которого он сделан. Таким образом, формула удельного сопротивления, например, однородного цилиндрического проводника будет: R = р*l/S.

Если в этой формуле положить s = 1 м 2 и l = 1 м, то R численно будет равен р. Отсюда вычисляется единица измерения для коэффициента удельного сопротивления проводника в СИ - это Ом*м.

В формуле удельного сопротивления р - это коэффициент сопротивления, определяемый химическими свойствами материала, из которого изготовлен проводник.

Для рассмотрения дифференциальной формы закона Ома, необходимо рассмотреть еще несколько понятий.

Как известно, электрический ток - это строго упорядоченное движение любых заряженных частиц. Например, в металлах носителями тока выступают электроны, а в проводящих газах - ионы.

Возьмем тривиальный случай, когда все носители тока однородны - металлический проводник. Мысленно выделим в этом проводнике бесконечно малый объем и обозначим через u среднюю (дрейфовую, упорядоченную) скорость электронов во взятом объеме. Далее пусть n обозначает концентрацию носителей тока в единице объема.

Теперь проведем бесконечно малую площадь dS перпендикулярно вектору u и построим вдоль скорости бесконечно малый цилиндр с высотой u*dt, где dt - обозначает время, за которое все носители скорости тока, содержавшиеся в рассматриваемом объеме, пройдут сквозь площадку dS.

При этом электронами сквозь площадку будет перенесен заряд, равный q = n*e*u*dS*dt, где e - заряд электрона. Таким образом, плотность электрического тока - это вектор j = n*e*u, обозначающий количество заряда, переносимого в единицу времени через единицу площади.

Один из плюсов дифференциального определения закона Ома заключается в том, что часто можно обойтись без расчета сопротивления.

Электрический заряд. Напряженность электрического поля

Напряженность поля наряду с электрическим зарядом является фундаментальным параметром в теории электричества. При этом количественное представление о них можно получить из простых опытов, доступных школьникам.

Для простоты рассуждений будем рассматривать электростатическое поле. Это электрическое поле, которое не изменяется со временем. Такое поле может быть создано неподвижными электрическими зарядами.

Также для наших целей необходим пробный заряд. В его качестве будем использовать заряженное тело - настолько малое, что оно не способно вызывать какие-либо возмущения (перераспределение зарядов) в окружающих объектах.

Рассмотрим поочередно два взятых пробных заряда, последовательно помещенных в одну точку пространства, находящуюся под воздействием электростатического поля. Получается, что заряды будут подвергаться неизменному во времени воздействию с его стороны. Пусть F 1 и F 2 - это силы, воздействующие на заряды.

В результате обобщения опытных данных было установлено, что силы F 1 и F 2 направлены либо в одну, либо в противоположные стороны, а их отношение F 1 /F 2 является независимым от точки пространства, куда были поочередно помещены пробные заряды. Следовательно, отношение F 1 /F 2 является характеристикой исключительно самих зарядов, и никак не зависит от поля.

Открытие данного факта позволило охарактеризовать электризацию тел и в дальнейшем было названо электрическим зарядом. Таким образом, по определению получается q 1 /q 2 = F 1 /F 2 , где q 1 и q 2 - величина зарядов, помещаемых в одну точку поля, а F 1 и F 2 - силы, действующие на заряды со стороны поля.

Из подобных соображений были экспериментально установлены величины зарядов различных частиц. Условно положив в соотношение один из пробных зарядов равным единице, можно вычислить величину другого заряда, измерив соотношение F 1 /F 2 .

Через известный заряд можно охарактеризовать любое электрическое поле. Таким образом, сила, действующая на единичный пробный заряд, находящийся в состоянии покоя, называется напряженностью электрического поля и обозначается E. Из определения заряда получаем, что вектор напряженности имеет следующий вид: E = F/q.

Связь векторов j и E. Другая форма закона Ома

Также отметим, что определение удельного сопротивления цилиндра можно обобщить для проводов, состоящих из одного материала. В таком случае площадь поперечного сечения из формулы удельного сопротивления будет равна сечению провода, а l - его длине.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать "Сопротивление проводника равно 15 Ом", можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!