Информационный женский портал

Основные закономерности наследования признаков, установленные Г. Менделем: описание и функции. Законы наследования признаков, установленные Г. Менделем

  1. Особенности метода гибридологического анализа. Законы Менделя.
  2. Типы взаимодействия генов.
  3. Сцепленное наследование признаков.
  4. Цитоплазматическое наследование.

Метод гибридологического анализа , заключающийся в скрещивании и последующем учете расщеплений (соотношений фенотипических и генотипических разновидностей потомков), был разработан чешским естествоиспытателем Г. Менде­лем (1865). К особенностям этого метода относят: 1) учет при скрещивании не всего многообразного комплекса признаков у родителей и потомков, а анализ наследования отдельных, выделяемых исследователем альтернативных признаков; 2) количе­ственный учет в ряду последовательных поколений гибридных растений, различающихся по отдельным признакам; 3) индивиду­альный анализ потомства от каждого растения.

Работая с самоопыляющимися растениями гороха садового, Г.Мендель выбрал для эксперимента сорта (чистые линии), отличающиеся друг от друга альтернативными проявлениями признаков. Полученные данные Мендель обработал математически, в результате чего раскрылась четкая закономерность наследования отдельных признаков родительских форм их потомками в ряде последующих поколений. Эту закономерность Мендель сформулировал в виде правил наследственности, получивших позднее название законов Менделя .



Скрещивание двух организмов называют гибридизацией. Моногибридным (моногенным ) называют скрещивание двух организмов, при котором прослеживают наследование одной пары альтернативных проявлений какого-либо признака (развитие этого признака обусловлено парой аллелей одного гена). Гибриды первого поколения являются единообразными по исследуемому признаку. В F1 проявляется лишь один из пары альтернативных вариантов признака цвета семян, названный доминантным. Эти результаты иллюстрируют первый закон Менделя - закон единообразия гибридов первого поколения, а также правило доминирования.

Первый закон Менделя можно сформулировать следующим образом: при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения окажутся по этим признакам едино­образными. У гибридов проявятся доминантные признаки родите­лей.

Во втором поколении обнаружилось расщепление по исследуемому признаку

Соотношение потомков с доминантным и рецессивным проявлением признака оказалось близко к ¾ к ¼. Таким образом, второй закон Менделя можно сформулировать следующим образом: при моногибридном скрещивании гетерозигот­ных особей (гибридов F1) во втором поколении наблюдается расщепление по вариантам анализируемого признака в отношении 3:1 по фенотипу и 1:2:1 по генотипу. Чтобы объяснить распределение признаков у гибридов после­довательных поколений, Г. Мендель предположил, что каждый наследственный признак зависит от наличия в соматических клетках двух наследственных факторов, полученных от отца и матери. К настоящему времени установлено, что наследственные факторы Менделя соответствуют генам - локусам хромосом.

Гомозиготные растения с желтыми семенами (АА) образуют гаметы одного сорта с аллелем А; растения с зелеными семенами (аа) образуют гаметы с а. Таким образом, пользуясь современной терминологией, гипоте­зу «чистоты гамет » можно сформулировать следующим образом: "В процессе образования половых клеток в каждую гамету попадает только один ген из аллельной пары, потому что, в процессе мейоза в гамету попадает одна хромосома из пары гомологичных хромосом.

Скрещивание, при котором прослеживается наследование по двум парам альтернативных признаков, называют дигибридным , по нескольким парам признаков- полигибридным . В опытах Менделя при скрещивании сорта гороха, имевшего желтые (А) и гладкие (В) семена, с сортом гороха с зелеными (а) и морщинистыми (Ь) семенами, гибриды F1 имели желтые и гладкие семена, т.е. проявились доминантные признаки (гибриды едино­образны).

Гибридные семена второго поколения (F2) распределились на четыре фенотипические группы в соотношении: 315 - с гладкими желтыми семенами, 101 - с морщинистыми желтыми, 108- с гладкими зелеными, 32 - с зелеными морщинистыми семенами. Если число потомков в каждой группе разделить на число потомков в самой малочисленной группе, то в F2 соотношение фенотипических классов составит приблизительно 9:3:3:1. Итак, согласно третьему закону Менделя , гены разных аллельных пар и соответствующие им признаки передаются потомству независимо друг от друга, комбинируясь во всевозмож­ных сочетаниях.

При полном доминировании одного аллеля над другим гетерозиготные особи фенотипически неотличимы от гомозиготных по доминантному аллелю и различить их можно только с помощью гибридологического анализа, т.е. по потомству, которое получается от определенного типа скрещивания, получившего название анализирующего . Анализирующим является такой тип скрещивания, при котором испытуемую особь с доминантным признаком скрещивают с особью, гомозиготной по рецессивному аплелю.

Если доминантная особь гомозиготна, потомство от такого скрещивания будет единообразным и расщепления не произойдет. В том случае, если особь с доминантным признаком гетерозиготна, расщепление произойдет в отношении 1:1 по фенотипу и генотипу.

Взаимодействие генов

В отдельных случаях действие разных генов относительно независимо, но, как правило, проявление признаков есть результат взаимодействия продуктов разных генов. Эти взаимодействия могут быть связаны как с аллельными , так и с неаллельными генами.

Взаимодействие между аллельными генами осуществляется в виде трех форм: полное доминирование, неполное доминирование и независимое проявление (кодоминирование).

