Информационный женский портал

Рекомендации по решению заданий С5 (подсчет количества хромосом и количества ДНК). Мейоз, отличия от митоза В метафазе 2 мейоза происходит

Мейоз (от греч.мейозис – уменьшение) – это особый тип деления эукариотических клеток, при котором после однократного удвоения ДНК клеткаделится дважды , и из одной диплоидной клетки образуются 4 гаплоидные. Состоит из 2-х последовательных делений (обозначаютсяIиII); каждое из них, подобно митозу, включает 4 фазы (профазу, метафазу, анафазу, телофазу) и цитокинез.

Фазы мейоза:

Профаза I , она сложная, делится на 5 стадий:

1. Лептонема (от греч.leptos – тонкий,nema – нить) – хромосомы спирализуются и становятся видны как тонкие нити. Каждая гомологичная хромосома уже реплицирована на 99,9% и состоит из двух сестринских хроматид, связанных между собой в районе центромеры. Содержание генетического материала –2 n 2 xp 4 c . Хромосомы с помощью белковых скоплений (прикрепительных дисков ) закреплены обоими концами на внутренней мембране ядерной оболочки. Ядерная оболочка сохраняется, ядрышко видно.

2. Зигонема (от греч.zygon – парный) – гомологичные диплоидные хромосомы устремляются друг к другу и соединяются сначала в области центромеры, а затем – по всей длине (конъюгация ). Образуютсябиваленты (от лат.bi – двойной,valens – сильный), илитетрады хроматид. Число бивалентов соответствует гаплоидному набору хромосом, содержание генетического материала можно записать как1 n 4 xp 8 c . Каждая хромосома в одном биваленте происходит либо от отца, либо от матери.Половые хромосомы располагаются около внутренней ядерной мембраны. Эта область называетсяполовым пузырьком.

Между гомологичными хромосомами в каждом биваленте образуются специализированные синаптонемальные комплексы (от греч.synapsis – связь, соединение), которые представляют собой белковые структуры. При большом увеличении в комплексе видны две параллельные белковые нити толщиной 10 нм каждая, соединенные тонкими поперечными полосами размерами около 7 нм, по обе стороны от них лежат хромосомы в виде множества петель.

В центре комплекса проходит осевой элемент толщиной 20 – 40 нм. Синаптонемальный комплекс сравнивают сверевочной лестницей , стороны которой образованы гомологичными хромосомами. Более точное сравнение –застежка типа «молния» .

К концу зигонемы каждая пара гомологичных хромосом связана между собой с помощью синаптонемальных комплексов. Лишь половые хромосомы XиYконъюгируют не полностью, т. к. они неполностью гомологичны.

3. В пахинеме (от греч.pahys – толстый) биваленты укорачиваются и утолщаются. Между хроматидами материнского и отцовского происхождения в нескольких местах возникают соединения –хиазмы (от греч.chiazma – перекрест). В области каждой хиазмы формируется комплекс белков, участвующих врекомбинации (d~ 90 нм), и происходит обмен соответствующих участков гомологичных хромосом – от отцовской к материнской и наоборот. Этот процесс называюткросссинговером (от англ.с rossing - over – перекресток). В каждом биваленте человека, например, кроссинговер происходит в двух – трех участках.

4. В диплонеме (от греч.diploos – двойной) синаптонемальные комплексы распадаются, и гомологичные хромосомы каждого бивалентаотодвигаются друг от друга , но связь между ними сохраняется в зонах хиазм.

5. Диакинез (от греч.diakinein – проходить через). В диакинезе завершается конденсация хромосом, они отделяются от ядерной оболочки, но гомологичные хромосомы продолжают еще оставаться связанными между собой концевыми участками, а сестринские хроматиды каждой хромосомы – центромерами. Биваленты приобретают причудливую формуколец, крестов, восьмерок и т. д. В это время разрушаются ядерная оболочка и ядрышки. Реплицированные центриоли направляются к полюсам, к центромерам хромосом прикрепляются нити веретена деления.

В целом профаза мейоза очень длительна. При развитии спермиев она может длиться несколько суток, а при развитии яйцеклеток – в течение многих лет.

Метафаза I напоминает аналогичную стадию митоза. Хромосомы устанавливаются в экваториальной плоскости, образуя метафазную пластинку. В отличие от митоза, микротрубочки веретена прикрепляются к центромере каждой хромосомы лишь с одной стороны (со стороны полюса), а центромеры гомологичных хромосом расположены по обеим сторонам экватора. Связь между хромосомами с помощью хиазм продолжает сохраняться.

В анафазе I хиазмы распадаются, гомологичные хромосомы отделяются друг от друга и расходятся к полюсам.Центромеры этих хромосом, однако, в отличие от анафазы митоза,не реплицируются , а значит, сестринские хроматиды не расходятся. Расхождение хромосом носитслучайный характер . Содержание генетической информации становится1 n 2 xp 4 c у каждого полюса клетки, а в целом в клетке –2(1 n 2 xp 4 c ) .

В телофазе I , как и при митозе, формируются ядерные оболочки и ядрышки, образуется и углубляетсяборозда деления. Затем происходитцитокинез . В отличие от митоза, деспирализации хромосом не происходит.

В результате мейоза Iобразуются 2 дочерние клетки, содержащие гаплоидный набор хромосом; при этом каждая хромосома имеет 2 генетически отличные (рекомбинантные) хроматиды:1 n 2 xp 4 c . Следовательно, в результате мейозаIпроисходитредукция (уменьшение вдвое) числа хромосом, откуда и название первого деления –редукционное .

После окончания мейоза Iнаступает короткий промежуток -интеркинез , в течение которого не происходит репликации ДНК и удвоения хроматид.

Профаза II недлительна, и конъюгации хромосом при этом не наступает.

В метафазе II хромосомы выстраиваются в плоскости экватора.

В анафазе II ДНК в области центромеры реплицируется, как это происходит и в анафазе митоза, хроматиды расходятся к полюсам.

Послетелофазы II ицитокинеза II образуются дочерние клетки с содержанием генетического материала в каждой –1 n 1 xp 2 c . В целом, второе деление называетсяэквационным (уравнительным).

Итак, в результате двух последовательных делений мейоза образуются 4 клетки, каждая из которых несет гаплоидный набор хромосом.

