Информационный женский портал

Нарушение жирового обмена у ребенка. Возрастные особенности жирового обмена. Жировой обмен у детей

Жировой обмен у детей также отличается некоторыми возрастными особенностями. Жиры являются безусловно необходимым компонентом детского пищевого рациона. Они нужны организму как источник тепловой энергии, они являются носителями витаминов, без жиров невозможна нормальная устойчивость организма к воздействиям факторов окружающей среды и, в частности, они нужны для выработки специфического и неспецифического иммунитета. Жиры пищи защищают кишечник от травмирующего действия грубых элементов пищи и используются для правильного формирования испражнений.

Под влиянием липолитических ферментов желудка, кишечника и материнского молока нейтральные жиры пищи расщепляются на глицерин и свободные жирные кислоты; последние, вступая в соединение со щелочами поджелудочного и кишечного соков, а также с солями желчных кислот, превращаются в мыла. Жирные кислоты всасываются в виде растворимых мыл и отчасти в виде растворимых соединений с желчными кислотами; глицерины всасываются без дальнейших изменений.

При прохождении через кишечную стенку эти продукты липолиза подвергаются снова первичному синтезу, превращаясь в нейтральные жиры. При всасывании жиры поступают главным образом в лимфатические пространства кишечных ворсинок и затем уже с лимфой через ductus thoracicus, минуя печень, поступают в кровь.

У детей, получающих грудное молоко, в кишечнике всасывается в среднем около 96% жиров молока, при смешанном и искусственном питании - около 90% и у старших детей - около 95-97% жиров пищи.

Поступление в кровь вновь синтезировавшихся жиров вызывает так называемую пищевую липемию. У детей пищевая липемия выражена сильнее, чем у взрослых; максимум ее при грудном вскармливании обычно выявляется через 3 часа после приема пищи и держится до 8-9 часов; при искусственном вскармливании максимум липемии отмечается через 3 часа и держится до 5 часов.

У новорожденных количество липоидов в крови значительно меньше, чем в дальнейшей жизни; оно быстро увеличивается в течение первых 4-6 недель жизни, затем нарастает очень медленно и в возрасте между 3 и 11 годами достигает приблизительно 700 мг%, т. е. нормы взрослого человека.

Около 5-10% неиспользованных организмом остатков жиров выделяется со стулом в виде нейтрального жира, свободных жирных кислот, растворимых в воде щелочных и не растворимых в воде щелочноземельных мыл. У детей на грудном вскармливании жиры выводятся со стулом, главным образом в виде щелочных и щелочноземельных мыл и отчасти нейтральных жиров, у детей на искусственном вскармливании - главным образом за счет свободных жирных кислот и нейтральных жиров. Распределение жира в стуле даже у одного и того же ребенка сильно меняется в зависимости от характера получаемой им пищи, состояния ферментативной активности пищеварительных соков кишечника и перистальтики.

Часть жира, всосавшегося в кишечник, сгорает и используется для энергетических целей, значительная часть откладывается в резервных жировых депо, главным образом в подкожной клетчатке и брыжейке.

Эти жировые депо используются организмом при голодании или при повышенных тратах энергии; сперва исчезают жировые отложения с большим содержанием жидкой олеиновой кислоты, а уже потом - жировые запасы, более богатые пальмитиновой и стеариновой кислотами. В некоторых случаях отмечается перемещение жира, например отложение его в печени при исчезновении из нее гликогена.

Жировые запасы, кроме того, играют огромную роль в защите организма от теплопотерь, они обеспечивают известную неподвижность органов, защищают их сосуды, нервы и т. д. от излишних травмирования.

Жир может образовываться в организме за счет вводимых с пищей углеводов и белков, что, однако, не дает права думать, что пищевой рацион ребенка может не содержать вовсе жиров, безусловно являющихся необходимым ингредиентом пищевого рациона детей всех возрастов.

Из других особенностей межуточного обмена жиров у детей надо отметить некоторую неустойчивость его и быструю истощаемость жировых депо. Эти особенности наиболее отчетливо выражены у детей первых лет жизни, что надо поставить в связь с возрастными особенностями функций эндокринных желез - гипофиза, поджелудочной железы, особенностями регуляции их вегетативными центрами межуточного мозга и коры головного мозга; несомненно, сказывается и гидролабильность ребенка.

В остальном процессы межуточного обмена жиров у детей выявляют закономерности, установленные у взрослых людей и в экспериментах на животных.

Здоровый грудной ребенок в первом полугодии жизни должен получать до 6-7 г жиров на 1 кг веса; за их счет в этот период жизни покрывается до 50% всей калорийной потребности ребенка. В возрасте от 6 месяцев до 4 лет потребность в жирах постепенно снижается до 3,5-4,0 г на 1 кг веса, что составляет около 30-40% общего суточного количества калорий, и, наконец, в дошкольном и школьном возрастах ребенок должен иметь около 2,5-3,0 г жиров на 1 кг веса, что составляет всего лишь около 25-30% суточного количества калорий. Ребенок временно может развиваться как при более низком, так и при более высоком содержании жира в пище. Надо, однако, помнить, что избыток жиров в пище легко может вести к сдвигу щелочно-кислотного равновесия в организме в сторону истинного ацидоза.

При составлении пищевого рациона детей надо учитывать не только количество, но и качество входящих в него жиров. Полноценность жиров определяется характером входящих в них липоидов, с которыми связано и носительство витаминов, и выработка иммунитета. Велико значение также и лецитинов, при расщеплении которых освобождается холин, снижающий кровяное давление и возбуждающий кишечную перистальтику.

Правильное расщепление жиров возможно лишь при условии надлежащей корреляции жира с другими основными пищевыми ингредиентами; при питании детей раннего возраста особенно важно выдержать соотношение между жирами и углеводами как 1:2.

Брожение ухудшает всасывание жиров; жиры сами по себе могут усиливать и бродильные, и гнилостные процессы.

Роль липидов для детского организма определяется многообразными функциями.

Важными из которых являются энергетическая, пластическая, обеспечение структуры и функций биологических мембран.

Потребность ребенка в липидах превышает потребность в белках и зависит от возраста.

Потребность в липидах в зависимости от возраста

Ребенок, находящийся на естественном вскармливании, должен получать на 1 кг массы тела 5-6,5 г жира (6,5-6 г в первом полугодии и 6 – 5 г – во втором). Очень существенным является правильное и оптимальное соотношение белков, жиров и углеводов и при естественном вскармливании оно составляет 1: 3: 6, а с момента получения прикорма 1:2: 4 соответственно и 1:1: 4 в более старшем возрасте.

Оптимальное количество жира абсолютно необходимо для полного использования белков пищи для пластических и других функций. Избыток жира в рационе также нежелателен, т.к. это может послужить причиной кетоза, угнетения функций поджелудочной железы.

Основным источником энергии для плода являются углеводы, но после рождения-триацилглицерины. Установлено, что у новорожденного потребность в энергии покрывается за счет жиров на 80-90%, у детей в возрасте до года на 50%, в более старшем возрасте на 30-35%. Особое внимание должно уделяться качественному составу жиров, используемых в питании детей, что обеспечивает полноценность жира. С этой целью рекомендуется правильное сочетание в пище жиров растительного и животного происхождения, (первые обеспечивают организм полиненасыщенными жирными кислотами, вторые благоприятствуют всасыванию жирорастворимых витаминов). Показана целесообразность включения в рацион детей от 1 года до 3 лет сливочного масла пополам с нерафинированным подсолнечным. Потребность детей в полиненасыщенных жирных кислотах также изменяется с возрастом и обеспечивается в основном линолевой кислотой (содержится в рыбьем жире, подсолнечном и кукурузном масле).

Потребности новорожденного в жирах полностью покрываются молоком матери, в котором содержание жира – 3,5-3,7%; как известно, жир молока находится уже в эмульгированном состоянии и там же содержится липаза, активность которой в 15-25 раз выше желудочно-панкреатической.

У детей важную роль в переваривании липидов играет желудочная липаза, кроме того, жир молока находится в эмульгированном состоянии. Важно отметить, что количество соляной кислоты в желудочном соке значительно меньше, чем у взрослого. У детей грудного возраста в желудке гидролизуется от 25 до 50% жира. С возрастом жир в желудке переваривается с меньшей интенсивностью, так как меняется пищевой рацион, увеличивается кислотность желудочного сока.