Ранее были рассмотрены опыты Менделя, выявившие полное доминирование одного аллеля и рецессивность другого. Неполное доминирование наблюдается в том случае, когда один ген из пары аллелей не обеспечивает образование в достаточном для нормального проявления признака его белкового продукта. При этой форме взаимодействия генов все гетерозиготы и гомозиготы значительно отличаются по фенотипу друг от друга. При кодоминирсвании у гетерозиготных организмов каждый из аллельных генов вызывает формирование в фенотипе контролируемого им признака. Примером этой формы взаимогействия аллелей служит наследование групп крови человека по системе АВО, детерминируемых геном I. Существует три аллеля этого гена Iо,Iа,IЬ, определяющие антигены групп крови. Наследование групп крови иллюстрирует также явление множественного аллелизма: в генофондах популяций человека ген I существует в виде трех разных аллелей, которые комбинируются у отдельных индивидуумов только попарно.

Взаимодействие неаллельных генов. В ряде случаев на один признак организма могут влиять две (или более) пары неаллельных генов. Это приводит к значитель­ным численным отклонениям фенотипических (но не генотипических) классов от установленных Менделем при дигибридном скрещивании. Взаимодействие неаллельных генов подразделяют на основные формы: комплементарность, эпистаз, полимерию.

При комплементарном взаимодействии признак проявляется лишь в случае одновременного присутствия в генотипе организма двух доминантных неаллельных генов. Примером комплементар­ного взаимодействия может служить скрещивание двух различных сортов душистого горошка с белыми лепестками цветков.

Следующим видом взаимодействия неаллельных генов является эпистаз, при котором ген одной аллельной пары подавляет действие гена другой пары. Ген, подавляющий действие другого, называется эпистатическим геном (или супрессором). Подавля­емый ген носит название гипостатического. Эпистаз может быть доминантным и рецессивным. Примером доминантного эпистаза служит наследование окраски оперения кур. Ген С в доминантной форме определяет нормальную продукцию пигмента, но домина­нтный аллель другого гена I является его супрессором. В результате этого куры, имеющие в генотипе доминантный аллель гена окраски, в присутствии супрессора оказываются белыми. Эпистатическое действие рецессивного гена иллюстрнрует наследование окраски шерсти у домовых мышей. Окраска агути (рыжевато-серая окраска шерсти) определяется доминантным геном А. Его рецессивный аллель а в гомозиготном состоянии обусловливает черную окраску. Доминантный ген другой пары С определяет развитие пигмента, гомозиготы по рецессивному аллелю с являются альбиносами с белой шерстью и красными глазами (отсутствие пигмента в шерсти и радужной оболочке глаз).

Наследование признака, передача и развитие которого, обусловлены, как правило, двумя аллелями одного гена, называют моногенным . Кроме того известны гены из разных аллельных пар (их называют полимернымиили полигенами ), примерно одинаково влияющие на признак.

Явление одновременного действия на признак нескольких неаллельных однотипных генов получило название полимерии. Хотя полимерные гены не являются аллельными, но так как они определяют развитие одного признака, их обычно обозначают одной буквой А (а), цифрами указывая число аллельных пар. Действие полигенов чаще всего бывает суммирующим.

Сцепленное наследование

Анализ наследования од­новременно нескольких признаков у дрозофилы, проведенный Т. Морганом, показал, что результаты анализирующего скрещивания гибридов F1 иногда отличаются от ожидаемых в случае их незави­симого наследования. У потомков такого скрещивания вместо свободного комбинирования признаков разных пар наблюдали, тенденцию к наследованию преимущественно родительских соче­таний признаков. Такое наследование признаков было названо сцепленным. Сцепленное наследование объясняется расположением соответствующих генов в одной и той же хромосоме. В составе последней они передаются из поколения в поколение клеток и организмов, сохраняя сочетание аллелей родителей.

Зависимость сцепленного наследования признаков от локали­зации генов в одной хромосоме дает основание рассматривать хромосомы как отдельные группы сцепления. Анализ наследования призна­ка окраски глаз у дрозофилы в лаборатории Т. Моргана выявил некоторые особенности, заставившие выделить в качестве отдель­ного типа наследования признаков сцепленное с полом наследование .

Зависимость результатов эксперимента от того, кто из родителей являлся носителем доминантного варианта признака, позволила высказать предположение, что ген, определяющий окраску глаз у дрозофилы, расположен в Х-хромосоме и не имеет гомолога в У-хромосоме. Все особенности сцепленного с полом наследования объясняются неодинаковой дозой соответствующих генов у пред­ставителей разного - гомо- и гетерогаметного пола. Х-хромосома присутствует в кариотипе каждой особи, поэтому признаки, определяемые генами этой хромосомы, формируются у представителей как женского, так и мужского пола. Особи гомогаметного пола получают эти гены от обоих родителей и через свои гаметы передают их всем потомкам. Представители гетерогаметного пола получают единственную X-хромосому от гомогаметного родителя и передают ее своему гомогаметному потомству. У млекопитающих (в том числе и человека) мужской пол получает Х-сцепленные гены от матери и передает их дочерям. При этом мужской пол никогда не наследует отцовского Х-сцепленного признака и не передает его своим сыновьям

Активно функционирующие гены У-хромосомы, не имеющие аллелей в Х-хромосоме, присутствуют в генотипе только гетерогаметного пола, причем в гемизиготном состоянии. Поэтому они проявляются фенотипически и передаются из поколения в поколение лишь у представителей гетерогаметного пола. Так, у человека признак гипертрихоза ушной раковины («во­лосатые уши») наблюдается исключительно у мужчин и наследуется от отца к сыну.