О живых организмах известно, что они дышат, питаются, размножаются и погибают, в этом состоит их биологическая функция. Но за счет чего это все происходит? За счет кирпичиков - клеток, которые тоже дышат, питаются, погибают и размножаются. Но как это происходит?

О строении клеток

Дом состоит из кирпичей, блоков или бревен. Так и организм можно разделить на элементарные единицы - клетки. Все разнообразие живых существ состоит именно из них, отличие лежит лишь в их количестве и видах. Из них состоят мышцы, костная ткань, кожа, все внутренние органы - настолько сильно они различаются в своем назначении. Но вне зависимости от того, какие функции выполняет та или иная клетка, все они устроены примерно одинаково. Прежде всего, у любого "кирпичика" есть оболочка и цитоплазма с расположенными в ней органоидами. Некоторые клетки не имеют ядра, их называют прокариотическими, однако все более или менее развитые организмы состоят из эукариотических, имеющих ядро, в котором хранится генетическая информация.

Органоиды, расположенные в цитоплазме, разнообразны и интересны, они выполняют важные функции. В клетках животного происхождения выделяют эндоплазматическую сеть, рибосомы, митохондрии, комплекс Гольджи, центриоли, лизосомы и двигательные элементы. С помощью них и происходят все процессы, которые обеспечивают функционирование организма.

Жизнедеятельность клеток

Как уже было сказано, все живое питается, дышит, размножается и умирает. Это утверждение справедливо как для цельных организмов, то есть людей, животных, растений и т. д., так и для клеток. Это удивительно, но каждый "кирпичик" обладает своей собственной жизнью. За счет своих органоидов он получает и перерабатывает питательные вещества, кислород, выводит все лишнее наружу. Сама цитоплазма и эндоплазматическая сеть выполняют транспортную функцию, митохондрии отвечают в том числе за дыхание, а также обеспечение энергией. Комплекс Гольджи занимается накоплением и выводом продуктов жизнедеятельности клетки. Остальные органоиды также участвуют в сложных процессах. И на определенном этапе своего начинает делиться, то есть происходит процесс размножения. Его стоит рассмотреть более подробно.

Процесс деления клеток

Размножение - одна из стадий развития живого организма. То же относится и к клеткам. На определенном этапе жизненного цикла они входят в состояние, когда становятся готовы к размножению. просто делятся надвое, удлиняясь, а потом образовывая перегородку. Этот процесс прост и практически полностью изучен на примере палочковидных бактерий.

С все обстоит несколько сложнее. Они размножаются тремя разными способами, которые называются амитоз, митоз и мейоз. Каждый из этих путей имеет свои особенности, он присущ определенному виду клеток. Амитоз

считается самым простым, его также называют прямым бинарным делением. При нем происходит удвоение молекулы ДНК. Однако веретено деления не образуется, так что этот способ является наиболее энергетически экономичным. Амитоз наблюдается у одноклеточных организмов, в то время как ткани многоклеточных размножаются с помощью других механизмов. Однако он иногда наблюдается и там, где снижена митотическая активность, например, в зрелых тканях.

Иногда прямое деление выделяют как разновидность митоза, однако некоторые ученые считают это отдельным механизмом. Протекание этого процесса даже в старых клетках происходит довольно редко. Далее будут рассмотрены мейоз и его фазы, процесс митоза, а также сходства и различия этих способов. По сравнению с простым делением они более сложны и совершенны. Особенно это касается редукционного деления, так что характеристика фаз мейоза будет наиболее подробной.

Важную роль в делении клетки имеют центриоли - специальные органоиды, как правило, располагающиеся рядом с комплексом Гольджи. Каждая такая структура состоит из 27 микротрубочек, сгруппированных по три. Вся конструкция имеет цилиндрическую форму. Центриоли непосредственно участвуют в формировании веретена деления клетки в процессе непрямого деления, о котором речь пойдет дальше.

Митоз

Продолжительность существования клеток различается. Некоторые живут пару дней, а какие-то можно отнести к долгожителям, поскольку их полная смена происходит очень редко. И практически все эти клетки размножаются с помощью митоза. У большинства из них между периодами деления проходит в среднем 10-24 часа. Сам митоз занимает небольшой период времени - у животных примерно 0,5-1

час, а у растений около 2-3. Этот механизм обеспечивает рост клеточной популяции и воспроизводство идентичных по своему генетическому наполнению единиц. Так соблюдается преемственность поколений на элементарном уровне. При этом число хромосом остается неизменным. Именно этот механизм является наиболее распространенным вариантом репродукции эукариотических клеток.

Значение этого вида деления велико - этот процесс помогает расти и регенерировать тканям, за счет чего происходит развитие всего организма. Кроме того, именно митоз лежит в основе бесполого размножения. И еще одна функция - перемещение клеток и замена уже отживших. Поэтому считать, что из-за того, что стадии мейоза сложнее, то и его роль гораздо выше, неправильно. Оба эти процесса выполняют разные функции и по-своему важны и незаменимы.

Митоз состоит из нескольких фаз, различающихся по своим морфологическим особенностям. Состояние, в котором клетка находится, будучи готовой к непрямому делению, называют интерфазой, а непосредственно процесс разделяется еще на 5 стадий, которые необходимо рассмотреть подробнее.

Фазы митоза

Находясь в интерфазе, клетка готовится к делению: происходит синтез ДНК и белков. Эта стадия подразделяется на еще несколько, в ходе которых происходит рост всей структуры и удвоение хромосом. В этом состоянии клетка пребывает до 90% всего жизненного цикла.

Остальные 10% занимает непосредственно деление, разделяющееся на 5 стадий. При митозе клеток растений также выделяется препрофаза, которая отсутствует во всех других случаях. Происходит образование новых структур, ядро перемещается к центру. Формируется препрофазная лента, размечающая предполагаемое место будущего деления.

