Информационный женский портал

Объяснение рациональных чисел. Что такое рациональные числа? Какие бывают еще

Определение рациональных чисел:

Рациональным числом называют число, которое может быть представлено в виде дроби. Числитель такой дроби принадлежит множеству целых чисел, а знаменатель принадлежит множеству натуральных чисел.

Почему числа называют рациональными?

По латински "рацио" (ratio) означает отношение. Рациональные числа могут быть представлены в виде отношения, т.е. другими словами в виде дроби.

Пример рационального числа

Число 2/3 есть рациональное число. Почему? Это число представлено в виде дроби, числитель которой принадлежит множеству целых чисел, а знаменатель - множеству натуральных чисел.

Больше примеров рациональных чисел см. в статье .

Равные рациональные числа

Разные дроби могут представлять одно рациональное число.

Рассмотрим рациональное число 3/5. Этому рациональному числу равны

Сократим числитель и знаменатель на общий множитель 2:

6 = 2 * 3 = 3
10 2 * 5 5

Мы получили дробь 3/5, а это значит, что

В этом пункте мы дадим несколько определений рациональных чисел. Несмотря на различия в формулировках, все эти определения имеют единый смысл: рациональные числа объединяют целые числа и дробные числа, подобно тому, как целые числа объединяют натуральные числа, противоположные им числа и число нуль. Иными словами, рациональные числа обобщают целые и дробные числа.

Начнем с определения рациональных чисел , которое воспринимается наиболее естественно.

Определение.

Рациональные числа – это числа, которые можно записать в виде положительной обыкновенной дроби, отрицательной обыкновенной дроби или числа нуль.

Из озвученного определения следует, что рациональным числом является:

· Любое натуральное число n . Действительно, можно представить любоенатуральное число в виде обыкновенной дроби, например, 3=3/1 .

· Любое целое число, в частности, число нуль. В самом деле, любое целое число можно записать в виде либо положительной обыкновенной дроби, либо в виде отрицательной обыкновенной дроби, либо как нуль. Например, 26=26/1 , .

· Любая обыкновенная дробь (положительная или отрицательная). Это напрямую утверждается приведенным определением рациональных чисел.

· Любое смешанное число. Действительно, всегда можно представить смешанное число в виде неправильной обыкновенной дроби. Например, и.

· Любая конечная десятичная дробь или бесконечная периодическая дробь. Это так в силу того, что указанные десятичные дроби переводятся в обыкновенные дроби. К примеру, а 0,(3)=1/3 .

Также понятно, что любая бесконечная непериодическая десятичная дробь НЕ является рациональным числом, так как она не может быть представлена в виде обыкновенной дроби.

Теперь мы можем с легкостью привести примеры рациональных чисел . Числа 4 ,903 , 100 321 – это рациональные числа, так как они натуральные. Целые числа 58 ,−72 , 0 , −833 333 333 тоже являются примерами рациональных чисел. Обыкновенные дроби 4/9 , 99/3 , - это тоже примеры рациональных чисел. Рациональными числами являются и числа.

Из приведенных примеров видно, что существуют и положительные и отрицательные рациональные числа, а рациональное число нуль не является ни положительным, ни отрицательным.

Озвученное выше определение рациональных чисел можно сформулировать более краткой форме.

Определение.

Рациональными числами называют числа, которые можно записать в виде дроби z/n , где z – целое число, а n – натуральное число.

Докажем, что данное определение рациональных чисел равносильно предыдущему определению. Мы знаем, что можно рассматривать черту дроби как знак деления, тогда из свойств деления целых чисел и правил деления целых чисел следует справедливость следующих равенств и. Таким образом, что и является доказательством.

Приведем примеры рациональных чисел, основываясь на данном определении. Числа−5 , 0 , 3 , и являются рациональными числами, так как они могут быть записаны в виде дробей с целым числителем и натуральным знаменателем вида и соответственно.

Определение рациональных чисел можно дать и в следующей формулировке.

Определение.

Рациональные числа – это числа, которые могут быть записаны в виде конечной или бесконечной периодической десятичной дроби.

Это определение также равносильно первому определению, так как всякой обыкновенной дроби соответствует конечная или периодическая десятичная дробь и обратно, а любому целому числу можно сопоставить десятичную дробь с нулями после запятой.

Например, числа 5 , 0 , −13 , представляют собой примеры рациональных чисел, так как их можно записать в виде следующих десятичных дробей 5,0 , 0,0 ,−13,0 , 0,8 и −7,(18) .