Моногибридное скрещивание. Некоторые закономерности наследования были впервые установлены Г. Менделем. Он достиг успеха в своих экспериментах благодаря использованию гибридологического метода - скрещивания организмов, различающихся по каким-либо признакам, и анализа всех последующих поколений с целью установления закономерностей наследования этих признаков. Гибридологический метод и до настоящего времени остается одним из основных в генетических исследованиях.

Г. Мендель усовершенствовал данный метод, и в отличие от своих предшественников, анализировал наследование ограниченного количества признаков (одного, двух, трех). При этом он выбирал признак с альтернативным (контрастирующим ) проявлением его у скрещиваемых организмов. Так, он скрещивал сорта гороха с окрашенными и белыми цветками, гладкими и морщинистыми семенами и т. п. Кроме того, Мендель проверял перед скрещиванием, насколько устойчиво наследуются выбранные им признаки в ряду поколений при самоопылении. В процессе эксперимента им проводился также точный количественный учет всех гибридных растений во всех поколениях.

Моногибридное скрещивание. I и II законы Г. Менделя.

Моногибридным называется такое скрещивание, при котором родительские пары различаются по одному признаку. В своих опытах Мендель использовал горох: отцовское растение с красными цветками, а материнское - с белыми или наоборот. Родительские организмы, взятые для скрещивания, обозначают латинской буквой Р (рис. 1 и 2).

Рис. 1. Схема моногибридного скрещивания. Наследование пурпурной и белой окраски цветков у гороха: ? - фактор пурпурной; ? - фактор белой окраски цветка

Рис. 2. Схема, иллюстрирующая поведение пары гомологичных хромосом при моногибридном скрещивании: ? - фактор пурпурной окраски цветка; ? - фактор белой окраски

Полученные в результате скрещивания гибриды первого поколения F 1 обладали только красными цветками. Следовательно, признак второго родителя (белые цветы) не проявился. Преобладание у гибридов первого поколения признака одного из родителей (красные цветки) Мендель назвал доминированием , а сам этот признак - доминантным («преобладающим»). «Подавляемый» признак (белые цветки) получил название рецессивного .

Феномен преобладания одного из признаков у всех гибридов первого поколения Мендель определил как закон единообразия гибридов первого поколения (I закон Менделя). Он формулируется следующим образом: при скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу.

При скрещивании однородных гибридов первого поколения между собой во втором поколении F 2 Мендель наблюдал появление растений как с доминантными (красные цветки), так и с рецессивными (белые цветки) признаками. Эта закономерность носит название расщепления. И оно оказывалось не случайным, а строго закономерным: 3/4 от общего числа гибридов второго поколения F 2 имеют красные цветки, а 1/4 - белые. Иными словами, соотношение числа растений с доминантными и рецессивными признаками составляет 3: 1. Из этого следует, что рецессивный признак у гибридов F 1 не исчез, а был подавлен и проявился во втором поколении.

Расщепление во втором поколении гибридов было названо Менделем законом расщепления гибридов второго поколения (II закон Менделя). Формулируется следующим образом: при скрещивании гетерозиготных особей, анализируемых по одной паре альтернативных признаков, наблюдается расщепление в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Пытаясь дать объяснение выявленным закономерностям, автор теории высказал ряд предположений о механизмах наследования признаков:

> поскольку у гибридов F 1 проявляется лишь один признак (доминантный), а второй (рецессивный) отсутствует, но вновь проявляется у гибридов F 2 , то, следовательно, наследуются не сами признаки, а наследственные факторы (какие-то материальные частицы), их определяющие;

> эти факторы являются постоянными, присутствуют в организме попарно и передаются из поколения в поколение через гаметы, причем в половую клетку попадает лишь один наследственный фактор из пары;

> при слиянии половых клеток в новом организме вновь оказывается пара наследственных факторов (по одному от отцовского и материнского организмов);

> наследственные факторы неравноценны по своей «силе», более «сильный» доминантный подавляет более «слабый» рецессивный (чем и объясняется единообразие гибридов первого поколения F 1 );

в ходе оплодотворения могут сливаться гаметы, несущие либо одинаковые факторы (только доминантные или только рецессивные), либо разные (одна гамета содержит доминантный, другая - рецессивный). В первом случае у нового организма будет присутствовать пара одинаковых факторов. Мендель назвал такие организмы гомозиготными (либо АА, либо аа). Во втором случае организмы содержат два разных фактора - они гетерозиготные (Аа);

> сочетание доминантных и рецессивных факторов в строго определенных комбинациях обусловливает расщепление признаков в соотношении 3: 1 у гибридов второго поколения F 2 .

Теперь вместо слова «фактор» используется «ген». Все предположения, высказанные Менделем о механизме наследования признаков у организмов, получили в ходе развития науки полное подтверждение.

Менделем была предложена и система записи результатов скрещивания с использованием буквенной символики, которой пользуются в генетике до сих пор. Парные наследственные факторы (т. е. аллельные гены) обозначаются одной буквой, при этом доминантный ген - прописной (например, А ), а рецессивный - строчной (а ).