У новорожденных активность панкреатической липазы низкая, мало у них и желчных кислот. У детей количество желчных кислот значительно меньше, чем у взрослых. Это объясняется тем, что активность ферментных систем, способствующих синтезу желчных кислот из холестерина, недостаточная. Холестерин используется для пластических целей. Главной желчной кислотой является таурохолевая, т.к. она обладает еще и бактерицидным действием.

Следствием низкой активности липолитических ферментов желудочно-кишечного тракта, малого количества желчных кислот у детей грудного возраста является высокое содержание в испражнениях непереваренного жира.

Состав ТАГ новорожденных и взрослых (в %)

ПРИЛОЖЕНИЕ ДЛЯ ПЕДИАТРИЧЕСКОГО ФАКУЛЬТЕТА

Особенности состава липопротеинов у детей

Для периода новорожденности характерно определенное соотношение фракций липопротеидов (ЛП).

Прежде всего, содержание ЛП у детей ниже, чем у взрослых; отсутствуют хиломикроны, значительно меньше липопротеидов очень низкой плотности (ЛПОНП). Основную фракцию ЛП составляют ЛПВП (а - ЛП), которые транспортируют большую часть циркулирующего холестерина.

С возрастом уровень ЛПВП снижается, а ЛПНП - повышается и 2-14 годам уже не изменяется. Имеются существенные различия в качественном составе классов ЛП. По данным А.А.Никифоровой с соавт. (1980) ЛПОНП новорожденных характеризуется большим содержанием белка и меньшим - ТАГ, чем ЛПОНП взрослых. В ЛПНП более высокое содержание ТАГ (50% всех ТАГ пуповинной крови), белка и свободного холестерина. Состав ЛПВП новорожденных отличается большим содержанием фосфолипидов, свободного холестерина (количество его в 2 раза выше, чем у взрослых) и меньшим содержанием белка и триацилглицеринов.

Наследственнаягиперхиломикронеми или гиперлипопротеинемия обусловлена врожденной недостаточностью липопротеинлипазы жировой ткани. При

этом заболевании развивается хиломикронемия и высокий уровень триацилглицеринов (выше 2г/100мл плазмы).

Наследственная семейная гиперхиломикронемия - врожденное заболевание. В большинстве случаев молекулярное нарушение состоит в отутствии или недостатке активных рецепторов ЛПНП. При этом в плазме имеет место высокий уровень холестерина и ЛПНП, что может быть причиной раннего атеросклероза. Имеются гомо- и гетерозиготные формы заболевания. Большинство гомозиготных больных гиперхолестеринемией погибают в детстве из-за поражения коронарных сосудов. Характерно развитие ксантоматоза - многочисленные доброкачественные жировые опухоли (ксантомы кожи, сухожилий, костной ткани).

Абеталипопротеинемия - генетическое заболевание, характеризующееся отсутствием в плазме ЛПНП, демиелинизацией нервных волокон. Липиды накапливаются в клетках слизистой оболочки кишечных ворсинок, наблюдается акантоцитоз - деформация эритроцитов (зубчатые эритроциты).

Наследственная недостаточность ЛПВП (болезнь Танжера) - характеризуется отсутствием в плазме ЛПВП. При этом уровень холестерина и фосфолипидов плазмы снижен, во многих тканях - избыток эфиров холестерина.

Жиры в питании детей

В первом полугодии жизни ребенок должен получать жиров 6,3 г/кг массы тела, во втором – 5,5 г/кг. Оптимальное соотношение белков, жиров и углеводов составляетв первые 3 месяца жизни 1: 3: 6, а после введения прикорма - 1: 2: 4.

У детей старше 1 года потребность в жи-рах на 1 кг массы тела постепенно снижается и составля-ет в возрасте 1-3 лет 4,3 г, 3-7 лет – 3,7 г, 7-11 лет – 3 г, 11-14лет – 2,5 г, старше 14 лет – 2 г. Одновременно с возрастомизменяется соотношение между белками, жирами и углеводами до уровня взрослых (1: 1: 4).

Избыток жира в рационе может привести к развитию кетоза, угнетению инсулярного аппарата поджелудочной железы, нарушению функции желудочно-кишечного тракта. Наряду с углеводами жиры являются основным источником энергии. У детей первых дней жизни потребность в энергии покрывается за счет жиров на 80-90%, у детей первых месяцев жизни – на 50%, в

старшем возрасте - на 30-35%.

Потребность новорожденного в жирах полностью покрывается молоком матери. У детей грудного возраста расщепление триглицеридов в желудке происходит под действием

трех липаз: липазы женского молока, желудочной и лингвальной.

Активность панкреатической липазы у новорожденного снижена и составляет у доношенных 85%, а у недоношенных - 60-70% ее активности у взрослого. Лишь после первого года жизни активность фермента достигает уровня взрослых.

У взрослого приблизительно 5% потребляемых жиров не всасывается в тонком кишечнике, поступает в толстый кишечник и выводится с фекалиями. У детей процент неиспользованных жиров больше, чем у взрослых. У недоношенных новорожденных всасывается 60-80% жира

и меньше, у доношенных - 85-90%, к концу первого полугодия жизни - 90-95%. Остальное количество жира не усваивается и выводится наружу, что необходимо иметь в

виду при кормлении грудных детей, особенно недоношенных, поскольку повышенное выведение жира при недостаточном его поступлении в организм может способствовать развитию гипотрофии.



Особенности липидного обмена в детском возрасте

Во внутриутробном периоде основным источникомэнергии для плода являются углеводы, поступающие трансплацентарно из крови матери. Поэтому во внутриутробном периоде липиды мало расходуются на энергетические нужды и используются, в основном, как пластический материал, включаясь в растущие ткани. В последние три месяца внутриутробной жизни в теле плода депонируется 600-700 г жира, т.е. приблизительно 16% от массы тела. Этот жир служит резервным источником

энергии при переходе плода к внеутробному существованию и адаптации к новым условиям жизни постнатального периода. Сразу после рождения роль основного

источника энергии переходит от углеводов к липидам,поскольку запасы углеводов у новорожденного крайнемалы.

Дляорганизма новорожденного характерно преобладание липолиза в системе «липолиз-липогенез».

В первые часы после рождения содержание глюкозы в крови у новорожденных снижается до гипог-ликемических величин из-за быстрого расходования гли-когена в печени. В таких условиях главным источником энергии для новорожденного становятся неэстерифицированные жирные кислоты (НЭЖК), образующиеся в

результате гормональной активации липолиза.

Наиболее интенсивно липолиз протекает на 3-4 день

после рождения, что соответствует периоду максимальной потери массы тела новорожденного. В течение первых дней жизни ребенка содержание НЭЖК в крови по-вышено. Обладая высокой скоростью обмена (период

полураспада равен 2 мин), они являются основной формой транспорта энергии из жировой ткани к тканям-потребителям.

Липогенез в организме детей идет наиболее интенсивно в грудном возрасте. В течение первого года жизнипроисходит увеличение как количества, так и размеров жировых клеток. Количество адипоцитов утраивается к 3 годам жизни ребенка. Перекармливание детей на этом этапе развития приводит к увеличению у них числа адипоцитов по сравнению с нормой. Причем клеточная гиперплазия не подвергается обратному развитию. Поэтому повышенное количество жировых клеток сохраняет-ся у такого ребенка в течение всей последующей жизни и может способствовать развитию ожирения в более поздние возрастные периоды. С момента рождения и до 6 лет размер адипоцитов

увеличивается в 3 раза, впоследствии этот процесс идет медленнее. Размера, свойственного взрослым, жировая клетка достигает в возрасте 12 лет. Липиды новорожденных и детей раннего возраста содержат меньше ненасыщенных жирных кислот по сравнению со старшими детьми. Данное обстоятельство объясняется преобладанием синтеза жирных кислот из углеводов и ограниченным образованием мононенасыщенных жирных кислот (пальмитоолеиновой, олеиновой)

у младших детей. Кроме того, грудной ребенок не распо-лагает резервами полиненасыщенных (незаменимых) жирных кислот, как это имеет место в липидах взрослого.