Закончим теорию этого пункта следующими утверждениями:

· целые и дробные числа (положительные и отрицательные) составляют множество рациональных чисел;

· каждое рациональное число может быть представлено в виде дроби с целым числителем и натуральным знаменателем, а каждая такая дробь представляет собой некоторое рациональное число;

· каждое рациональное число может быть представлено в виде конечной или бесконечной периодической десятичной дроби, а каждая такая дробь представляет собой некоторое рациональное число.

К началу страницы

Сложение положительных рациональных чисел коммутативно и ассоциативно,

("а, b Î Q +) а + b= b + а;

("а, b, с Î Q +) (а + b)+ с = а + (b+ с)

Прежде чем сформулировать определение умножения положительных рациональных чисел, рассмотрим следующую задачу: известно, что длина отрезка Х выражается дробьюпри единице длины Е, а длина единичного отрезка измерена при помощи единицы Е 1 и выражается дробью. Как найти число, которым будет представлена длина отрезка X, если измерить ее при помощи единицы длины Е 1 ?

Так как Х=Е, то nХ=mЕ, а из того, что Е =Е 1 следует, что qЕ=рЕ 1 . Умножим первое полученное равенство на q, а второе – на m. Тогда (nq)Х = (mq)Е и (mq)Е= (mр)Е 1 , откуда (nq)X= (mр)Е 1. Это равенство показывает, что длина отрезка х при единице длины выражается дробью , азначит, =, т.е. умножение дробей связано с переходом от одной единицы длины к другой при изме­рении длины одного и того же отрезка.

Определение.Если положительное число а представлено дробью, а положительное рациональное число b дробью, то их произведением называется число а b , которое представляется дробью.

Умножение положительных рациональных чисел коммутативно, ассоциативно и дистрибутивно относительно сложения и вычитания. Доказательство этих свойств основываетсяна определении умножения и сложения положительных рациональных чисел, а также на соответствующих свойствах сложения и умножения натуральных чисел.

46. Как известно вычитание - это действие, противоположное сложению.

Если a и b - положительные числа , то вычесть из числа a число b, значит найти такое число c, которое при сложении с числом b даёт число a.
a - b = с или с + b = a
Определение вычитания сохраняется для всех рациональных чисел. То есть вычитание положительных и отрицательных чисел можно заменить сложением.
Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число противоположное вычитаемому.
Или по другому можно сказать, что вычитание числа b - это тоже самое сложение, но с числом противоположным числу b.
a - b = a + (- b)
Пример.
6 - 8 = 6 + (- 8) = - 2
Пример.
0 - 2 = 0 + (- 2) = - 2
Стоит запомнить выражения ниже.
0 - a = - a
a - 0 = a
a - a = 0

Правила вычитания отрицательных чисел
Вычитание числа b - это сложение с числом противоположным числу b.
Это правило сохраняется не только при вычитании из бóльшего числа меньшего, но и позволяет из меньшего числа вычесть большее число, то есть всегда можно найти разность двух чисел.
Разность может быть положительным числом, отрицательным числом или числом ноль.
Примеры вычитания отрицательных и положительных чисел.
- 3 - (+ 4) = - 3 + (- 4) = - 7
- 6 - (- 7) = - 6 + (+ 7) = 1
5 - (- 3) = 5 + (+ 3) = 8
Удобно запомнить правило знаков, которое позволяет уменьшить количество скобок.
Знак «плюс» не изменяет знака числа, поэтому, если перед скобкой стоит плюс, то знак в скобках не меняется.
+ (+ a) = + a
+ (- a) = - a
Знак «минус» перед скобками меняет знак числа в скобках на противоположный.
- (+ a) = - a
- (- a) = + a
Из равенств видно, что если перед и внутри скобок стоят одинаковые знаки, то получаем «+», а если знаки разные, то получаем «-».
(- 6) + (+ 2) - (- 10) - (- 1) + (- 7) = - 6 + 2 + 10 + 1 - 7 = - 13 + 13 = 0
Правило знаков сохраняется и в том случае, если в скобках не одно число, а алгебраическая сумма чисел.
a - (- b + c) + (d - k + n) = a + b - c + d - k + n
Обратите внимание, если в скобках стоит несколько чисел и перед скобками стоит знак «минус», то должны меняться знаки перед всеми числами в этих скобках.
Чтобы запомнить правило знаков можно составить таблицу определения знаков числа.
Правило знаков для чисел+ (+) = + + (-) = -
- (-) = + - (+) = -
Или выучить простое правило.
Минус на минус даёт плюс,
Плюс на минус даёт минус.