Для установления генотипа особи с доминантным признаком при полном доминировании применяют анализирующее скрещивание. Для этого данный организм скрещивают с рецессивным гомозиготным по данной аллели. Возможны два варианта результатов скрещивания:

Если в результате скрещивания получаетсяединообразие гибридов первого поколения, то анализируемая особь является гомозиготной, а если в F1, произойдет расщепление признаков 1:1, то - гетерозиготной.

Рассмотрим результаты опытов по моногибридному скрещиванию в виде схемы на основе системы записи, предложенной Менделем (см. рис. 1).

Уже при жизни ученого в работах исследователей указывалось на то, что закономерности наследования признаков при моногибридном скрещивании подчас отличаются от установленных им. Например, при скрещивании растений «ночной красавицы» с красными и белыми цветками все гибриды F 1 имеют розовые цветки. А во втором поколении гибридов F 2 наблюдается расщепление признака в соотношении 1: 2: 1 (растения с красными, розовыми и белыми цветками) (рис. 3).

Рис. 3. Схема неполного доминирования

В этом случае наблюдается промежуточный характер наследования, т. е. у гетерозиготных гибридов (Rr ) не проявляется ни доминантный признак (красные цветки), ни рецессивный (белые цветки). Эта закономерность наследования получила название неполного доминирования .

Кроме данного феномена были выявлены и другие закономерности наследования, отличные от законов Менделя. Следовательно, они не являются абсолютными, а имеют ограниченный характер.

В современной генетике существуют понятия менделирующие признаки (наследующиеся по законам Менделя) и неменделирующие (наследующиеся по иным законам). Менделирующих признаков у всех организмов большое число. Немало их и у человека (табл. 8 и рис. 5).

Таблица 8

Некоторые менделирующие признаки у человека

Доминантные признаки Рецессивные признаки

Волосы: темные вьющиеся не рыжие

Волосы: светлые прямые рыжие

Глаза: карие большие

маленькие

Близорукость

Нормальное зрение

Ресницы длинные

Ресницы короткие

Нос с горбинкой

Прямой нос

Свободная мочка уха

Приросшая мочка уха

Широкая щель между резцами

Узкая щель между резцами или ее отсутствие

Полные губы

Тонкие губы

Наличие веснушек

Отсутствие веснушек

Шестипалость

Нормальное строение конечностей

Лучшее владение правой рукой

Лучшее владение левой рукой

Наличие пигмента

Альбинизм

Положительный резус-фактор

Отрицательный резус-фактор

Рис. 4. Некоторые наследственные признаки человека: а - ямочки на щеках (доминантный признак); б - приросшая мочка уха (рецессивный признак); в - рост волос по средней линии лба (доминантный признак); г - способность загибать язык назад (доминантный признак); л - расплющенный большой палец (доминантный признак); е - способность свертывать язык трубочкой (доминантный признак);ж -монголоидный разрез глаз (доминантный признак); з - альбинизм (рецессивный признак); и - зрачок, заходящий на радужную оболочку (сцепленный с полом рецессивный признак)

Применяемые Менделем приемы легли в основу нового метода изучения наследования - гибридологического.

Гибридологический анализ - это постановка системы скрещиваний, позволяющих выявить закономерности наследования признаков.

Условия проведения гибридологического анализа:

1) родительские особи должны быть одного вида и размножаться половым способом (иначе скрещивание просто невозможно);

2) родительские особи должны быть гомозиготными по изучаемым признакам;

3) родительские особи должны различаться по изучаемым признакам;

4) родительские особи скрещивают между собой один раз для получения гибридов первого поколения F1, которые затем скрещивают между собой для получения гибридов второго поколения F2;

5) необходимо проведение строгого учета числа особей первого и второго поколения, имеющих изучаемый признак.

Людей всегда интересовали закономерности наследования признаков. Почему дети похожи на своих родителей? Есть ли риск передачи наследственных заболеваний? Эти и многие другие вопросы оставались под завесой тайны вплоть до XIX века. Именно тогда Менделю удалось аккумулировать все накопленные знания по данной теме, а также путем сложных аналитических опытов установить конкретные закономерности.

Вклад Менделя в развитие генетики

Основные закономерности наследования признаков - это принципы, в соответствии с которыми определенные характеристики передаются от родительских организмов к потомству. Их открытие и четкая формулировка явля.тся заслугой Грегора Менделя, который проводил по данному вопросу многочисленные опыты.

Главное достижение ученого - это доказательство дискретного характера наследственных факторов. Иными словами, за каждый признак отвечает конкретный ген. Первые карты были построены для кукурузы и дрозофилы. Последняя является классическим объектом для проведения генетических опытов.

Заслуги Менделя трудно переоценить, о чем говорят и отечественные ученые. Так, знаменитый генетик Тимофеев-Ресовский отметил, что Мендель был первым, кто провел фундаментальные опыты и дал точную характеристику явлениям, которые ранее существовали на уровне гипотез. Таким образом, его можно считать пионером математического мышления в области биологии и генетики.