В тканях новорожденного очень низкий уровень линоле-вой кислоты. Поэтому новорожденные и дети раннего

возраста наиболее чувствительны к дефициту ненасыщенных жирных кислот, а значит, в питании ребенка не-обходимо предусмотреть достаточное поступление с

пищей этой группы питательных веществ. При грудном

вскармливании потребность в ненасыщенных жирных

кислотах покрывается жиром молока матери. С возрас-том в триглицеридах тканей ребенка наблюдается увели-чение коэффициента ненасыщенные / насыщенные жир-ные кислоты. Состав жировой ткани у детей стабилизируется и соответствует по составу и соотношению от-дельных компонентов жировой ткани взрослых прибли-зительно к 5-летнему возрасту.

Общие липиды сыворотки крови являются интегральным показателем, включающим в себя свободные жирные кислоты, триглицериды, фосфолипиды, холестерин,

липопротеины различной плотности.

У новорожденных, по сравнению с детьми старшего

и составляет 1,7-4,5 г/л. У детей в возрасте от 1 ме-сяца до 1 года содержание общих липидов в сыворотке

крови превышает таковое у новорожденных на 50% и

составляет 2,4-7,0 г/л. К 14 годам уровень общих липидов

крови возрастает до 4,5-7 г/л.

У ребенка первоначальное повышение основного обмена происходит до 1,5 лет, затем основной обмен продолжает неуклонно повышаться в абсолютном выражении и закономерно снижается в расчете на единицу массы тела.

Суммарная энергия, поступившая с пищей, распределяется на обеспечение основного обмена, специфически-динамическое действие пищи, потери тепла, связанные с экскрецией, двигательную активность и рост. В структуре распределения энергии различают:

1) Е поступившая (из пищи) = Е депонированная + Е использованная;

2) Е абсорбированная = Е поступившая – Е выведенная с экскрементами;

3) Е метаболизируемая = Е поступившая – Е обеспечения (жизни) и активности, или основных затрат;

4) Е основных затрат равна сумме энергий:

а) основного обмена;

б) терморегуляции;

в) согревающего эффекта пищи (СДДП);

г) затрат на активность;

д) затрат на синтез новых тканей.

Е депонированная – это энергия, затраченная на отложение белка и жира. Гликоген не учитывается, так как его отложение незначительное.


Е депонированная = Е метаболизируемая – Е основных затрат;

Е стоимости роста = Е синтеза новых тканей + Е депонированная в новой ткани.


Главные возрастные различия заключаются в отношении между затратами на рост и на активность, причем затраты на рост имеют наиболее существенное значение для маловесного новорожденного и в течение первого года жизни, у взрослого человека они отсутствуют. Физическая активность требует значительных затрат энергии даже у новорожденного и грудного ребенка, где ее выражением являются сосание груди, беспокойство, плач и крик. При беспокойстве ребенка расход энергии возрастает на 20–60 %, а при крике – в 2–3 раза. При повышении температуры тела на 1 °C повышение основного обмена составляет 10–16 %.

Энергозатраты роста

У детей много энергии затрачивается на пластический обмен (рост). Для накопления 1 г массы тела организму необходимо затратить приблизительно 29,3 кДж, или 7 ккал.


Энергетическая стоимость роста = Е синтеза + Е депонирования в новой ткани.


У недоношенного маловесного ребенка Е синтеза составляет от 0,3 до 1,2 ккал на 1 г, прибавленной к массе тела, у доношенного – 0,3 ккал на 1 г массы тела.

Общая энергия стоимости роста до 1 года = 5 ккал на 1 г новой ткани, после 1 года – 8,7-12 ккал на 1 г новой ткани, или около 1 % суммы калорий питания. Наиболее интенсивен рост во внутриутробном периоде развития. Темп роста продолжает оставаться высоким и в первые месяцы жизни, о чем свидетельствует значительная прибавка массы тела. У детей первых 3 месяцев жизни доля пластического обмена в расходовании энергии составляет 46 %, затем на первом году жизни она снижается, с 4 лет (особенно в пубертантном периоде) при значительном увеличении роста пластический обмен вновь увеличивается. В среднем у детей 6-12 лет на рост расходуется 12 % энергетической потребности. На трудно учитываемые потери (фекалии, пищеварительные соки и секреты, вырабатываемые в стенке пищеварительного тракта, слущивающийся эпителий кожи, волосы, ногти, пот) затрачивается у детей старше года 8 % энергетических затрат. Расход энергии на активность и поддержание постоянства температуры тела изменяется с возрастом ребенка. В течение первых 30 мин после рождения температура тела у новорожденного снижается почти на 2 °C, что вызывает значительный расход энергии. У детей раннего возраста на поддержание постоянной температуры тела при температуре окружающей среды ниже критической (28–32 °C) организм ребенка вынужден тратить 48-100 ккал/(кг х сутки). С возрастом увеличивается абсолютная затрата энергии на эти компоненты. Доля расхода на постоянство температуры тела у детей первого года жизни тем ниже, чем меньше ребенок, затем вновь происходит понижение расхода энергии, так как поверхность тела, отнесенная на 1 кг массы тела, вновь уменьшается. В то же время увеличивается расход энергии на активность. У детей в возрасте 6-12 лет доля энергии, расходуемая на физическую активность, составляет 25 % энергетической потребности, а у взрослого – 33 %. Специфически-динамическое действие пищи изменяется в зависимости от характера питания. Сильнее оно выражено при богатой белками пище, менее – при приеме жиров и углеводов. У детей второго года жизни динамическое действие пищи составляет 7–8 %, у детей более старшего возраста – более 5 %. Расходы на реализацию и преодоление стресса в среднем составляют 10 % от суточного энергетического расхода (см. табл. 13). Даже умеренная недостаточность энергии питания (4–5 %) может стать причиной задержки развития ребенка, делая пищевую энергетическую обеспеченность условием адекватности роста и развития.

Таблица 13. Рекомендации по энергетической ценности питания детей (МЗ России, 1991 г.)

Примеры использования общих возрастных стандартов.

1. Расчетный метод определения основного обмена:

1) до 3 лет; 3-10 лет;10–18 лет;

2) мальчики: Х = 0,249 – 0,127; Х = 0,095 + 2,110; Х = 0,074 + 2,754;

3) девочки: Х = 0,244 – 0,130; Х = 0,085 + 2,033; Х = 0,056 + 2,898.

2. Дополнительные расходы:

1) компенсация повреждений – основной обмен умножается на:

а) при малой хирургии – 1,2;

б) при скелетной травме – 1,35;

в) при сепсисе – 1,6;

г) при ожогах – 2,1;

2) специфически-динамическое действие пищи: + 10 % от основного обмена;

3) физическая активность: прибавляется процент от основного обмена:

а) прикованность к постели – 10 %;

б) сидит в кресле – 20 %;

в) палатный режим больного – 30 %;

4) затраты на лихорадку: на 1 °C среднесуточного повышения температуры тела +10–12 % от основного обмена;

5) прибавка массы тела: до 1 кг в неделю (еще прибавляется 300 ккал/день).

Расчет энергообеспечения ориентирован на ликвидацию дефицита углеводов и жиров при обеспечении необходимыми сопутствующими микронутриентами, такими как калий, фосфаты, витамины группы В (особенно тиамин и рибофлавин), антиоксиданты.

2. Особенности белкового обмена и потребность в белке детей различного возраста. Семиотика нарушений

Белки выполняют в организме различные функции:

1) пластические функции – распад белка с высвобождением аминокислот, в том числе незаменимых;

2) белки – составная часть различных ферментов, гормонов, антител;

3) белки участвуют в поддержании кислотно-щелочного состояния;

4) белки – источник энергии, при распаде 1 г белка образуется 4 ккал;

5) белки осуществляют транспорт метаболитов.

По разнице между азотом пищи и его выделением и мочой, и фекалиями судят о его потреблении для образования новых тканей.

У детей после рождения или маловесных несовершенство усвоения любого пищевого белка может приводить к неутилизации азота. В противоположность взрослым у детей положительный азотистый баланс: количество поступившего азота с пищей всегда превышает его выведение. Уровень ретенции азота соответствует константе роста и скорости синтеза белка.

Свойства пищевых белков, учитываемые при нормировании питания

1. Биодоступность (всасываемость) рассчитывается по формуле:

(N поступивший – N выделенный с калом) х 100 / N поступивший.

2. Чистая утилизация (NPU, %) рассчитывается по формуле:

N пищи – (N стула + N мочи) х 100 / N пищи.

3. Коэффициент эффективности белка – прибавка в массе тела на 1 г съеденного белка в эксперименте.