Во все же остальных клетках процесс митоза проходит следующим образом:

Таблица 1

Наименование стадии Характеристика
Профаза Ядро увеличивается в размерах, хромосомы в нем спирализуются, становятся видимыми в микроскоп. В цитоплазме образуется веретено деления. Зачастую происходит распад ядрышка, однако это происходит не всегда. Содержание генетического материала в клетке остается неизменным.
Прометафаза Происходит распад ядерной мембраны. Хромосомы начинают активное, но беспорядочное движение. В конечном счете, все они приходят в плоскость метафазной пластинки. Этот этап длится до 20 минут.
Метафаза Хромосомы выстраиваются вдоль экваториальной плоскости веретена деления примерно на равном расстоянии от обоих полюсов. Численность микротрубочек, удерживающих всю конструкцию в стабильном состоянии, достигает максимума. Сестринские хроматиды отталкиваются друг от друга, сохраняя соединение лишь в центромере.
Анафаза Наиболее короткая стадия. Хроматиды разделяются и отталкиваются друг от друга в направлении ближайших полюсов. Этот процесс иногда выделяют отдельно и называют анафазой А. В дальнейшем происходит расхождение самих полюсов деления. В клетках некоторых простейших веретено деления при этом увеличивается в длину до 15 раз. И этот подэтап носит название анафаза В. Длительность и последовательность процессов на данной стадии вариабельна.
Телофаза После окончания расхождения к противоположным полюсам хроматиды останавливаются. Происходит деконденсация хромосом, то есть их увеличение в размерах. Начинается реконструкция ядерных оболочек будущих дочерних клеток. Микротрубочки веретена деления исчезают. Формируются ядра, возобновляется синтез РНК.

После завершения деления генетической информации происходит цитокинез или цитотомия. Под этим термином подразумевается образование тел дочерних клеток из тела материнской. При этом органоиды, как правило, делятся пополам, хотя возможны исключения, образуется перегородка. Цитокинез не выделяют в отдельную фазу, как правило, рассматривая его в рамках телофазы.

Итак, в самых интересных процессах задействованы хромосомы, которые несут генетическую информацию. Что же это такое и почему они так важны?

О хромосомах

Еще не имея ни малейшего понятия о генетике, люди знали, что многие качества потомства зависят от родителей. С развитием биологии стало очевидно, что информация о том или ином организме хранится в каждой клетке, и часть ее передается будущим поколениям.

В конце 19 века были открыты хромосомы - структуры, состоящие из длинной

молекулы ДНК. Это стало возможно с совершенствованием микроскопов, и даже сейчас рассмотреть их можно лишь в период деления. Чаще всего открытие приписывают немецкому ученому В. Флемингу, который не только упорядочил все то, что было изучено до него, но и внес свой вклад: он одним из первых исследовал клеточную структуру, мейоз и его фазы, а также ввел термин "митоз". Само понятие "хромосома" было предложено чуть позже другим ученым - немецким гистологом Г. Вальдейером.

Структура хромосом в момент, когда они четко видны, довольно проста - они представляют собой две хроматиды, соединенные посередине центромерой. Она является специфической последовательностью нуклеотидов и играет важную роль в процессе размножения клеток. В конечном итоге хромосома внешне в профазе и метафазе, когда ее можно лучше всего разглядеть, напоминается букву Х.

В 1900 году были открыты описывающие принципы передачи наследственных признаков. Тогда стало окончательно ясно, что хромосомы - это именно то, с помощью чего передается генетическая информация. В дальнейшем учеными был проведен ряд экспериментов, доказывающих это. И тогда предметом изучения стало и то влияние, котрое на них оказывает деление клетки.

Мейоз

В отличие от митоза этот механизм в итоге приводит к образованию двух клеток с набором хромосом в 2 раза меньше исходного. Таким образом процесс мейоза служит переходом от диплоидной фазы к гаплоидной, причем в первую очередь

речь идет о делении ядра, а уже во вторую - всей клетки. Восстановление же полного набора хромосом происходит в результате дальнейшего слияния гамет. В связи с уменьшением количества хромосом этот метод еще определяют как редукционное деление клетки.

Мейоз и его фазы изучали такие известные ученые, как В. Флеминг, Э. Страсбургрер, В. И. Беляев и другие. Исследование этого процесса в клетках как растений, так и животных, продолжается до сих пор - настолько он сложен. Изначально этот процесс считался вариантом митоза, однако практически сразу после открытия он все-таки был выделен как отдельный механизм. Характеристика мейоза и его теоретическое значение были впервые в достаточной степени описаны Августом Вайсманом еще в 1887 году. С тех пор изучение процесса редукционного деления сильно продвинулось, но сделанные выводы пока не были опровергнуты.

Мейоз не следует путать с гаметогенезом, хотя оба эти процесса тесно связаны. В образовании половых клеток участвуют оба механизма, однако между ними есть ряд серьезных отличий. Мейоз происходит в две стадии деления, каждая из которых состоит из 4 основных фаз, между ними есть короткий перерыв. Длительность всего процесса зависит от количества ДНК в ядре и структуры хромосомной организации. В целом он гораздо более продолжителен в сравнении с митозом.

Кстати, одна из основных причин значительного видового разнообразия - именно мейоз. Набор хромосом в результате редукционного деления разбивается надвое, так что появляются новые комбинации генов, в первую очередь потенциально повышающие приспособляемость и адаптивность организмов, в итоге получающих те или иные наборы признаков и качеств.

Фазы мейоза

Как уже было упомянуто, редукционное клеточное деление условно делят на две стадии. Каждая из этих стадий разделена еще на 4. И первая фаза мейоза - профаза I в свою очередь подразделяется еще на 5 отдельных этапов. Поскольку изучение этого процесса продолжается, в дальнейшем могут быть выделены и другие. Сейчас же различают следующие фазы мейоза:

Таблица 2

Наименование стадии Характеристика
Первое деление (редукционное)