Предшественники

Стоит отметить, что закономерности наследования признаков по Менделю были сформулированы не на пустом месте. Его исследования основывались на изысканиях предшественников. Стоит особенно отметить следующих ученых:

  • Дж. Госс проводил эксперименты на горохе, скрещивая растения с плодами разного цвета. Именно благодаря этим исследованиям были открыты законы единообразия первого поколения гибридов, а также неполного доминирования. Мендель лишь конкретизировал и подтвердил данную гипотезу.
  • Огюстен Саржэ - это растениевод, выбравший для своих опытов тыквенные культуры. Он первым стал изучать наследственные признаки не в совокупности, а по отдельности. Ему принадлежит утверждение, что при передаче тех или иных характеристик они не смешиваются между собой. Таким образом, наследственность является константной.
  • Ноден проводил исследования на различных видах такого растения, как дурман. Проанализировав полученные результаты, он счел нужным говорить о наличии доминирующих признаков, которые в большинстве случаев будут преобладать.

Таким образом, уже к XIX веку были известны такие явления, как доминантность, единообразие первого поколения, а также комбинаторика признаков у последующих гибридов. Тем не менее всеобщих закономерностей выработано не было. Именно анализ имеющейся информации и выработка достоверной методики исследования являются главной заслугой Менделя.

Методика работы Менделя

Закономерности наследования признаков по Менделю были сформулированы в результате фундаментальных исследований. Деятельность ученого осуществлялась следующим образом:

  • рассматривались не в совокупности, а по отдельности;
  • для анализа выбирались только альтернативные признаки, которые представляют существенную разницу между разновидностями (именно это позволило наиболее четко объяснить закономерности процесса наследования);
  • исследования были фундаментальными (Мендель исследовал большое количество сортов гороха, которые были как чистыми, так и гибридными, а потом скрещивал "потомство"), что позволило говорить об объективности результатов;
  • использование точных количественных методов в ходе анализа полученных данных (используя знания в области теории вероятностей, Мендель снизил показатель случайных отклонений).

Закон единообразия гибридов

Рассматривая закономерности наследования признаков, стоит уделить особое внимание единообразию гибридов первого поколения. Он был открыт путем опыта, в ходе которого производилось скрещивание родительских форм с одним контрастным признаком (форма, окраска и т. д.).

Менделем было принято решение провести эксперимент на двух разновидностях гороха - с красными и белыми цветками. Как результат, гибриды первого поколения получили пурпурные соцветия. Таким образом, появилось основание говорить о наличии доминантных и рецессивных признаков.

Стоит отметить, что данный опыт Менделя был не единственным. Он использовал для экспериментов растения с другими оттенками соцветий, с разной формой плодов, разной высотой стебля и прочие варианты. Опытным путем ему удалось доказать, что все гибриды первого порядка единообразны и характеризуются доминантным признаком.

Неполное доминирование

В ходе изучения такого вопроса, как закономерности наследования признаков, проводились опыты как на растениях, так и на живых организмах. Таким образом, удалось установить, что далеко не всегда признаки находятся в отношениях и подавления. Так, например, при скрещивании кур черного и белого окраса удалось получить серое потомство. Так же было с некоторыми растениями, когда разновидности с пурпурными и белыми цветками на выходе давали розовые оттенки. Таким образом, можно скорректировать первый принцип, указав, что первое поколение гибридов будет иметь одинаковые признаки, при этом они могут быть промежуточными.

Расщепление признаков

Продолжая исследовать закономерности наследования признаков, Мендель счел необходимым подвергнуть скрещиванию двух потомков первого поколения (гетерозиготных). Как результат, было получено потомство, часть которого носило а другая - рецессивный. Из этого можно сделать вывод, что второстепенный признак у первого поколения гибридов не исчезает вовсе, а лишь подавляется и вполне может проявиться в последующем потомстве.

Независимое наследование

Много вопросов вызывают закономерности наследования признаков. Опыты Менделя коснулись также особей, которые отличаются друг от друга сразу по нескольким признакам. По каждому в отдельности предыдущие закономерности соблюдались. Но вот, рассматривая совокупность признаков, не удалось выявить какой-либо закономерности между их комбинациями. Таким образом, есть основания говорить о независимости наследования.

Закон чистоты гамет

Некоторые закономерности наследования признаков, установленные Менделем, носили чисто гипотетический характер. Речь идет о законе чистоты гамет, который заключается в том, что в них попадает лишь по одному аллелю из пары, содержащейся в гене родительской особи.

Во времена Менделя не было технических средств для подтверждения данной гипотезы. Тем не менее ученому удалось сформулировать общее утверждение. Суть его состоит в том, что в процессе образования гибридов наследственные признаки сохраняются в неизменном виде, а не смешиваются.

Существенные условия

Генетика - это наука, изучающая закономерности наследования признаков. Мендель сделал существенный вклад в ее развитие, выработав фундаментальные положения по данному вопросу. Тем не менее, чтобы они выполнялись, необходимо соблюдение следующих существенных условий:

  • исходные формы должны быть гомозиготными;
  • альтернативность признаков;
  • одинаковая вероятность формирования разных аллелей у гибрида;
  • равная жизнеспособность гамет;
  • при оплодотворении гаметы сочетаются случайным образом;
  • зиготы с разными комбинациями генов жизнеспособны в равной степени;
  • численность особей второго поколения должна быть достаточной, чтобы считать полученные результаты закономерными;
  • проявление признаков не должно быть зависимо от влияния внешних условий.

Стоит отметить, что данным признакам соответствует большинство живых организмов, в том числе человек.