4. Аминокислотный скор рассчитывается по формуле:

(Данная аминокислота в данном белке в мг х 100) / Данная аминокислота в эталонном белке в мг.

Идеальный белок – женское молоко с утилизацией 94 % и скор 100, и целое яйцо с утилизацией 87 % и скор 100 (см. табл. 14).

Таблица 14. Скорость синтеза белка в различные возрастные периоды

Таблица 15. Рекомендуемое потребление белка для детей (МЗ России, 1991 г.)

Таблица 16. Безопасные уровни потребления белка у детей раннего возраста, г/(кг в сутки))

Безопасный уровень потребления белка – количество, необходимое для удовлетворения физиологических потребностей и поддержания здоровья у детей – выше, чем у взрослых. Усвоение азота организмом зависит как от количества, так и от качества белка – содержания жизненно необходимых аминокислот. Ребенку необходимо в 6 раз больше аминокислот, чем взрослому (см. табл. 16).

Если у взрослых незаменимыми являются 8 аминокислот, то у детей в возрасте до 5 лет их 13. При чрезмерной белковой перегрузке у детей более легко, чем у взрослых, возникают аминоацидемии, что может проявиться задержкой развития, особенно нервно-психического. Дети более чувствительны к голоданию, чем взрослые, дефицит питания приводит к частым инфекциям. Длительная недостаточность белка в рационе питания детей первых 3 лет жизни может вызвать необратимые изменения, сохраняющиеся пожизненно. Определение в плазме содержания общего белка и его фракций отражает процессы его синтеза и распада (см. табл. 17).

Таблица 17. Потребность в эссенциальных аминокислотах (мг на 1 г белка)

Фракции белка также более низкие, синтез альбумина составляет 0,4 г/кг/сутки, у новорожденного процентное содержание альбумина относительно выше, чем у матери. На первом году жизни происходит снижение содержания альбумина. Динамика содержания?-глобулина аналогична таковой альбумина. В течение первого полугодия жизни особенно низкие показатели?-глобулина, что связано с его распадом, синтез собственных глобулинов происходит медленно. Соотношение глобулиновых фракций?-1 – 1, ?-2 – 2, ?– 3, ?– 4 части. При острых воспалительных заболеваниях изменения белковой формулы крови характеризуются увеличением?-глобулинов при нормальном содержании?-глобулинов и уменьшенном количестве альбуминов.

При хроническом воспалении имеет место повышение?-глобулина при нормальном или слегка повышенном содержании?-глобулина, уменьшении альбумина.

Подострое воспаление характеризуется одновременным увеличением?-, ?-глобулинов при снижении содержания альбуминов.

Появление гипергаммаглобулинемии указывает на хронический период болезни, гиперальфаглобулинемия – на обострение. У детей содержание аминокислот приближается к таковым значениям у взрослых. У новорожденных наблюдается физиологическая азотемия с 9 до 70 ммоль/л, к 5-12-му дню уровень достигает такового у взрослого (28 ммоль/л). У недоношенных детей степень азотемии тем выше, чем меньше масса ребенка.

Содержание белка в пище значительно влияет на уровень остаточного азота крови. У взрослого продукты азотистого обмена выводятся с мочой в виде нетоксической мочевины, синтез которой осуществляется в печени. У детей в возрасте до 3 месяцев выделяется 0,14 г/кг в сутки, у новорожденного значительное количество в общем азоте мочи составляет мочевая кислота. Ее избыточное содержание в моче является причиной мочекислых инфарктов почек, которые наблюдаются у 75 % новорожденных.

Дети раннего возраста выводят азот белка в виде аммиака, содержание которого больше, чем у взрослых. В этом возрасте функция печени недостаточна. В этих условиях избыточная белковая нагрузка может привести к появлению токсических метаболитов в крови.

Врожденные заболевания, в основе которых лежит нарушенный метаболизм белков

Аминоацидопатия – дефицит ферментов, участвующих в обмене белков, их более 30 форм.

Клинические проявления:

1) нервно-психические нарушения – отставание нервно-психического развития в виде олигофрении;

2) судорожный синдром, который может появиться в первые недели жизни;

3) изменения мышечного тонуса в виде гипотонии или гипертонии;

4) задержка развития речи;

5) расстройства зрения;

6) изменения кожи (нарушения пигментации кожи: альбинизм, непереносимость солнца, пеллагрическая кожа, экзема, ломкость волос;

7) желудочно-кишечные симптомы (рвота);

8) поражение печени до развития цирроза с портальной гипертензией и желудочно-кишечными кровотечениями;

9) почечная симптоматика (гематурия, протеинурия);

10) анемия, лейкопения, тромбоцитопатии, повышенная агрегация тромбоцитов.

Заболевания, в основе которых лежит нарушение синтеза белков:

1) отсутствие образования конечного продукта – гемофилия (отсутствие синтеза антигемофильного глобулина), афибриногенемия (отсутствие в крови фибриногена);

2) накопление промежуточных метаболитов – фенилкетонурия;

3) второстепенные метаболические пути, могущие становиться основными и перегруженными, а образующиеся в норме метаболиты могут накапливаться в необычно высоких количествах – гемоглобинопатии, которые клинически проявляются спонтанным или вызванным каким-либо фактором гемолиза эритроцитов, увеличением селезенки. Недостаточность сосудистого или тромбоцитарного фактора Виллебранда вызывает повышенную кровоточивость.

3. Особенности углеводного обмена у детей. Семиотика нарушений

Углеводы являются основным источником энергии: 1 г углеводов выделяет 4 ккал, они входят в состав соединительной ткани, являются структурными компонентами клеточных мембран и биологически активных веществ (ферментов, гормонов, антител).

У детей первого года жизни содержание углеводов составляет 40 %, после 1 года оно возрастает до 60 %. В первые месяцы жизни потребность в углеводах покрывается за счет материнского молока, при искусственном вскармливании ребенок также получает сахарозу или мальтозу. После введения прикорма в организм попадают полисахариды (крахмал, гликоген), что способствует выработке амилазы поджелудочной железой начиная с 4 месяцев.

Моносахариды (глюкоза, фруктоза, галактоза) подвергаются резорбции на поверхности кишечных ворсинок слизистой оболочки кишечника, причем с затратой энергии макроэргической связи АТФ. Активность лактазы наиболее низкая среди дисахараз, поэтому чаще наблюдается лактазная недостаточность. Нарушения абсорбции лактозы (молочного сахара), особенно при грудном вскармливании, клинически проявляется диареей, для которой наряду с частым жидким стулом (более 5 раз в сутки) характерны пенистые испражнения кислой реакции. Может развиться дегидратация.

В более позднем возрасте происходит репрессия лактазы, чем объясняется то, что значительное большинство взрослых не переносят натурального молока, а кисломолочные продукты усваивают хорошо. Реже наблюдается врожденная мальабсорбция сахарозы и изомальтозы, что проявляется диареей у детей, находящихся на искусственном вскармливании.

Причины дисахаридазной недостаточности:

1) следствие воздействия повреждающих факторов (таких как энтериты, недостаточность питания, лямблиоз, иммунологическая недостаточность, целиакия, непереносимость белков коровьего молока, гипоксия, желтуха);

2) незрелость щеточной каймы;

3) следствие хирургического вмешательства.

При избытке в продуктах питания глюкозы и галактозы они подвергаются превращению в печени в гликоген. Синтез гликогена начинается на 9-й неделе внутриутробного развития, его быстрое накопление происходит перед рождением, что обеспечивает энергетическую потребность новорожденного первых дней жизни, когда ребенок получает мало молока. К 3-й неделе жизни концентрация гликогена достигает таких же значений у взрослых, но запасы гликогена расходуются быстрее, чем у взрослых. Соотношение интенсивности процессов гликогенеза и гликогенолиза определяет уровень гликемии. Центральным звеном регуляции гликемии является функциональное объединение нервных центров, расположенных в отдельных отделах ЦНС, и эндокринных желез (поджелудочной, щитовидной желез, надпочечников).

В зависимости от дефицита тех или иных ферментов, участвующих в метаболизме гликогена, выделяют различные формы гликогеноза.