Правила деления отрицательных чисел.
Чтобы найти модуль частного, нужно разделить модуль делимого на модуль делителя.
Итак, чтобы разделить два числа с одинаковыми знаками, надо:

· модуль делимого разделить на модуль делителя;

· перед результатом поставить знак «+».

Примеры деления чисел с разными знаками:

Для определения знака частного можно также пользоваться следующей таблицей.
Правило знаков при делении
+ : (+) = + + : (-) = -
- : (-) = + - : (+) = -

При вычислении «длинных» выражений, в которых фигурируют только умножение и деление, пользоваться правилом знаков очень удобно. Например, для вычисления дроби
Можно обратить внимание, что в числителе 2 знака «минус», которые при умножении дадут «плюс». Также в знаменателе три знака «минус», которые при умножении дадут «минус». Поэтому в конце результат получится со знаком «минус».
Сокращение дроби (дальнейшие действия с модулями чисел) выполняется также, как и раньше:
Частное от деления нуля на число, отличное от нуля, равно нулю.
0: a = 0, a ≠ 0
Делить на ноль НЕЛЬЗЯ!
Все известные ранее правила деления на единицу действуют и на множество рациональных чисел.
а: 1 = a
а: (- 1) = - a
а: a = 1 , где а - любое рациональное число.
Зависимости между результатами умножения и деления, известные для положительных чисел, сохраняются и для всех рациональных чисел (кроме числа нуль):
если a × b = с; a = с: b; b = с: a;
если a: b = с; a = с × b; b = a: c
Данные зависимости используются для нахождения неизвестного множителя, делимого и делителя (при решении уравнений), а также для проверки результатов умножения и деления.
Пример нахождения неизвестного.
x × (- 5) = 10
x = 10: (- 5)
x = - 2


Похожая информация.


Рациональные числа

Четверти

  1. Упорядоченность . a и b существует правило, позволяющее однозначно идентифицировать между ними одно и только одно из трёх отношений : « < », « > » или « = ». Это правило называется правилом упорядочения и формулируется следующим образом: два неотрицательных числа и связаны тем же отношением, что и два целых числа и ; два неположительных числа a и b связаны тем же отношением, что и два неотрицательных числа и ; если же вдруг a неотрицательно, а b - отрицательно, то a > b . src="/pictures/wiki/files/57/94586b8b651318d46a00db5413cf6c15.png" border="0">

    Суммирование дробей

  2. Операция сложения . Для любых рациональных чисел a и b существует так называемое правило суммирования c . При этом само число c называется суммой чисел a и b и обозначается , а процесс отыскания такого числа называется суммированием . Правило суммирования имеет следующий вид: .
  3. Операция умножения . Для любых рациональных чисел a и b существует так называемое правило умножения , которое ставит им в соответствие некоторое рациональное число c . При этом само число c называется произведением чисел a и b и обозначается , а процесс отыскания такого числа также называется умножением . Правило умножения имеет следующий вид: .
  4. Транзитивность отношения порядка. Для любой тройки рациональных чисел a , b и c если a меньше b и b меньше c , то a меньше c , а если a равно b и b равно c , то a равно c . 6435">Коммутативность сложения. От перемены мест рациональных слагаемых сумма не меняется.
  5. Ассоциативность сложения. Порядок сложения трёх рациональных чисел не влияет на результат.
  6. Наличие нуля . Существует рациональное число 0, которое сохраняет любое другое рациональное число при суммировании.
  7. Наличие противоположных чисел. Любое рациональное число имеет противоположное рациональное число, при суммировании с которым даёт 0.
  8. Коммутативность умножения. От перемены мест рациональных множителей произведение не меняется.
  9. Ассоциативность умножения. Порядок перемножения трёх рациональных чисел не влияет на результат.
  10. Наличие единицы . Существует рациональное число 1, которое сохраняет любое другое рациональное число при умножении.
  11. Наличие обратных чисел . Любое рациональное число имеет обратное рациональное число, при умножении на которое даёт 1.
  12. Дистрибутивность умножения относительно сложения. Операция умножения согласована с операцией сложения посредством распределительного закона:
  13. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства можно прибавлять одно и то же рациональное число. /pictures/wiki/files/51/358b88fcdff63378040f8d9ab9ba5048.png" border="0">
  14. Аксиома Архимеда . Каково бы ни было рациональное число a , можно взять столько единиц, что их сумма превзойдёт a . src="/pictures/wiki/files/55/70c78823302483b6901ad39f68949086.png" border="0">

Дополнительные свойства

Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.