Профаза I

лептотена По-другому этот этап называют стадией тонких нитей. Хромосомы выглядят в микроскопе как спутанный клубок. Иногда выделяют пролептотену, когда отдельные ниточки еще сложно разглядеть.
зиготена Стадия сливающихся нитей. Гомологичные, то есть сходные между собой по морфологии и в генетическом отношении, пары хромосом сливаются. В процессе слияния, то есть конъюгации, образуются биваленты, или тетрады. Так называют довольно устойчивые комплексы из пар хромосом.
пахитена Стадия толстых нитей. На этом этапе хромосомы спирализуются и завершается репликация ДНК, образуются хиазмы - точки контакта отдельных частей хромосом - хроматид. Происходит процесс кроссинговера. Хромосомы перекрещиваются и обмениваются некоторыми участками генетической информации.
диплотена Также называется стадией двойных нитей. Гомологичные хромосомы в бивалентах отталкиваются друг от друга и остаются связанными только в хиазмах.
диакинез На этой стадии биваленты расходятся на периферии ядра.
Метафаза I Оболочка ядра разрушается, формируется веретено деления. Биваленты перемещаются к центру клетки и выстраиваются вдоль экваториальной плоскости.
Анафаза I Биваленты распадаются, после чего каждая хромосома из пары перемещается к ближайшему полюсу клетки. Разделения на хроматиды не происходит.
Телофаза I Завершается процесс расхождения хромосом. Происходит формирование отдельных ядер дочерних клеток, каждое - с гаплоидным набором. Хромосомы деспирализуются, образуется ядерная оболочка. Иногда наблюдается цитокинез, то есть деление самого тела клетки.
Второе деление (эквационное)
Профаза II Происходит конденсация хромосом, клеточный центр делится. Разрушается ядерная оболочка. Образуется веретено деления, перпендикулярное первому.
Метафаза II В каждой из дочерних клеток хромосомы выстраиваются вдоль экватора. Каждая из них состоит из двух хроматид.
Анафаза II Каждая хромосома делится на хроматиды. Эти части расходятся к противоположным полюсам.
Телофаза II Полученные однохроматидные хромосомы деспирализуются. Образуется ядерная оболочка.

Итак, очевидно, что фазы деления мейоза гораздо сложнее, чем процесс митоза. Но, как уже было упомянуто, это не умаляет биологической роли непрямого деления, поскольку они выполняют разные функции.

Кстати, мейоз и его фазы наблюдаются и у некоторых простейших. Однако, как правило, он включает в себя лишь одно деление. Предполагается, что такая одноступенчатая форма позднее развилась в современную, двухступенчатую.

Отличия и сходства митоза и мейоза

На первый взгляд кажется, что различия двух этих процессов очевидны, ведь это совершенно разные механизмы. Однако при более глубоком анализе оказывается, что различия митоза и мейоза не так уж глобальны, в конце концов они приводят к образованию новых клеток.

Прежде всего стоит поговорить о том, что есть общего у этих механизмов. По сути совпадения всего два: в одинаковой последовательности фаз, а также в том, что

перед обоими видами деления происходит репликация ДНК. Хотя, что касается мейоза, до начала профазы I этот процесс не завершается полностью, заканчиваясь на одной из первых подстадий. А последовательность фаз хоть и аналогична, но, по сути, происходящие в них события совпадают не полностью. Так что сходства митоза и мейоза не так уж и многочисленны.

Различий же гораздо больше. Прежде всего, митоз происходит в в то время как мейоз тесно связан с образованием половых клеток и спорогенезом. В самих фазах процессы не полностью совпадают. Например, кроссинговер в митозе происходит во время интерфазы, и то не всегда. Во втором же случае на этот процесс приходится анафаза мейоза. Рекомбинация генов в непрямом делении обычно не осуществляется, а значит, он не играет никакой роли в эволюционном развитии организма и поддержании внутривидового разнообразия. Количество получившихся в результате митоза клеток - две, и они в генетическом смысле идентичны материнской и обладают диплоидным набором хромосом. Во время редукционного деления все иначе. Результат мейоза - 4 отличающихся от материнской. Кроме того, оба механизма значительно различаются по длительности, и это связано не только с различием в количестве ступеней деления, но и длительностью каждого из этапов. Например, первая профаза мейоза длится намного дольше, ведь в это время происходит конъюгация хромосом и кроссинговер. Именно поэтому ее дополнительно делят на несколько стадий.

В общем и целом сходства митоза и мейоза достаточно незначительны по сравнению с их отличиями друг от друга. Перепутать эти процессы практически невозможно. Поэтому сейчас даже несколько удивляет то, что редукционное деление раньше считалось разновидностью митоза.

Последствия мейоза

Как уже было упомянуто, после окончания процесса редукционного деления, вместо материнской клетки с диплоидным набором хромосом образуются четыре гаплоидных. И если говорить про различия митоза и мейоза - это самое значительное. Восстановление необходимого количества, если речь идет о половых клетках, происходит после оплодотворения. Таким образом, с каждым новым поколением не происходит удвоения количества хромосом.

Кроме того, во время мейоза происходит В процессе размножения это приводит к поддержанию внутривидового разнообразия. Так что тот факт, что даже родные братья и сестры порой сильно отличаются друг от друга - именно результат мейоза.

Кстати, стерильность некоторых гибридов в животном мире - тоже проблема редукционного деления. Дело в том, что хромосомы родителей, принадлежащих к разным видам, не могут вступить в конъюгацию, а значит, процесс образования полноценных жизнеспособных половых клеток невозможен. Таким образом, именно мейоз лежит в основе эволюционного развития животных, растений и других организмов.

Профаза 2 (1n2c ). Короче профазы 1, хроматин конденсирован, нет конъюгации и кроссинговера, происходят процессы, обычные для профазы – распад ядерных мембран на фрагменты, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n2c ). Двухроматидные хромосомы выстраиваются в экваториальной плоскости клетки, формируется метафазная пластинка.
Создаются предпосылки для третьей рекомбинации генетического материала – многие хроматиды мозаичные и от их расположения на экваторе зависит, к какому полюсу они в дальнейшем отойдут. К центромерам хроматид прикрепляются нити веретена деления.

Анафаза 2 (2n2с). Происходит деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами),происходит третья рекомбинация генетического материала.

Телофаза 2 (1n1c в каждой клетке). Хромосомы деконденсируются, образуются ядерные оболочки, разрушаются нити веретена деления, появляются ядрышки, происходит деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

5. Отличие мейоза I от мейоза II

1.Первому делению предшествует ннтерфаза с редупликацией хромомом, при втором делении редпликации генетического материала нет, то есть отсутствует синтетическая стадия.

2.Профаза первого деления длительная.

3.В первом делении происходит конъюгация хромосом и
кроссинговер.

4.В первом делении к полюсам расходятся гомологичные хромосомы (биваленты, состоящие из пары хроматид), а во втором – хроматиды.

Мейоз: 1 - лептотена; 2 - зиготена; 3 - пахитена; 4 - диплотена; 5 - диакинез; 6 - метафаза 1; 7 - анафаза 1; 8 - телофаза 1; 9 - профаза 2; 10 - метафаза 2; 11 - анафаза 2; 12 - телофаза 2.