Закономерности наследования признаков у человека

Несмотря на то, что изначально генетические принципы исследовались на примере растений, для животных и человека они также справедливы. Стоит отметить такие типы наследования:

  • Аутосомно-доминантный - наследование доминирующих признаков, которые локализуются посредством аутосом. При этом фенотип может быть как сильно выраженным, так и едва заметным. При данном типе наследования вероятность получения ребенком патологического аллеля от родителя составляет 50 %.
  • Аутосомно-рецессивный - наследование второстепенных признаков, соединенных с аутосомами. Заболевания проявляются посредством гомозигот, причем пораженными будут оба аллеля.
  • Доминантный Х-сцепленный тип подразумевает передачу доминантных признаков детерминированными генами. При этом у женщин заболевания встречаются в 2 раза чаще, чем у мужчин.
  • Рецессивный Х-сцепленный тип - наследование происходит по более слабому признаку. Заболевание или его отдельные признаки всегда проявляются у потомства мужского пола, а у женщин - только в гомозиготном состоянии.

Основные понятия

Для того чтобы понять, как работают закономерности наследования признаков Менделя и прочие генетические процессы, стоит ознакомиться с основными определениями и понятиями. К ним относятся следующие:

  • Доминантный признак - преобладающая характеристика, которая выступает в качестве определяющего состояния гена и подавляет развитие рецессивных.
  • Рецессивный признак - характеристика, которая передается по наследству, но не выступает в качестве определяющей.
  • Гомозигота - диплоидная особь или клетка, в хромосомах которой содержатся одинаковые клетки указанного гена.
  • Гетерозигота - диплоидная особь или клетка, которая дает расщепление и имеет разные аллели в рамках одного гена.
  • Аллель - это одна из альтернативных форм гена, которая расположена в определенном месте хромосомы и характеризуется уникальной последовательностью нуклеотидов.
  • Аллель - это пара генов, которые расположены в одних и тех же зонах и контролируют развитие определенных признаков.
  • находятся на разных участках хромосом и несут ответственность за проявление различных признаков.

Заключение

Мендель сформулировал и на практике доказал основные закономерности наследования признаков. Описание их приведено на примере растений и слегка упрощено. Но на практике оно является справедливым для всех живых организмов.

Предмет, задачи и методы генетики.

Наследственность и изменчивость являются фундаментальными свойствами живого, так как характерны для живых существ любого уровня организации. Наука, изучающая закономерности наследственности и изменчивости, называется генетикой.

Генетика как наука изучает наследственность и наследственную изменчивость, а именно, она имеет дело со следующими проблемами:

    хранение генетической информации;

    передача генетической информации;

    реализация генетической информации (использование ее в конкретных признаках развивающегося организма под влиянием внешней среды);

    изменение генетической информации (типы и причины изменений, механизмы).

Первый этап развития генетики – 1900-1912г. С 1900 г. – переоткрытие законов Г. Менделя учеными Х. Де Фризом, К. Корренсом, Э. Чермаком. Признание законов Г. Менделя.

Второй этап 1912-1925г.г. – создание хромосомной теории Т. Моргана. Третий этап 1925-1940г.г. – открытие искусственного мутагенеза и генетических процессов эволюции.

Четвертый этап 1940-1953г.г. – исследования по генному контролю физиологических и биохимических процессов.

Пятый этап с 1953 и по настоящее время – развитие молекулярной биологии.

Отдельные сведения по наследованию признаков были известны очень давно, однако научные основы передачи признаков впервые были изложены Г. Менделем в 1865 году в работе: "Опыты над растительными гибридами". Это были передовые мысли, но современники не придали значение его открытию. Понятия "ген" в то время еще не было и Г. Мендель говорил о "наследственных задатках", содержащихся в половых клетках, но их природа была неизвестна.

В 1900 году независимо друг от друга Х. Де Фриз, Э. Чермак и К. Корренс заново открыли законы Г. Менделя. Этот год и считается годом рождения генетики как науки. В 1902 году Т. Бовери, Э. Вильсон и Д. Сеттон сделали предположение о связи наследственных факторов с хромосомами. В 1906 году У. Бетсон ввел термин "генетика", а в 1909 году В. Иогансен – "ген". В 1911 году Т. Морган и сотрудники сформулировали основные положения хромосомной теории наследственности. Они доказали, что гены расположены в определенных локусах хромосом в линейном порядке, поэтому геном стали считать участок хромосомы, ответственный за проявление определенного признака.

Основные методы генетики: гибридологический, цитологический и математический. Генетика активно использует и методы других смежных наук: химии, биохимии, иммунологии, физики, микробиологии и др.

Основные понятия генетики.

Наследственность – это свойство живых систем передавать из поколения в поколение особенности морфологии, функции и индивидуального развития в определенных условиях среды.

Изменчивость – это способность дочерних организмов отличатся от родительских форм морфологическими и физиологическими признаками и особенностями индивидуального развития.

Наследование – это способ передачи генетической информации через половые клетки при половом размножении, или через соматические – при бесполом. Материальной основой наследования являются яйцеклетка и сперматозоид, или соматическая клетка.

Наследуемость – это степень соотношения наследственности и изменчивости.

Ген – это единица наследственности и изменчивости. По современным представлениям ген – это участок молекулы ДНК, дающий информацию о синтезе определенного полипептида.