I тип – гепаторенальный гликогеноз, болезнь Гирке, характеризуется недостаточностью глюкозо-6-фосфатазы, самый тяжелый вариант. Клинически проявляется после рождения или в грудном возрасте. Характеризуется гепатомегалией, гипогликемическими судорогами, комой, кетозом, селезенка никогда не увеличивается. В дальнейшем происходят отставание в росте, диспропорция телосложения – живот увеличен, туловище удлинено, ноги короткие, голова большая. В перерывах между кормлениями отмечаются бледность, потливость, потря сознания в результате гипогликемии.

II тип – болезнь Помпе, в основе которой лежит недостаточность кислой мальтазы. Клинически проявляется после рождения, такие дети быстро умирают. Наблюдаются гепато– и спленомегалия, мышечная гипотония, сердечная недостаточность.

III тип – болезнь Кори, обусловленая врожденным дефицитом амило-1,6-глюкозидазы – ограниченный гликогенолиз без тяжелой гипогликемии и кетоза.

IV тип – болезнь Андерсена – результат образования гликогена неправильной структуры. Наблюдаются желтуха, гепатомегалия, формируется цирроз печени с портальной гипертензией, осложненный профузными желудочно-кишечными кровотечениями.

V тип – мышечный гликогеноз развивается в связи с дефицитом мышечной фосфорилазы, может проявиться на 3-м месяце жизни, когда обнаруживается, что дети не способны длительно сосать грудь. Наблюдается ложная гипертрофия поперечно-полосатых мышц.

VI тип – болезнь Герца – обусловлен дефицитом печеночной фосфорилазы. Клинически наблюдаются гепатомегалия, отставание в росте, течение благоприятное. Содержание глюкозы в крови – показатель углеводного обмена. В момент рождения гликемия соответствует таковой у матери, с первых часов отмечается падение сахара за счет недостатка контринсулярных гормонов и ограниченность запасов гликогена. К 6-му дню содержание гликогена повышается, но его уровень ниже, чем у взрослого.

После первого года жизни повышение сахара отмечается к 6 годам и к 12 годам, что совпадает с усилением роста детей и высокой концентрацией соматотропного гормона. Суточная доза глюкозы должна составлять от 2 до 4 г/кг массы тела. У детей отмечается более тяжелое течение сахарного диабета, чаще он проявляется в период особенно интенсивного роста. Клинически проявляется жаждой, полиурией, похуданием, повышением аппетита, обнаруживаются гипергликемия и глюкозурия, часто кетоацидоз. В основе заболевания лежит недостаточность инсулина. В сыворотке крови новорожденного и ребенка первого года жизни содержится большое количество молочной кислоты, что указывает на преобладание анаэробного гликолиза (при аэробных условиях расщепления по гликолитической цепи преобладает пировиноградная кислота).

Процесс компенсации избытка лактата заключается в увеличении активности фермента лактатдегидрогеназы, превращающей молочную кислоту в пировиноградную с последующим ее включением в цикл Кребса. У детей по сравнению с взрослыми большее значение имеет пентозный цикл – путь расщепления глюкозы, начинающийся с глюкозо-6-фосфата с более коротким и быстрым образованием большого количества энергии.

Активность ключевого фермента этого цикла – глюкозо-6-фосфатдегидрогеназы – по мере роста снижается.

Несфероцитарная гемолитическая анемия – результат нарушения пентозного цикла расщепления глюкозы. Гемолитические кризы провоцируются приемом медикаментов.

Тромбоастения – результат нарушения гликолиза в тромбоцитах, клинически проявляется повышенной кровоточивостью при нормальном количестве тромбоцитов.

Галактоземия и фруктоземия – результат дефицита ферментов, превращающих галактозу и фруктозу в глюкозу.

Первые симптомы галактоземии выявляются после начала кормления детей молоком, особенно женским, содержащим большое количество лактозы. Появляется рвота, плохо увеличивается масса тела, наблюдаются гепатоспленомегалия, желтуха, катаракта, возможны асцит и расширение вен пищевода, в моче – галактозурия. Из питания необходимо исключить лактозу.

Фруктоземия клинически проявляется аналогично галактоземии, но в более легкой степени (наблюдаются рвота, снижение аппетита, когда детям начинают давать фруктовые соки, подслащенные каши, т. е. при переходе на искусственное вскармливание. В более старшем возрасте дети не переносят мед, содержащий чистую фруктозу.

4. Особенности жирового обмена. Семиотика нарушений жирового обмена

Обмен жиров включает обмен нейтральных жиров, фосфатидов, гликолипидов, холестерина и стероидов. Жиры в организме человека быстро обновляются. Функция жиров в организме:

1) участвуют в энергетическом обмене;

2) являются составным компонентом оболочек клеток нервной ткани;

3) участвуют в синтезе гормонов надпочечников;

4) защищают организм от чрезмерной теплоотдачи;

5) участвуют в транспортировке жирорастворимых витаминов.

Особое значение имеют липиды, входящие в состав клеток, их количество составляет 2–5 % от массы тела без жира. Меньшее значение имеет жир, находящийся в подкожной клетчатке, в желтом костном мозге, брюшной полости. Жир используется в качестве пластического материала, о чем свидетельствует интенсивность его накопления в период критического роста и дифференцировки. Наименьшее количество жира наблюдается в период 6–9 лет, с началом полового созревания вновь отмечается увеличение жировых запасов.

Жиры синтезируются только в организме плода. Синтез жира происходит преимущественно в цитоплазме клеток. Синтез жирных кислот требует наличия гидрогенизированных никотинамидных ферментов, главным источником которых является пентозный цикл распада углеводов. Интенсивность образования жирных кислот будет зависеть от интенсивности пентозного цикла расщепления углеводов.

На запасной жир большое значение оказывает характер вскармливания ребенка. При грудном вскармливании масса тела детей и содержание жира у них меньше, чем при искусственном. Грудное молоко вызывает транзиторное повышение холестерина в первый месяц жизни, что служит стимулом к синтезу липопротеинлипазы. Избыточное питание детей раннего возраста стимулирует образование в жировой ткани клеток, что в дальнейшем проявится склонностью к ожирению.

Различия в химическом составе триглицеридов и жировой ткани у детей и взрослых

У новорожденных в жире содержится относительно меньше олеиновой кислоты и больше пальмитиновой, что объясняет более высокую точку плавления жиров у детей, что следует учитывать при назначении средств для парентерального применения. После рождения резко возрастает потребность в энергии, одновременно прекращается поступление веществ из материнского организма, в первые часы не покрываются даже потребности основного обмена. В организме ребенка углеводных запасов хватает на короткое время, поэтому жировые запасы начинают использоваться сразу, что отражается повышением в крови концентрации неэстерифицированных жирных кислот (НЭЖК) при одновременном снижении уровня глюкозы. Одновременно с возрастанием НЭЖК в крови новорожденных через 12–24 ч начинается увеличение концентрации кетоновых тел, причем отмечается прямая зависимость уровня НЭЖК, глицерина, кетоновых тел от калорийности пищи. Новорожденный покрывает свои энергетические затраты за счет обмена углеводов.

По мере увеличения количества молока, которое получает ребенок, повышения его калорийности до 40 ккал/кг падает концентрация НЭЖК. Концентрация липидов, холестерина, фосфолипидов, липопротеинов у новорожденных низкая, но через 1–2 недели она возрастает, что связано с их поступлением из пищи. Принятые с пищей жиры подвергаются расщеплению и резорбции под влиянием липолитических ферментов желудочно-кишечного тракта и желчных кислот в тонкой кишке. Из-за нерастворимости жиров в крови их транспорт осуществляется в виде липопротеинов.

Превращение хиломикронов в липопротеины происходит под воздействием липопротеинлипазы, кофактором которой является гепарин. Под влиянием липопротеинлипазы происходит отщепление свободных жирных кислот из триглицеридов, которые связываются с альбумином и легко усваиваются. У новорожденных количество?-протеинов значительно больше, b-протеинов – меньше, к 4-му месяцу приближается к значениям у взрослых. В первые часы и дни жизни снижена реэстерификация жирных кислот в стенке кишечника. У детей первых дней жизни нередко наблюдается стеаторея, постепенно в фекалиях снижается количество свободных жирных кислот, что отражает лучшее всасывание жира в кишечнике. У недоношенных новорожденных активность липазы составляет всего 60–70 % активности, обнаруживаемой у детей старше 1 года, у доношенных новорожденных она значительно больше.