6. Отличия мейоза от митоза

1. В митозе одно деление, а в мейозе – два (из-за этого получается 4 клетки).

2. В профазе первого деления мейоза происходит конъюгация (тесное сближение гомологичных хромосом) и кроссинговер (обмен участками гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.

3. В анафазе первого деления мейоза происходит независимое расхождение гомологичных хромосом (к полюсам клетки расходятся двуххроматидные хромосомы). Это приводит к рекомбинации и редукции.

4. В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, поскольку они и так двойные.

5. После митоза получается две клетки, а после мейоза – четыре.

6. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).

7. После митоза получаются одинаковые клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).

8. После митоза количество хромосом в дочерних клетках остается таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения обеспечивает постоянство числа хромосом).

7. Биологическое значение мейоза

Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. С его помощью поддерживается постоянство хромосомного набора – после слияния гамет не происходит его удвоения. Благодаря мейозу образуются генетически различные клетки, т.к. в процессе мейоза трижды происходит перекомбинация генетического материала: за счет кроссинговера (профаза 1), за счет случайного, независимого расхождения гомологичных хромосом (анафаза 1) и за счет случайного расхождения хроматид (анафаза 2).

8. Способы размножения организмов

9. Отличие полового размножения от бесполого

10. Основные формы бесполого размножения: деление на два (митоз), множественное деление (шизогония), почкование, фрагментация, спорообразование, вегетативное размножение, полиэмбриония).

Бесполое размножение – процесс возникновения дочерних особей из одно или группы соматических клеток материнского организма. Этот способ размножения более древний. В его основе лежит митотическое деление клеток. Значение бесполого размножения заключается в быстром увеличении числа особей, почти не различающихся между собой. Различают следующие формы бесполого размножения:

1.Деление надвое – приводит к возникновению из одного родительского организма двух дочерних. Является преобладающей формой деления у прокариот и простейших. Различные одноклеточные животные делятся по-разному. Так, жгутиковые делятся продольно, а инфузории – поперечно. Такое деление встречается и у многоклеточных животных – кишечнополостных (продольное деление у медуз) и червей (поперечное деление у кольчатых червей).

3.Почкование – на теле материнского организма возникает скопление клеток, которое растет и постепенно приобретает сходство с материнской особью. Затем дочерняя особь отделяется и начинает вести самостоятельное существование. Такое размножение распространено среди низших многоклеточных (губки, кишечнополостные, мшанки, некоторые черви и оболочники). Иногда дочерние особи не отделяются полностью от родительской, что приводит к образованию колоний.

4.Фрагментация – происходит распад тела многоклеточного организма на части, которые в дальнейшем превращаются в самостоятельные особи (плоские черви, иглокожие).

5.Спорами – дочерний организм развивается из специализированной клетки-споры.

Различают две основные формы бесполого размножения растений: вегетативное размножение и спорообразование. Вегетативное размножение одноклеточных растений осуществляется простым делением одной клетки на две. У грибов формы его более разнообразны – спорообразование (плесневые грибы, шляпочные) и почкование (дрожжи). У покрытосеменных растений вегетативное размножение происходит за счет вегетативных (неполовых) органов – корня, стебля, листа.

У некоторых видов животных наблюдается полиэмбриония бесполое размножение зародыша, образовавшегося путем полового размножения. Например, у броненосцев на стадии бластулы происходит разделение клеточного материала первоначально одного зародыша между 4–8 зародышами, из которых в последствии развиваются полноценные особи. В результате полиэмбрионии у человека рождаются однояйцовые близнецы.

11. Основные формы полового размножения у одноклеточных организмов (конъюгация, копуляция) и у многоклеточных организмов (без оплодотворения (партеногенез) и с оплодотворением).

Половое размножение – наблюдается в жизненных циклах всех основных групп организмов. Распространенность полового размножения объясняется тем, что оно обеспечивает значительное генетическое разнообразие и, следовательно, фенотипическую изменчивость потомства.

В основе полового размножения лежит половой процесс, суть которого сводится к объединению в наследственном материале для развития потомка генетической информации от двух разных источников – родителей.

Одной из форм полового процесса является конъюгация. При этом происходит временное соединение двух особей с целью обмена (рекомбинации) наследственным материалом, например, у инфузорий. В результате появляются особи генетически отличные от родительских организмов, которые в дальнейшем осуществляют бесполое размножение. Число инфузорий после конъюгации не изменяется, поэтому говорить в прямом смысле о размножении в этом случае нельзя.

У простейших половой процесс может осуществляться и в форме копуляции – слияния двух особей в одну, объединение и рекомбинация наследственного материала. Далее такая особь размножается делением.

Для участия в половом размножении в родительских организмах вы-рабатываются гаметы – клетки, специализированные к обеспечению генеративной функции. Слияние материнской и отцовской гамет приводит к возникновению зиготы – клетки, представляющей собой дочернюю особь на первой, наиболее ранней стадии индивидуального развития.

У некоторых организмов зигота образуется в результате объединения гамет, которые не отличаются по строению – явление изогамии. У большинства же видов половые клетки по структурным и функциональным признакам делятся на материнские (яйцеклетки) и отцовские (сперматозоиды).

Иногда развитие дочернего организма происходит из неоплодотворенной яйцеклетки. Это явление называют девственным развитием или партеногенезом. Источником наследственного материала для развития потомка в этом случае обычно служит ДНК яйцеклетки – явление гиногенеза. Реже наблюдается андрогенез – развитие потомка из клетки с цитоплазмой ооцита и ядром сперматозоида. Ядро женской гаметы в случае андрогенеза погибает.

12. Биологическое значение полового размножения

На определенном этапе эволюции у многоклеточных организмов половой процесс как способ обмена генетической информацией между особями в пределах вида оказался связанным с размножением. При половом размножении возникающие новые особи обычно отличаются от родительских и друг от друга комбинацией аллелей генов. Новые сочетания хромосом и генов проявляются у потомков новым сочетанием признаков. В результате возникает большое разнообразие особей в пределах одного вида. Таким образом, биологическое значение полового размножения заключается не только в самовоспроизведении, но и в обеспечении исторического развития видов, то есть жизни как таковой. Это позволяет считать половое размножение биологически более прогрессивным, чем бесполое.