Набор генов организма, которые он получает от своих родителей, называется генотипом.

Совокупность всех внешних и внутренних признаков организма называется фенотипом, а отдельный признак – феном. Например, форма носа, ушной раковины, пальцев ног и рук, цвет волос – внешние фенотипические признаки. Особенности строения желудка, содержание лейкоцитов и эритроцитов в крови – внутренние фенотипические признаки.

Закономерности моно- и полигенного наследования менделирующих признаков. Закон единообразия, закон расщепления признаков, гипотеза «чистоты гамет». Дигибридное и полигибридное скрещивания.

Генетические процессы являются определяющими в онтогенезе всех живых организмов. Индивидуальное развитие любого организма определяется его генотипом. Из поколения в поколение через половые клетки передается информация обо всех многообразных морфологических, физиологических и биохимических признаках, которые реализуются у потомков. Наследование – способ передачи наследственной информации в поколениях при половом размножении или бесполом.

Различают два основных типа наследования – моногенное и полигенное. При моногенном – признак контролируется одним геном, при полигенном – несколькими генами. Гены могут быть локализованы в аутосомах или половых хромосомах. Характер проявления гена может идти по доминантному или рецессивному пути (Рис. 5).

Гены могут быть локализованы в разных хромосомах или хромосомы представляют группу сцепления генов, поэтому наследование может быть: независимое, сцепленное и неполностью сцепленное .

Рис. 5 - Типы и варианты наследования признаков

Основные процессы, характеризующие закономерности наследования:

      самовоспроизведение

      независимое распределение хромосом при гаметогенезе и их случайное сочетание при оплодотворении.

      генный контроль в процессе онтогенеза.

Закономерности моногенного наследования были открыты Г. Менделем, который разработал гибридологический метод (получение гибридов путем скрещивания), изложенный в 1868г. в работе «Опыты над растительными гибридами».

Мендель положил в основу совершенно новый принцип исследования отдельных пар признаков в потомстве скрещиваемых организмов одного вида, отличающихся по 1, 2, 3 парам контрастных (альтернативных) признаков, который был назван гибридологическим методом. Особенности этого метода заключаются в использовании определенных принципов:

1. Скрещиваемые родительские пары должны быть чистыми линиями (гомозиготными).

2. В каждом поколении необходимо вести учет отдельно по каждой паре альтернативных признаков, без учета других различий между скрещиваемыми организмами.

3. Использование количественного учета гибридных организмов, различающихся по отдельным парам альтернативных признаков в ряду последовательных поколений.

4. Применение индивидуального анализа потомства от каждого гибридного организма.

Мендель предложил обозначить наследственные задатки (гены) буквами латинского алфавита. Гены, от которых зависит развитие альтернативного признака, принято называть аллеломорфными или аллельными . Аллельные гены расположены в одинаковых локусах гомологичных хромосом. Каждый ген может иметь два состояния – доминантное и рецессивное . Явление преобладания у потомка первого поколения признака одного из родителей Мендель назвал доминированием . Признак, подавляемый у гибрида, получил название рецессивного . Доминантный ген принято обозначать большой буквой латинского алфавита (А ), а рецессивный – малой (а ). Организмы, имеющие одинаковые аллели одного гена, например, обе доминантные (АА ) или обе рецессивные (аа ) называются гомозиготами . Организмы, имеющие разные аллели одного гена – одну доминантную, другую рецессивную (Аа) называют гетерозиготными, или гетерозиготами .

Если же организм имеет только один аллель гена, то тогда говорят, что такой организм гемизиготный . При написании схемы скрещивания принято на первом месте ставить женский организм, на втором месте – мужской. Скрещивание обозначают знаком умножения (х ). Родительские особи записываются в первой строчке и обозначаются буквой "Р ". Гаметы, которые образуют родители, записываются во второй строчке и обозначаются буквой "G ", а образующееся потомство – в третьей. Его называют гибридами и обозначают буквой "F " с цифровым индексом, соответствующим порядковому номеру гибридного поколения.

Скрещивание особей по одному альтернативному признаку называется моногибридным.

Первый закон Менделя – закон единообразия гибридов 1-го поколения или доминирования : при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все гибриды первого поколения единообразны как по генотипу, так и по фенотипу.

Р: ♀ AA x ♂ aa

На основании изучения гибридов 2-го поколения Менделем был сформулирован второй закон –расщепления : при скрещивании двух гетерозиготных особей (т.е. гибридов), анализируемых по одной альтернативной паре признаков, в потомстве ожидается расщепление по фенотипу в отношении 3:1 (три части с доминантными признаками и одна – с рецессивным) и по генотипу 1:2:1 (одна часть доминантных гомозигот, две части гетерозигот и одна часть рецессивных гомозигот).

Р: ♀ Аа х ♂ Аа

F 1: АА, Аа, Аа, аа

Для объяснения результатов 2-го закона У. Бэтсон (1902) выдвинул положение, вошедшее в генетику под названием гипотезы «чистоты гамет»: гены в гаметах у гибридов не гибридны, а чисты .

Причиной не смешивания генов у гетерозигот является нахождение их в разных хромосомах. В результате мейоза при гаметогенезе хромосомы с разными генами попадают в разные гаметы.