Src="/pictures/wiki/files/48/0caf9ffdbc8d6264bc14397db34e8d72.png" border="0">

Счётность множества

Нумерация рациональных чисел

Чтобы оценить количество рациональных чисел, нужно найти мощность их множества. Легко доказать, что множество рациональных чисел счётно . Для этого достаточно привести алгоритм, который нумерует рациональные числа, т. е. устанавливает биекцию между множествами рациональных и натуральных чисел.

Самый простой из таких алгоритмов выглядит следующим образом. Составляется бесконечная таблица обыкновенных дробей, на каждой i -ой строке в каждом j -ом столбце которой располагается дробь . Для определённости считается, что строки и столбцы этой таблицы нумеруются с единицы. Ячейки таблицы обозначаются , где i - номер строки таблицы, в которой располагается ячейка, а j - номер столбца.

Полученная таблица обходится «змейкой» по следующему формальному алгоритму.

Эти правила просматриваются сверху вниз и следующее положение выбирается по первому совпадению.

В процессе такого обхода каждому новому рациональному числу ставится в соответствие очередное натуральное число. Т. е. дроби 1 / 1 ставится в соответствие число 1, дроби 2 / 1 - число 2, и т. д. Нужно отметить, что нумеруются только несократимые дроби. Формальным признаком несократимости является равенство единице наибольшего общего делителя числителя и знаменателя дроби.

Следуя этому алгоритму, можно занумеровать все положительные рациональные числа. Это значит, что множество положительных рациональных чисел счётно. Легко установить биекцию между множествами положительных и отрицательных рациональных чисел, просто поставив в соответствие каждому рациональному числу противоположное ему. Т. о. множество отрицательных рациональных чисел тоже счётно. Их объединение также счётно по свойству счётных множеств. Множество же рациональных чисел тоже счётно как объединение счётного множества с конечным.

Утверждение о счётности множества рациональных чисел может вызывать некоторое недоумение, т. к. на первый взгляд складывается впечатление, что оно гораздо обширнее множества натуральных чисел. На самом деле это не так и натуральных чисел хватает, чтобы занумеровать все рациональные.

Недостаточность рациональных чисел

Гипотенуза такого треугольника не выражается никаким рациональным числом

Рациональными числами вида 1 / n при больших n можно измерять сколь угодно малые величины . Этот факт создаёт обманчивое впечатление, что рациональными числами можно измерить вообще любые геометрические расстояния . Легко показать, что это не верно.

Примечания

Литература

  • И.Кушнир. Справочник по математике для школьников. - Киев: АСТАРТА, 1998. - 520 с.
  • П. С. Александров. Введение в теорию множеств и общую топологию. - М.: глав. ред. физ.-мат. лит. изд. «Наука», 1977
  • И. Л. Хмельницкий. Введение в теорию алгебраических систем

Ссылки

Wikimedia Foundation . 2010 .

Тема рациональных чисел достаточно обширна. О ней можно говорить бесконечно и писать целые труды, каждый раз удивляясь новым фишкам.

Чтобы не допускать в будущем ошибок, в данном уроке мы немного углубимся в тему рациональных чисел, почерпнём из неё необходимые сведения и двинемся дальше.

Содержание урока

Что такое рациональное число

Рациональное число — это число, которое может быть представлено в виде дроби , где a — это числитель дроби, b — знаменатель дроби. Причем b не должно быть нулём, поскольку деление на ноль не допускается.

К рациональным числам относятся следующие категории чисел:

  • целые числа (например −2, −1, 0 1, 2 и т.д.)
  • десятичные дроби (например 0,2 и т.п.)
  • бесконечные периодические дроби (например 0,(3) и т.п.)

Каждое число из этой категории может быть представлено в виде дроби .

Пример 1. Целое число 2 может быть представлено в виде дроби . Значит число 2 относится не только к целым числам, но и к рациональным.

Пример 2. Смешанное число может быть представлено в виде дроби . Данная дробь получается путём перевода смешанного числа в неправильную дробь

Значит смешанное число относится к рациональным числам.