13. Сперматогенез

Процесс образования мужских половых клеток – сперматогенез. В результате образуются сперматозоиды.

В сперматогенезе различают 4 периода: размножение, рост, созревание (мейоз) и формирование (рис. 3).

В период размножения исходные недифференцированные половые клетки сперматогонии , или гонии делятся путем обычного митоза. Проделав несколько таких делений, они вступают в период роста. На этой стадии их называют сперматоцитами I порядка (или цитами I ). Они усиленно ассимилируют питательные вещества, укрупняются, претерпевают глубокую физико-химическую перестройку, в результате которой подготавливаются к третьему периоду – созреванию, или мейозу .

В мейозе сперматоциты I проходят два процесса клеточного деления. В первом делении (редукционном) происходит уменьшение числа хромосом (редукция). В результате из одного цита I возникает две равновеликие клетки – сперматоциты II порядка, или циты II. Затем наступает второе деление созревания. Оно протекает как обычный соматический митоз, но при гаплоидном числе хромосом. Такое деление называется эквационным («эквацио» – равенство), так как образуются две тождественные, т.е. полностью равноценные клетки, которые называются сперматидами.

В четвертом периоде – формирования – округлая сперматида приобретает форму зрелой мужской половой клетки: у нее вырастает жгутик, уплотняется ядро, образуется оболочка. В результате всего процесса сперматогенеза из каждой исходной недифференцированной сперматогонии получается 4 зрелых половых клетки, содержащих по гаплоидному набору хромосом.

На рис. 4 представлена схема процессов сперматогенеза и спермиогенеза у человека. Сперматогенез происходит в извитых семенных канальцах семенников.Развитие сперматозоидов начинается в период пренатального развития при закладке генеративных тканей, затем возобновляется в период наступления половозрелости и продолжается до старости.

Мужские половые клетки не развиваются одиночно, они растут в клонах и объединены между собой цитоплазматическими мостиками. Цитоплазматические мостики имеются между сперматогониями, сперматоцитами и сперматидами. В конце фазы формирования сперматозоиды освобождаются от цитоплазматических мостиков. У человека максимум дневной продуктивности сперматозоидов 108, продолжительность существования сперматозоида во влагалище до 2,5 ч, а в шейке матки до 48 ч.

14. Овогенез. Понятие о менструальном цикле

Процесс развития женских половых клеток называется овогенезом (оогенезом).

В овогенезе различают 3 периода: размножение, рост и созревание.

Недифференцированные женские половые клетки – овогонии – размножаются так же, как и сперматогонии, путем обычного митоза.

После деления они становятся овоцитами I порядка и переходят в период роста. Рост овоцитов длится очень долго – недели, месяцы и даже годы.

Затем овоцит I порядка вступает в период созревания, или мейоз. Здесь тоже совершаются редукционное и эквационное деления. Процессы деления в ядре протекают так же, как при мейозе сперматоцитов, но судьба цитоплазмы совершенно иная. При редукционном делении одно ядро увлекает с собой бульшую часть цитоплазмы , а на долю другого остается лишь незначительная ее часть. Поэтому образуется только одна полноценная клетка – овоцит II порядка, и вторая крошечная – направительное, или редукционное, тельце, которое может делиться на два редукционных тельца.

При втором, эквационном делении несимметричное распределение цитоплазмы повторяется и опять образуется одна крупная клетка – овотида и третье полярное тельце. Овотида по составу ядра и функционально является вполне зрелой половой клеткой.

Период формирования, в отличие от сперматогенеза, в овогенезе отсутствует.

Таким образом, в овогенезе из одной овогонии возникает только одна зрелая яйцеклетка. Полярные тельца остаются недоразвитыми и вскоре погибают и фагоцитируются другими клетками. Зрелые женские гаметы называют яйцеклетками или яйцами, а отложенные в воду – икрой.

Развитие женских половых клеток происходит в яичниках. Период размно-жения наступает у оогоний еще у зародыша и прекращается к моменту рождения девочки.

Период роста при оогенезе более продолжительный, т.к. кроме подготовки к мейозу осуществляется накопление запаса питательных веществ, которые будут необходимы в дальнейшем для первых дроблений зиготы. В фазе малого роста происходит образование большого количества разных типов РНК.

В период большого роста фолликулярные клетки яичника образуют несколько слоев вокруг ооцита I порядка, что способствует переносу питательных веществ, синтезированных в других местах, в цитоплазму ооцита.

У человека период роста ооцитов может составлять 12–50 лет. После завершения периода роста ооцит I порядка вступает в период созревания.

В результате при оогенезе получается 4 клетки, из которых только одна станет в дальнейшем яйцеклеткой, а остальные 3 (полярные тельца) редуцируются. Биологическая значимость этого этапа оогенеза – сохранить все накопленные вещества цитоплазмы около одного гаплоидного ядра для обеспечения нормального питания и развития оплодотворенной яйцеклетки.

При оогенезе у женщин на стадии второй метафазы образуется блок, который снимается во время оплодотворения, и фаза созревания заканчивается только после проникновения сперматозоида в яйцеклетку.

Процесс оогенеза у женщин – это циклический процесс, повторяющийся примерно через каждые 28 дней (начиная с периода роста и заканчивая период только после оплодотворения). Этот цикл называется менструальным.

Отличительные особенности сперматогенеза и овогенеза у человека представлены в таблице 3.

Узнать о виде деления клетки поможет данная статья. Мы расскажем кратко и понятно о мейозе, о фазах, которые сопровождают этот процесс, обозначим основные их особенности, узнаем, какие признаки характеризуют мейоз.

Что такое мейоз?

Редукционное деление клетки, другими словами - мейоз – это вид деления ядра, при котором число хромосом уменьшается в два раза.

В переводе с древнегреческого языка, мейоз обозначает уменьшение.

Данный процесс происходит в два этапа:

  • Редукционный ;

На этом этапе в процессе мейоза число хромосом в клетке уменьшается вдвое.

  • Эквационный ;

В ходе второго деления гаплоидность клеток сохраняется.