Всасывание жира определяется не только активностью липазы, но и желчными кислотами. У недоношенных новорожденных детей выделение желчных кислот печенью составляет лишь 15 % того количества, которое образуется в период полного развития ее функций у детей 2 лет. У доношенных новорожденных эта величина повышается до 40 %. У доношенных детей всасывание жиров из грудного молока осуществляется на 90–95 %, у недоношенных – на 85 %.

При искусственном вскармливании эти показатели снижаются на 15–20 %. Расщепление триглицеридов до глицерина и жирных кислот происходит под влиянием тканевых липаз.

Глицерин фосфорилируется и включается в гликолитическую цепь.

Жирные кислоты подвергаются окислению в митохондриях клеток и подвергаются обмену в цикле Кноопа-Линена, сущность которого состоит в том, что при каждом обороте цикла образуется одна молекула ацетилкоэнзима А. Но организм предпочитает использовать в качестве источника энергии углеводы из-за больших возможностей аутокаталитической регуляции прироста энергии в цикле Кребса. При катаболизме жирных кислот происходит образование промежуточных продуктов – кетоновых тел (b-оксимасляной кислоты, ацетоуксусной кислоты, ацетона). Кетогенность диеты определяется формулой:

(Жиры + 40 % белков) / (углеводы + 60 % белков).

Продукты обладают кетогенным свойством, если это соотношение превышает 2. Склонность к кетозу особенно проявляется в возрасте 2-10 лет. Новорожденные дети более устойчивы к развитию кетоза. Клинически кетоз проявляется ацетонемической рвотой, которая возникает внезапно и может продолжаться несколько дней, характерен запах ацетона изо рта, в моче определяется ацетон. Если кетоацидоз осложняет сахарный диабет, то обнаруживаются гипергликемия и глюкозурия. Содержание общих липидов в крови увеличивается с возрастом, только в течение первого года жизни оно возрастает в 3 раза. У новорожденных относительно высокое содержание нейтральных липидов (лецитина).

Нарушения обмена липидов могут происходить на различных этапах метаболизма

1. Синдром Шелдона развивается при отсутствии панкреатической липазы. Клинически проявляется целиакоподобным синдромом со значительной стеатореей, масса тела увеличивается медленно, встречается относительно редко. Обнаруживаются эритроциты с измененной структурой оболочки и стромы.

2. Синдром Золлингера-Эллисона наблюдается при гиперсекреции соляной кислоты, которая инактивирует панкреатическую липазу.

3. Абеталипопротеинемия – нарушение транспорта жира. Клиника сходна с целиакией (наблюдаются диарея, гипотрофия), в крови содержание жира низкое.

4. Гиперлипопротеинемии.

I тип является результатом дефицита липопротеинлипазы, в сыворотке крови содержится большое количество хиломикронов, она мутная, образуются ксантомы, больные часто страдают панкреатитом с приступами острых болей в животе; ретинопатией.

II тип характеризуется повышением в крови b-липопротеи-нов низкой кислотности со значительным повышением уровня холестерина и нормальным или слегка повышенным содержанием триглицеридов. Клинически определяются ксантомы на ладонях, ягодицах, периорбитально, рано развивается атеросклероз.

III тип – повышение флотирующих b-липопротеинов, высокое содержание холестерина, умеренное повышение триглицеридов. Обнаруживаются ксантомы.

IV тип – повышение пре-b-липопротеинов с увеличением триглицеридов, нормальным или слегка повышенным содержанием холестерина, хиломикроны не увеличены.

V тип отличается повышением липопротеинов низкой плотности. Клинически проявляется болями в животе, хроническим рецидивирующим панкреатитом, гепатомегалией. Гиперлипопротеинемии генетически обусловлены, относятся к патологии переноса липидов.

5. Внутриклеточные липоидозы. У детей наиболее часто встречаются болезнь Нимана-Пика (отложение в ретикулоэндотелиальной системе сфингомиелина) и болезнь Гоше (гексозоцереброзидов). Главное проявление этих болезней – спленомегалия.

5. Особенности водно-солевого обмена и синдромы его нарушения

Ткани и органы ребенка содержат значительно больше воды, чем у взрослого, по мере роста ребенка содержание воды уменьшается. Общее количество воды на третьем месяце внутриутробного развития составляет 75,5 % от массы тела. К рождению у доношенного новорожденного – 95,4 %. После рождения организм постепенно теряет воду, у детей первых 5 лет вода составляет 70 % от массы тела, у взрослого – 60–65 %. Наиболее интенсивно новорожденный теряет воду в период физиологической убыли массы тела за счет испарения при дыхании, с поверхности кожи, экскреции с мочой и меконием, причем потеря 8,7 % воды в этот период не сопровождается клиническим обезвоживанием. Хотя общее количество воды на 1 кг массы тела у детей больше, чем у взрослого, на единицу поверхности тела содержание жидкости у детей значительно меньше. На содержание воды в организме влияют характер питания и содержание жира в тканях, при преобладании углеводов в питании увеличивается гидрофильность тканей, жировая ткань бедна водой (содержит не более 22 %). Химический состав внутриклеточной жидкости и внеклеточной (плазмы крови, интерстициальной жидкости) различен. Интерстициальная жидкость отделена от крови полупроницаемой мембраной, ограничивающей выход белка за пределы сосудистого русла. Каждые 20 мин между кровью и интерстициальной жидкостью проходит количество воды, равное массе тела. Объем циркулирующей плазмы обменивается в течение 1 мин. Объем плазмы с возрастом относительно уменьшается. С возрастом не только уменьшается общее количество воды, но происходит и изменение в содержании внутри– и внеклеточной жидкости. Водный обмен у детей протекает более интенсивно, чем у взрослых. У детей раннего возраста отмечается большая проницаемость клеточных мембран, фиксация жидкости в клетке и межклеточных структурах более слабая. Особенно это касается межуточной ткани. У ребенка внеклеточная вода более подвижна. Высокая проницаемость клеточных мембран определяет равномерное распределение в организме не только жидкости, но и введенных парентерально веществ.

Потребность в воде у детей значительно больше, чем у взрослых.

Таблица 18. Общий баланс воды в физиологическом состоянии ребенка

Состав минеральных солей и их концентрация определяют осмотическое давление жидкости, важнейшие катионы – одновалентные: натрий, калий; двухвалентные: кальций, магний. Им соответствуют анионы хлора, карбоната, ортофосфата, сульфата и др. В целом имеется некоторый избыток оснований, так что рН = 7,4. Электролиты оказывают основное влияние на распределение жидкостей. Такие осмотически активные вещества, как глюкоза и мочевина, в распределении жидкости в организме имеют небольшое значение, так как свободно проникают через сосудистую и клеточную мембраны (см. табл. 19).

Таблица 19. Распределение электролитов в организме

Особенности обмена веществ у детей и иммунологической защиты в детском возрасте.

Обмен веществ у детей значительно отличается от обмена веществ взрослого человека. Еще Гиппократ отметил, что "...растущий организм имеет наибольшее количество природной теплоты и поэтому больше всего требует пищи". И действительно, организму ребенка в условиях интенсивного роста для нормальной жизнедеятельности требуется относительно больше пластических веществ и энергии, образование которых происходит в результате обмена органических соединений, поступающих с пищей. Следовательно, энергетические и окислительные процессы в детском организме идут более напряженно, о чем свидетельствуют показатели основного обмена, величина которого зависит от возраста и конституции человека, интенсивности роста и метаболизма тканей, а также других факторов. У детей во все возрастные периоды, особенно в первые годы жизни, основной обмен намного выше, чем у взрослых. Значительное количество энергии закономерно расходуется на процессы ассимиляции и роста. Необходимо также отметить обусловленное возрастом несовершенство регуляции обменных процессов как со стороны ЦНС и желез внутренней секреции, так и со стороны нейрогуморальных механизмов. Все это определяет нестабильность и сравнительно легко наступающие особенности обмена веществ у детей.

Наряду с указанными общими особенностями в детском возрасте отмечается также своеобразие каждого из основных видов обмена - белкового, углеводного, жирового. Знание их дает возможность правильно ориентироваться в вопросах питания детей первых месяцев и лет жизни, а также патологии, обусловленной нарушениями обменных процессов, в основе которой нередко лежат генетически детерминированные заболевания.

Обмен белков у детей

Обмен белка

Белки являются основным пластическим материалом для построения тканей человека, участвуют в синтезе ряда гормонов, ферментов, иммунных тел, в поддержании равновесия кислот и оснований.