Пример 3. Десятичная дробь 0,2 может быть представлена в виде дроби . Данная дробь получилась путём перевода десятичной дроби 0,2 в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему .

Поскольку десятичная дробь 0,2 может быть представлена в виде дроби , значит она тоже относится к рациональным числам.

Пример 4. Бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби . Данная дробь получается путём перевода чистой периодической дроби в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему .

Поскольку бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби , значит она тоже относится к рациональным числам.

В дальнейшем, все числа которые можно представить в виде дроби, мы всё чаще будем называть одним словосочетанием — рациональные числа .

Рациональные числа на координатной прямой

Координатную прямую мы рассматривали, когда изучали отрицательные числа. Напомним, что это прямая линия на которой лежат множество точек. Выглядит следующим образом:

На этом рисунке приведен небольшой фрагмент координатной прямой от −5 до 5.

Отметить на координатной прямой целые числа вида 2, 0, −3 не составляет особого труда.

Намного интереснее дела обстоят с остальными числами: с обыкновенными дробями, смешанными числами, десятичными дробями и т.д. Эти числа лежат между целыми числами и этих чисел бесконечно много.

Например, отметим на координатной прямой рациональное число . Данное число располагается ровно между нулём и единицей

Попробуем понять, почему дробь вдруг расположилась между нулём и единицей.

Как уже говорилось выше, между целыми числами лежат остальные числа — обыкновенные дроби, десятичные дроби, смешанные числа и т.д. К примеру, если увеличить участок координатной прямой от 0 до 1, то можно увидеть следующую картину

Видно, что между целыми числами 0 и 1 лежат уже другие рациональные числа, которые являются знакомыми для нас десятичными дробями. Здесь же видна наша дробь , которая расположилась там же, где и десятичная дробь 0,5. Внимательное рассмотрение этого рисунка даёт ответ на вопрос почему дробь расположилась именно там.

Дробь означает разделить 1 на 2. А если разделить 1 на 2, то мы получим 0,5

Десятичную дробь 0,5 можно замаскировать и под другие дроби. Из основного свойства дроби мы знаем, что если числитель и знаменатель дроби умножить или разделить на одно и то же число, то значение дроби не изменится.

Если числитель и знаменатель дроби умножить на любое число, например на число 4, то мы получим новую дробь , а эта дробь также как и равна 0,5

А значит на координатной прямой дробь можно расположить там же, где и располагалась дробь

Пример 2. Попробуем отметить на координатной рациональное число . Данное число располагается ровно между числами 1 и 2

Значение дроби равно 1,5

Если увеличить участок координатной прямой от 1 до 2, то мы увидим следующую картину:

Видно, что между целыми числами 1 и 2 лежат уже другие рациональные числа, которые являются знакомыми для нас десятичными дробями. Здесь же видна наша дробь , которая расположилась там же, где и десятичная дробь 1,5.

Мы увеличивали определенные отрезки на координатной прямой, чтобы увидеть остальные числа, лежащие на этом отрезке. В результате, мы обнаруживали десятичные дроби, которые имели после запятой одну цифру.

Но это были не единственные числа, лежащие на этих отрезках. Чисел, лежащих на координатной прямой бесконечно много.

Нетрудно догадаться, что между десятичными дробями, имеющими после запятой одну цифру, лежат уже другие десятичные дроби, имеющие после запятой две цифры. Другими словами, сотые части отрезка.

К примеру, попробуем увидеть числа, которые лежат между десятичными дробями 0,1 и 0,2

Ещё пример. Десятичные дроби, имеющие две цифры после запятой и лежащие между нулём и рациональным числом 0,1 выглядят так:

Пример 3. Отметим на координатной прямой рациональное число . Данное рациональное число будет располагаться очень близко к нулю

Значение дроби равно 0,02

Если мы увеличим отрезок от 0 до 0,1 то увидим где точно расположилось рациональное число

Видно, что наше рациональное число расположилось там же, где и десятичная дробь 0,02.

Пример 4. Отметим на координатной прямой рациональное число 0, (3)

Рациональное число 0, (3) является бесконечной периодической дробью. Его дробная часть никогда не заканчивается, она бесконечная

И поскольку у числа 0,(3) дробная часть является бесконечной, это означает, что мы не сможем найти точное место на координатной прямой, где это число располагается. Мы можем лишь указать это место приблизительно.