ТОП-4 статьи которые читают вместе с этой

Особенностью данного процесса является то, что протекает он только лишь в диплоидных, а также в чётных полиплоидных клетках. А всё потому, что в результате первого деления в профазе 1 в нечётных полиплоидах нет возможности обеспечить попарное слияние хромосом.

Фазы мейоза

В биологии деление происходит на протяжении четырёх фаз: профазы, метафазы, анафазы и телофазы . Мейоз не является исключением, особенностью данного процесса является то, что происходит он в два этапа, между которыми имеется короткая интерфаза .

Первое деление:

Профаза 1 является достаточно сложным этапом всего процесса в целом, состоит она из пяти стадий, которые внесены в следующую таблицу:

Стадия

Признак

Лептотена

Хромосомы укорачиваются, конденсируется ДНК и образуются тонкие нити.

Зиготена

Гомологичные хромосомы соединяются в пары.

Пахитена

По длительности самая длинная фаза, в ходе которой гомологические хромосомы плотно присоединяются друг к другу. В результате происходит обмен некоторых участков между ними.

Диплотена

Хромосомы частично деконденсируются, часть генома начинает выполнять свои функции. Образуется РНК, синтезируется белок, при этом хромосомы ещё соединены между собой.

Диакинез

Снова происходит конденсация ДНК, процессы образования прекращаются, ядерная оболочка исчезает, центриоли располагаются в противоположных полюсах, но хромосомы соединены между собой.

Заканчивается профаза образованием веретена деления, разрушением ядерных мембран и самого ядрышка.

Метофаза первого деления знаменательна тем, что хромосомы выстраиваются вдоль экваториальной части веретена деления.

Во время анафазы 1 сокращаются микротрубочки, биваленты разделяются и хромосомы расходятся к разным полюсам.

В отличие от митоза, на этапе анафазы к полюсам отходят целые хромосомы, которые состоят из двух хроматид.

На этапе телофазы деспирализуются хромосомы и образуется новая ядерная оболочка.

Рис. 1. Схема мейоза первого этапа деления

Второе деление имеет такие признаки:

  • Для профазы 2 характерна конденсация хромосом и разделение клеточного центра, продукты деления которого расходятся к противоположным полюсам ядра. Ядерная оболочка разрушается, образуется новое веретено деления, которое располагается перпендикулярно по отношению к первому веретену.
  • В ходе метафазы хромосомы вновь располагаются на экваторе веретена.
  • Во время анафазы хромосомы делятся и хроматиды располагаются по разным полюсам.
  • Телофаза обозначена деспирализацией хромосом и появлением новой ядерной оболочки.

Рис. 2. Схема мейоза второго этапа деления

В результате из одной диплоидной клетки путём такого деления получаем четыре гаплоидных клетки. Исходя из этого, делаем выводы, что мейоз - это форма митоза, в результате которого из диплоидных клеток половых желёз образуются гаметы.

Значение мейоза

В ходе мейоза на этапе профазы 1 происходит процесс кроссинговера - перекомбинация генетического материала. Помимо этого во время анафазы, как первого, так и второго деления, хромосомы и хроматиды расходятся к разным полюсам в случайном порядке. Это объясняет комбинативную изменчивость исходных клеток.

В природе мейоз имеет огромное значение, а именно:

  • Это один из основных этапов гаметогенеза;

Рис. 3. Схема гаметогенеза

  • Осуществляет передачу генетического кода при размножении;
  • Получаемые дочерние клетки не похожи на материнскую клетку, а также различаются между собой.

Мейоз очень важен для образования половых клеток, так как в результате оплодотворения гамет ядра сливаются. В противном случае в зиготе число хромосом было бы вдвое больше. Благодаря такому делению половые клетки гаплоидны, а при оплодотворении восстанавливается диплоидность хромосом.

Что мы узнали?

Мейоз - это вид деления эукариотической клетки, при котором из одной диплоидной клетки образуется четыре гаплоидных, путём уменьшения числа хромосом. Весь процесс проходит в два этапа - редукционного и эквационного, каждый из которых состоит из четырёх фаз - профазы, метафазы, анафазы и телофазы. Мейоз очень важен для образования гаметы, для передачи генетической информации будущим поколениям, а также осуществляет перекомбинацию генетического материала.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 764.

Биологическое значение мейоза : благодаря мейозу про­исходит редукция числа хромосом. Из одной диплоидной клетки образуется 4 гаплоидных.

Благодаря мейозу обра­зуются генетически различные клетки (в том числе гаметы) , т. к. в процессе мей­оза трижды происходит перекомбинация генетического материала:

1) за счёт кроссинговера;

2) за счёт случайного и независимо­го расхождения гомологичных хромосом;

3) за счёт случайного и независимо­го расхождения кроссоверных хроматид.

Первое и второе деление мейоза складываются из тех же фаз, что и митоз, но сущность изменений в наследственном аппарате другая.

Профаза 1 . (2n4с) Самая продолжительная и сложная фаза мейоза. Состоит из ряда последовательных стадий. Гомо­логичные хромосомы начинают притягиваться друг к другу сходными участками и конъюгируют.

Конъюгацией называют процесс тесного сближения гомологичных хромо­сом. Пару конъюгирующих хромосом называют бивален­том. Биваленты продолжают укорачиваться и утолщать­ся. Каждый бивалент образован четырьмя хроматидами. Поэтому его называют тетрадой.

Важнейшим событием является кроссинговер – обмен участками хромосом. Кроссинговер приводит к первой во время мейоза реком­бинации генов.

В конце профазы 1 формируется веретено деления, исчезает ядерная оболочка. Биваленты перемещаются в экватори­альную плоскость.

Метафаза 1. (2n; 4с) Заканчивается формирование веретена деления. Спирализация хромосом максимальна. Биваленты располагаются в плоскости экватора. Причем центромеры гомологичных хромосом обращены к разным полюсам клетки. Расположение бивалентов в экваториаль­ной плоскости равновероятное и случайное, то есть каждая из отцовских и материнских хромосом может быть повер­нута в сторону того или другого полюса. Это создает пред­посылки для второй за время мейоза рекомбинации генов.

Анафаза 1. (2n; 4с) К полюсам расходятся целые хро­мосомы, а не хроматиды, как при митозе. У каждого полюса оказывается половина хромосомного набора. Причем пары хромосом расходятся так, как они располагались в плоскости экватора во время метафазы. В результате возникают самые разнообразные сочетания от­цовских и материнских хромосом, происходит вторая рекомбинация генетического материала.