В связи с энергичным ростом, формированием новых клеток и тканей потребность в белках у детей гораздо выше, чем у взрослого человека, и тем значительнее, чем моложе ребенок. Самые высокие показатели усвояемости белка и ретенции азота наблюдаются у детей до 1 года (5,0 - 5,5 г на 1 кг массы тела в сутки, тогда как у детей старше 12 лет - 2,0 - 2,5 г/кг в сутки) и особенно в первые 3 мес жизни, т. е. в период самого интенсивного нарастания массы тела. При вскармливании грудным молоком суточная потребность в белках составляет 2,0 - 2,5 г/кг, при искусственном вскармливании - 3,0 - 4,0 г/кг, оставаясь такой же в течение всего дошкольного периода (у школьников 2 - 2,5 г/кг). За счет белков должно покрываться 10-15% калорий суточного рациона. Энергично идущие пластические процессы объясняют тот факт, что азотистый баланс у детей младшего возраста положительный, в то время как у старших детей и взрослых имеется азотистое равновесие.

Для правильного роста и развития ребенка имеет значение не только количество, но и качество вводимого с пищей белка. Образовавшиеся из него в процессе пищеварения аминокислоты, всасываясь в кровь, должны усваиваться. Именно из них синтезируется затем белок тканей детского организма, свойства синтезируемого белка контролируются генами. Кроме того, в состав тканевых белков входит ряд аминокислот, которые не могут быть синтезированы и поступают в организм в готовом виде. Это так называемые незаменимые аминокислоты, обладающие высокой биологической ценностью. К ним относятся лизин, метионин, триптофан, фенилаланин, валин, лейцин, изолейцин и треонин.

По мнению многих авторов, для детей грудного возраста незаменимой аминокислотой является также гистидин, так как синтез его у ребенка не покрывает нужд растущего организма. Особенно высока потребность в лизине, треонине, валине. Однако следует подчеркнуть, что для синтеза белка необходимо наличие всех незаменимых аминокислот, правильное их соотношение и должная корреляция с другими пищевыми ингредиентами. Этим требованиям лучше всего отвечает женское молоко. В нем преобладают легкоусвояемые мелкодисперсные белки, имеется наиболее оптимальное соотношение основных ингредиентов и незаменимых аминокислот.

Все перечисленное выше не исчерпывает возрастных особенностей азотистого обмена. Неиспользованные аминокислоты подвергаются в печени дезаминированию, в результате чего образуются конечные продукты азотистого обмена (аммиак, мочевина, мочевая кислота и др.), подлежащие удалению с мочой. Повышенное содержание азота, особенно мочевой кислоты эндогенного происхождения, отмечается в моче новорожденных, что на 3-4-й день жизни может приводить к развитию мочекислого инфаркта (закупорка собирательных трубочек почек солями мочевой кислоты) с появлением мутной мочи красноватого цвета за счет уратов и аморфных мочекислых солей.

В последующие дни по мере увеличения количества мочи соли постепенно вымываются. В целом же процентное содержание азота в моче у детей младшего возраста значительно меньше, чем у взрослых, главным образом за счет мочевины, и нарастает с возрастом. Малое содержание мочевины в моче отражает как интенсивность пластических процессов, так и несовершенство белкового обмена (недостаточная синтезирующая функция печени). Последнее наряду с другими возрастными особенностями обмена и функциональной незрелостью почек обусловливает относительное преобладание в моче детей раннего возраста мочевой кислоты, аммиака, аминокислот. По-видимому, своеобразие интермедиарного обмена наряду с другими факторами является причиной креатинурии у детей первых 5 - 6 лет жизни (предполагают, что креатин у них не превращается в креатинин).

Регуляция процессов белкового обмена очень сложна

Усиливают ассимиляцию белков гормоны гипофиза, щитовидной железы, инсулин, андрогены (тестостерон). Анаболическое действие оказывают также витамины (тиамин, никотиновая кислота, рибофлавин, биотин, пантотеновая кислота). Катаболическим эффектом обладают тиреотропный и адренокортикотропный гормоны, глюкокортикоиды, тирозин в больших дозах.

Недостаточное поступление белка в организм, так же как и эндогенное белковое голодание или же потеря протеинов организмом, приводят к снижению или остановке пластических процессов в тканях, нарушению белкового обмена, отрицательному азотистому балансу. В результате приостанавливается рост, развивается дистрофия, полигиповитаминоз, появляется дискоординация функций гормональной и ферментативной систем, отмечаются изменения в ЦНС, печени, почках и других органах. Возможно развитие "голодных" отеков.

Нарушения синтеза белка могут привести к диспротеинемии, что часто наблюдается у детей при различных, особенно лихорадочных, заболеваниях, в основном со сдвигом в сторону повышенного содержания грубодисперсных фракций. Нарушения, обусловленные мутацией гена, нередко сопровождаются появлением аномальных белков с необычными свойствами (например, талас-семия, серповидно-клеточная анемия и другие гемоглобинозы) или отсутствием образования определенного белка с утратой его функции, как это имеет место при гемофилии. Наконец, большую группу генетически детерминированных нарушений образования белковых молекул составляют так называемые энзимопатии. Часть из них характеризуется необычным строением белков-энзимов и, следовательно, изменением функции последних.

Наряду с этим синтез определенного энзима может полностью отсутствовать, а выпадение его функции останавливает дальнейшее превращение вещества в соответствующем звене. Это приводит к избыточному накоплению метаболитов, предшествующему энзиматическому блоку. Наиболее часто встречающейся патологией из группы болезней накопления является фенилкетонурия. В основе ее лежит ферментативный блок на пути превращения фенилаланина в тирозин. Избыточное накопление фенилаланина и его метаболитов в крови сопровождается не только появлением их в моче и нарушением синтеза тирозина, но также и повреждением мозга, что и определяет клиническую картину болезни (прогрессирующая олигофрения с первых месяцев жизни, низкое артериальное давление, кожные аллергические сыпи и другие симптомы). Выявление в моче новорожденных фенилаланина и его метаболитов и назначение соответствующей диеты предотвращают развитие заболевания.

Жировой обмен у детей

Обмен жира и липидов

Жиры и жироподобные вещества - сложные органические соединения, значительно отличающиеся друг от друга по строению и функциональной значимости. В организме человека большая часть их представлена триглицеридами жирных кислот (нейтральные жиры), относящимися к простым липидам, и их производными жирными кислотами, стеринами (холестерин), стероидами, витаминами Е, D, К и др. Большое значение для организма имеют и сложные липиды (фосфолипиды, состоящие из эфиров жирных кислот или спиртов, азотистых оснований и фосфорной кислоты, а также цереброзиды, сфингомиелин).

Жир служит одним из основных источников энергии. В первом полугодии жизни за счет жиров покрывается около 50% всей суточной калорийности, у детей от 6 мес до 4 лет - 30 -40%, у детей школьного возраста - 25 - 30%, у взрослых - около 40 %, что определяет относительно большую потребность в нем. На первом году ребенок должен получать 4 - 6 г, в дошкольном и школьном возрасте - 2,0 - 2,5 г жира на 1 кг массы тела в сутки. Липиды входят в состав клеток различных тканей (головного мозга, половых желез и других органов), образуют прослойки в органах, но основная масса их сосредоточена в подкожной клетчатке в виде жировых депо, где постоянно идут обменные процессы. Богаты жирами брыжейка кишок и сальник. Жир является опорой для внутренних органов и сосудов, защищает их от холода и предохраняет от травм. Ненасыщенные жирные кислоты повышают иммунитет по отношению к инфекционным агентам, улучшают усвояемость белка, оказывают влияние на деятельность ЦНС, регулируют проницаемость сосудов. Дериваты ненасыщенных жирных кислот играют роль гормонов. Фосфолипиды являются транспортной формой для желчных кислот, способствуют синтезу белка в организме, регулируют моторику желудочно-кишечного тракта и отложение балластного жира.

В кишечнике жиры после соединения с желчными кислотами расщепляются под влиянием липаз на глицерин и свободные жирные кислоты, а затем, всасываясь, вновь синтезируются в слизистой оболочке кишечника. Очень небольшая часть эмульгированного жира женского молока всасывается в неизмененной форме. Примерно 7% липидов выделяется с калом в виде жира, жирных кислот и мыл.