Для дигибридного скрещивания Мендель взял гомозиготные организмы, различающиеся одновременно по двум парам альтернативных признаков. Гибриды первого поколения оказались единообразными по обоим доминантным признакам, а при анализе наследования признаков во втором поколении (F 2) оказалось, что наблюдается независимое (свободное) комбинирование пар признаков.

Схема скрещивания:

P: ♀ AaBb x ♂ AaBb

G: AB Ab AB Ab

F 2: Расщепление по фенотипическому радикалу.

9А-В-; 3А-bb; 3ааВ-; 1ааbb

морщинистый


Этот вывод получил название третьего закона Менделя, которое формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся двумя или более парами альтернативных признаков, во втором поколении отмечается независимое комбинирование по каждой паре признаков, а так же появляются комбинации признаков не свойственные родительским особям.

Скрещивание особей по двум и более альтернативным признакам называется ди- и полигибридным скрещиванием.

Общая формула для дигибридного скрещивания: (3:1) 2

Для полигибридного скрещивания – (3:1) n

Фенотипический радикал – это та часть генотипа организма, которая определяет его фенотип.

Как и всякие законы природы, являясь универсальными, законы Менделя могут проявляться лишь при определенных условиях, которые сводятся к следующему:

    Гены разных аллельных пар должны находится в негомологичных хромосомах.

    Полное доминирование признаков независимо от условий развития организма.

    Равновероятное образование гамет всех типов.

    Равновероятное сочетание гамет при оплодотворении.

    Равная жизнеспособность зигот всех генотипов.

Отклонение от ожидаемого расщепления по законам Менделя вызывают летальные гены. Так при скрещивании двух гетерозигот Аа , вместо ожидаемого расщепления 3:1, можно получить 2:1, если гомозиготы АА по какой-либо причине – нежизнеспособны. Так у человека наследуется доминантный ген брахидактилии (короткие пальцы). У гетерозигот наблюдается патология, а гомозиготы по этому гену погибают на ранних стадиях эмбриогенеза. Гетерозиготы по гену серповидно-клеточной анемии (Ss ) жизнеспособны, а гомозиготы погибают (SS ).

Известно более 2000 наследственных болезней и аномалий развития, которые в той или иной степени подчиняются законам Менделя. Они изучаются на молекулярном, клеточном, организменном и популяционном уровнях. К их числу относится ряд тяжелых заболеваний нервной системы (шизофрения, эпилепсия), эндокринной системы (кретинизм), крови (гемофилия), нарушения обмена веществ (фенилкетонурия, алкаптонурия, альбинизм). Изучение причин этих заболеваний, их ранняя диагностика позволяет успешно разрабатывать методы предупреждения их развития. Медицинская генетика имеет надежные методы диагностики и идентификации наследственных заболеваний.

Анализирующее, реципрокное и возвратное скрещивание.

Для выяснения генотипа особи с известным доминантным фенотипом, проводят анализирующее скрещивание . Для этого особь скрещивается с анализатором – формой рецессивной по данному признаку. Анализ проводится по результатам скрещивания. Если все потомство окажется однородным, то анализируемая особь является гомозиготной по доминантному аллелю, если произошло расщепление 1:1 – особь гетерозиготна.

Два скрещивания, различающиеся по тому, кто из родителей (самец или самка) несет доминантную (или рецессивную) аллель, называются реципрокными . Результаты реципрокных скрещиваний различаются при сцепленном с полом наследовании признаков.

Скрещивания потомства F 1 с родительскими особями называют возвратными скрещиваниями.

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным , двух пар — дигибридным , нескольких пар — полигибридным . Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных; цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F 1 — гибриды первого поколения — прямые потомки родителей, F 2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F 1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей , имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

Генетическая схема закона единообразия Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин)

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением . Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин):

Закон чистоты гамет

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F 1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А , а зеленую — а . Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа ). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А , а другого — с геном а .

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа ; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А , другая половина — ген а . Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а ), 1/4 — гомозиготы по доминантному признаку (несут два гена А ) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а ). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А ) и гладкая форма (В ) семян — доминантные признаки, зеленая окраска (а ) и морщинистая форма (b ) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F 1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р ♀АABB
желтые, гладкие
× ♂aаbb
зеленые, морщинистые
Типы гамет AB ab
F 1 AaBb
желтые, гладкие, 100%
P ♀АaBb
желтые, гладкие
× ♂AаBb
желтые, гладкие
Типы гамет AB Ab aB ab AB Ab aB ab

Генетическая схема закона независимого комбинирования признаков:

Гаметы: AB Ab aB ab
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие — 9/16, желтые, морщинистые — 3/16, зеленые, гладкие — 3/16, зеленые, морщинистые — 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb — 4/16, AABb — 2/16, AaBB — 2/16, Aabb — 2/16, aaBb — 2/16, ААBB — 1/16, Aabb — 1/16, aaBB — 1/16, aabb — 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (2 1) в соотношении (3 + 1) 1 , то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2) в соотношении (3 + 1) 2 . Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (2 3) в соотношении (3 + 1) 3 .

Если расщепление по генотипу в F 2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (3 1), то при дигибридном образуется 9 разных генотипов — 3 2 , при тригибридном скрещивании образуется 3 3 — 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb . При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b , а ген а — с геном В или с геном b . Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ , Ab , aB , ab . Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

    Перейти к лекции №16 «Онтогенез многоклеточных животных, размножающихся половым способом»

    Перейти к лекции №18 «Сцепленное наследование»



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!