Телофаза 1. (1n; 2с) У животных и некоторых растений хроматиды деспирализуются, вокруг них формируется ядерная оболочка. Затем происходит деление цитоплазмы (у животных) или образуется разделяющая клеточная стен­ка (у растений). У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе деление мейоза

Интерфаза 2. (1n; 2с) Харак­терна только для животных клеток. Репликация ДНК не происходит. Вторая стадия мейоза включает также профазу, метафазу, анафазу и телофазу.

Профаза 2. (1n; 2с) Хромосомы спирализуются, ядер­ная мембрана и ядрышки разрушаются, центриоли, если они есть, перемещаются к полюсам клетки, формируется веретено деления.

Метафаза 2. (1n; 2с) Формируются метафазная пластинка и веретено деления, нити веретена деления прикреп­ляются к центромерам.

Анафаза 2. (2n; 2с) Центромеры хромосом делятся, хроматиды становятся самостоятельными хромосомами, и нити веретена деления растягивают их к полюсам клетки. Число хромосом в клетке становится диплоидным, но на каждом полюсе формируется гаплоидный набор. Поскольку в метафазе 2 хроматиды хромосом располагаются в плоскости экватора случайно, в анафазе происходит третья рекомбинация генетического материала клетки.

Телофаза 2. (1n; 1с) Нити веретена деления исчезают, хромосомы деспирализуются, вокруг них восстанавливается ядерная оболочка, делится цитоплазма.

Таким образом, в результате двух последовательных делений мейоза диплоидная клетка дает начало четырём дочерним, генетически различным клеткам с гаплоидным набором хромосом.

Задача 1.

Хромосомный набор соматических клеток цветкового растения N равен 28. Определите хромосомный набор и число молекул ДНК в клетках семязачатка перед началом мейоза, в метафазе мейоза I и метафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменения числа ДНК и хромосом.

Решение: В соматических клетках 28 хромосом, что соответствует 28 ДНК.

Фазы мейоза

Число хромосом

Количество ДНК

Ин­терфаза 1 (2п4с)

Профаза 1 (2n4с)

Метафаза 1 (2n4с)

Анафаза 1 (2n4с)

Телофаза 1 (1n2с)

Интерфаза 2 (1n2с)

Профаза 2 (1n2с)

Метафаза 2 (1n2с)

Анафаза 2 (2n2с)

Телофаза 2 (1n1с)

  1. Перед началом мейоза количество ДНК – 56, так как оно удвоилось, а число хромосом не изменилось – их 28.
  2. В метафазе мейоза I количество ДНК – 56, число хромосом – 28, гомологичные хромосомы попарно располагаются над и под плоскостью экватора, веретено деления сформировано.
  3. В метафазе мейоза II количество ДНК – 28, хромосом – 14, так как после редукционного деления мейоза I число хромосом и ДНК уменьшилось в 2 раза, хромосомы располагаются в плоскости экватора, веретено деления сформировано.

Задача 2.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в клетках семязачатка перед началом мейоза, в анафазе мейоза I и анафазе мейоза II. Объясните, какие процессы происходят в эти периоды и как они влияют на изменения числа ДНК и хромосом.

Задача 3.

Для соматической клетки животного характерен диплоидный набор хромосом. Определите хромосомный набор (n) и число молекул ДНК (с) в клетке в профазе мейоза I и метафазе мейоза II. Объясните результаты в каждом случае.

Задача 4.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в клетке семязачатка в конце мейоза I и мейоза II. Объясните результаты в каждом случае.

Задача 5.

Хромосомный набор соматических клеток крыжовника равен 16. Определите хромосомный набор и число молекул ДНК в телофазе мейоза I и анафазе мейоза II. Объясните результаты в каждом случае.

Задача 6.

В соматических клетках дрозофилы содержится 8 хромосом. Определите, какое число хромосом и молекул ДНК содержится при гаметогенезе в ядрах перед делением в интерфазе и в конце телофазы мейоза I.

Задача 7.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в ядре (клетке) семязачатка перед началом мейоза I и мейоза II. Объясните результаты в каждом случае.

Задача 8.

Хромосомный набор соматических клеток пшеницы равен 28. Определите хромосомный набор и число молекул ДНК в ядре (клетке) семязачатка перед началом мейоза I и в метафазе мейоза I. Объясните результаты в каждом случае.

Задача 9.

В соматических клетках дрозофилы содержится 8 хромосом. Определите, какое число хромосом и молекул ДНК содержится при гаметогенезе в ядрах перед делением в интерфазу и в конце телофазы мейоза I. Объясните, как образуется такое число хромосом и молекул ДНК.

1. Перед началом деления число хромосом = 8, число молекул ДНК = 16 (2n4с); в конце телофазы мейоза I число хромосом = 4, число молекул ДНК = 8.

2. Перед началом деления молекулы ДНК удваиваются, но число хромосом не изменяется, потому что каждая хромосома становится двухроматидной (состоит из двух сестринских хроматид).

3. Мейоз – редукционное деление, поэтому число хромосом и молекул ДНК уменьшается вдвое.

Задача 10.

У крупного рогатого скота в соматических клетках 60 хромосом. Каково будет число хромосом и молекул ДНК в клетках семенников в интерфазе перед началом деления и после деления мейоза I?

1. В интерфазе перед началом деления: хромосом – 60, молекул ДНК – 120; после мейоза I: хромосом – 30, ДНК – 60.

2. Перед началом деления молекулы ДНК удваиваются, их число увеличивается, а число хромосом не изменяется – 60, каждая хромосома состоит из двух сестринских хроматид.

3) Мейоз I – редукционное деление, поэтому число хромосом и молекул ДНК уменьшается в 2 раза.

Задача 11.

Какой хромосомный набор характерен для клеток пыльцевого зерна и спермиев сосны? Объясните, из каких исходных клеток и в результате какого деления образуются эти клетки.

1. Клетки пыльцевого зерна сосны и спермии имеют гаплоидный набор хромосом – n.

2. Клетки пыльцевого зерна сосны развиваются из гаплоидных спор МИТОЗОМ.

3. Спермии сосны развиваются из пыльцевого зерна (генеративной клетки) МИТОЗОМ.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!