Принимая во внимание сравнительно низкую активность желудочно-кишечных ферментов у детей, процент не использованного в процессе пищеварения жира тем больше, чем моложе ребенок. Особенно неблагоприятно сказываются на усвоении жиров недоношенность и искусственное вскармливание. Все составные компоненты липидов, кроме линолевой, линоленовой и архидоновой кислот, могут синтезироваться в организме человека, незаменимые кислоты ребенок должен получать с пищей. Избыток поступившего или синтезированного жира откладывается в жировых депо.

Процессы липогенеза и липолиза тесно связаны с углеводным обменом, так как на содержание липидов в организме влияет не только количество их в пище, но и синтез из углеводов. В детском возрасте этот синтез жиров идет наиболее интенсивно. Преимущественно углеводное питание (каши) очень быстро приводит к значительной весовой прибавке. При этом необходимо заметить, что жиры, образовавшиеся из углеводов, качественно ниже ассимилированных пищевых жиров, так как не содержат незаменимых жирных кислот. В условиях недостатка углеводов расщепление жиров, идущее на покрытие энергии, сопровождается образованием избыточного количества кетоновых тел, так как полное сгорание жира возможно только в присутствии углеводов.

Склонность к кетозу составляет еще одну из особенностей обмена у детей. Кетоз легко развивается при увеличении в пище кетогенных ингредиентов, легком голодании, различных заболеваниях, стрессовых ситуациях и сопровождается кетонурией. Источником образования жира в организме могут служить и белки, но в детском возрасте этот процесс выражен незначительно даже при очень высоком их содержании в пище.

Сразу после рождения уровень общих липидов крови низкий, но быстро нарастает в первые недели жизни. Содержание холестерина в сыворотке крови у детей в возрасте 1 года составляет 2,6 - 3,38 ммоль/л, фосфолипидов - 1,8 - 2,2 ммоль/л и мало изменяется в последующие периоды жизни. Среди липидов преобладают ненасыщенные жирные кислоты, наибольший удельный вес имеют линолевая, олеиновая и пальмитиновая кислоты. Наличие у недоношенных новорожденных липидов с высокой точкой плавления является одной из причин возникновения у них затвердений подкожной клетчатки (склеремы) в различных участках тела, но чаще в области нижних конечностей. Повышенное содержание липидов крови (липемия) может быть алиментарного происхождения, но обычно наблюдается у детей при поражении почек с нефротическим синдромом, диабете, гипотиреозе и других заболеваниях.

Регуляция жирового обмена осуществляется нейрогуморальными механизмами. Ведущее значение имеет ЦНС, которая через пищевой центр влияет на пищеварительные органы и возбуждает аппетит. Разностороннее действие на жировой обмен оказывают инсулин, гормоны щитовидной (тироксин), половых желез и коры надпочечников (кортикостероиды). Инсулин способствует переходу сахара в гликоген и жир, вызывает гипогликемию и тем самым возбуждает пищевой центр. Кроме того, он тормозит образование углеводов из жиров, препятствует выходу жира из депо. Тироксин усиливает основной обмен, вызывая распад жиров. Снижение функции половых желез вызывает ожирение. Кортикостероиды усиливают переход углеводов в жиры.

Наиболее частой патологией жирового обмена у детей является избыточное отложение жира (ожирение) вследствие различных причин (перекорм, дисфункции эндокринных желез, церебрального происхождения). Возможны и нарушения противоположного характера, сопровождающиеся исхуданием, что нередко является следствием лихорадочного состояния с анорексией и нарушением всасывания. Причиной исхудания у детей могут быть гипертиреоз, невропатия, липодистрофия и др.

Большую группу нарушений липидного обмена составляют липоидозы, по патогенетической сущности относимые к болезням накопления (наследуемая патология, обусловленная ферментативными нарушениями в метаболизме липидов). При этом уровень липидов крови остается в пределах нормы. Избыточное их отложение обнаруживается в органах ретикулоэндотелия - печени, селезенке, лимфатических узлах, костном мозге и т. д. Примерами могут служить: болезнь Гоше, характеризующаяся избыточным отложением аномальных цереброзидов, болезнь Нимана - Пика, обусловленная накоплением сфингомиелина, амавротическая идиотия, связанная с повышенным содержанием ганглиозидов преимущественно в нервной системе.

Углеводный обмен у детей

Обмен углеводов

Углеводы в организме человека находятся как в свободном состоянии, так и в связи с белками, жирами и другими веществами в виде гликопротеинов, гликозаминогликанов (мукополисахаридов) и липоглико-протеинов. Они выполняют весьма важные и разнообразные функции, основной из которых является энергетическая. За счет сгорания углеводов у грудных детей покрывается около 40% суточной калорийности, с возрастом этот процент возрастает. У старших школьников из углеводов образуется более 50% всей необходимой энергии. Углеводы являются и пластическим материалом, входя в состав основного вещества соединительной ткани в виде мукополисахаридов. Последние обнаруживаются в составе цитомембран, в том числе клеток крови, в наружной поверхности слизистых оболочек, через которые в клетку поступают питательные вещества и кислород. Значительная роль принадлежит углеводам в биосинтезе нуклеиновых кислот, формировании специфичности групп крови, иммунологических процессах и т. д.

В первые месяцы жизни ребенок получает углеводы в виде дисахаридов грудного молока (лактозы), а позднее - тростникового и молочного сахаров, содержащихся в пище, крахмала, расщепляющегося в полости рта и желудке до мальтозы. Дисахариды обладают сравнительно большей энергетической ценностью и меньшей осмолярностью по сравнению с крахмалом и другими сахарами, что является оптимальным для резорбции пищевых веществ. Расщепление дисахаридов на моносахариды - глюкозу, галактозу, фруктозу - происходит в тонком кишечнике под влиянием ферментов мальтазы, лактазы, инвертазы. Галактоза, содержащаяся в лактозе, всасывается в кишечнике значительно быстрее, чем фруктоза и глюкоза. Определенная часть углеводов расщепляется в кишечнике путем брожения, вызванного бактериями.

Ассимиляция углеводов в детском возрасте выше, чем у взрослых. У грудных детей усваивается около 99 % углеводов независимо от характера вскармливания. Уровень сахара крови является постоянной константой даже у здоровых новорожденных. В норме у детей дошкольного и школьного возраста он составляет 3,33 - 6,66 ммоль/л, у новорожденных - 0,5 - 4,5 ммоль/л и поддерживается соответствующей секрецией инсулина и других гормонов - его антагонистов (адреналин, глюкагон, гормон роста, кортикостероиды). При этом большое значение имеют состав пищи, энергетические затраты организма, интенсивность метаболических процессов; выявляется тесная взаимосвязь с обменом жиров. При недостатке углеводов усиливаются липолиз и сгорание жиров, повышается гликонеогенез. Избыток всосавшихся моносахаридов откладывается в форме гликогена (полимеризованной глюкозы) в печени и мышцах. Синтез гликогена и его расщепление происходит с участием процессов фосфорилирования.

Углеводный обмен у детей характеризуется высокой интенсивностью. Повышенные энергетические затраты в связи с ростом и формированием детского организма определяют высокие потребности его в углеводах, тем более что синтез последних из белков и жиров у детей сравнительно низкий. В грудном возрасте ребенку необходимо 12-14 г углеводов на 1 кг массы в сутки.

В последующие годы эта величина зависит от особенностей конституции, характера пищи детей и колеблется от 8 до 15 г/кг в сутки. Предел выносливости к углеводам у детей относительно выше (в грудном возрасте пищевая глюкозурия наступает при одномоментном введении ребенку 8- 12 г глюкозы на 1 кг массы тела, в то время как у взрослых - при введении около 3 г/кг), что, по-видимому, обусловлено сравнительно,пегко происходящими процессами гликогенеза.

Это же подтверждается характером гликемической кривой: в условиях приблизительно одной и той же нагрузки максимальный подъем ее у детей ниже, чем у взрослых. Высокие энергетические потребности детей определяют сравнительно небольшие отложения гликогена в печени. В то же время у них отмечается высокий гликогенолиз (расщепление гликогена до глюкозы) и гликолиз, т. е. расщепление глюкозы с образованием молочной и пировиноградной кислот. В результате усиленного гликолиза в крови у детей может обнаруживаться повышенное количество молочной кислоты. Часть ее ресинтезируется в гликоген печенью, другая превращается в пировиноградную кислоту, окисляется и является источником главной части энергии, потребляемой организмом.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!