Рациональное число 0,33333… будет располагаться очень близко к обычной десятичной дроби 0,3

Данный рисунок не показывает точное место расположения числа 0,(3). Это лишь иллюстрация, показывающая как близко может располагаться периодическая дробь 0,(3) к обычной десятичной дроби 0,3.

Пример 5. Отметим на координатной прямой рациональное число . Данное рациональное число будет располагаться посередине между числами 2 и 3

Это есть 2 (две целых) и (одна вторая). Дробь по другому ещё называют «половиной». Поэтому мы отметили на координатной прямой два целых отрезка и ещё половину отрезка.

Если перевести смешанное число в неправильную дробь, то получим обыкновенную дробь . Эта дробь на координатной прямой будет располагаться там же, где и дробь

Значение дроби равно 2,5

Если увеличить участок координатной прямой от 2 до 3, то мы увидим следующую картину:

Видно, что наше рациональное число расположилось там же, где и десятичная дробь 2,5

Минус перед рациональным числом

В предыдущем уроке, который назвался мы научились делить целые числа. В роли делимого и делителя могли стоять как положительные, так и отрицательные числа.

Рассмотрим простейшее выражение

(−6) : 2 = −3

В данном выражении делимое (−6) является отрицательным числом.

Теперь рассмотрим второе выражение

6: (−2) = −3

Здесь уже отрицательным числом является делитель (−2). Но в обоих случаях мы получаем один и тот же ответ −3.

Учитывая, что любое деление можно записать в виде дроби, мы можем рассмотренные выше примеры также записать в виде дроби:

А поскольку в обоих случаях значение дроби одинаково, минус стоящий либо в числителе либо в знаменателе можно сделать общим, поставив его перед дробью

Поэтому между выражениями и и можно поставить знак равенства, потому что они несут одно и то же значение

В дальнейшем работая с дробями, если минус будет нам встречаться в числителе или в знаменателе, мы будем делать этот минус общим, ставя его перед дробью.

Противоположные рациональные числа

Как и целое число, рациональное число имеет своё противоположное число.

Например, для рационального числа противоположным числом является . Располагается оно на координатной прямой симметрично расположению относительно начала координат. Другими словами, оба этих числа равноудалены от начала координат

Перевод смешанных чисел в неправильные дроби

Мы знаем что для того, чтобы перевести смешанное число в неправильную дробь, нужно целую часть умножить на знаменатель дробной части и прибавить к числителю дробной части. Полученное число будет числителем новой дроби, а знаменатель остаётся прежним..

Например, переведём смешанное число в неправильную дробь

Умножим целую часть на знаменатель дробной части и прибавим числитель дробной части:

Вычислим данное выражение:

(2 × 2) + 1 = 4 + 1 = 5

Полученное число 5 будет числителем новой дроби, а знаменатель останется прежним:

Полностью данная процедура записывается следующим образом:

Чтобы вернуть изначальное смешанное число, достаточно выделить целую часть в дроби

Но этот способ перевода смешанного числа в неправильную дробь применим только в том случае, если смешанное число является положительным. Для отрицательного числа данный способ не сработает.

Рассмотрим дробь . Выделим в этой дроби целую часть. Получим

Чтобы вернуть изначальную дробь нужно перевести смешанное число в неправильную дробь. Но если мы воспользуемся старым правилом, а именно умножим целую часть на знаменатель дробной части и к полученному числу прибавим числитель дробной части, то получим следующее противоречие:

Мы получили дробь , а должны были получить дробь .

Делаем вывод, что смешанное число в неправильную дробь переведено неверно

Чтобы правильно перевести отрицательное смешанное число в неправильную дробь, нужно целую часть умножить на знаменатель дробной части, и из полученного числа вычесть числитель дробной части. В этом случае у нас всё встанет на свои места

Отрицательное смешанное число является противоположным для смешанного числа . Если положительное смешанное число располагается в правой части и выглядит так

Старшие школьники и студенты математических специальностей, вероятно, с легкостью ответят на этот вопрос. А вот тем, кто по профессии далек от этого, будет сложнее. Что же это на самом деле такое?

Сущность и обозначение

Под рациональными числами подразумевают такие, которые могут быть представлены в виде обыкновенной дроби. Положительные, отрицательные, а также ноль тоже входят в это множество. Числитель дроби при этом должен быть целым, а знаменатель - представлять собой

Это множество в математике обозначается как Q и называется "полем рациональных чисел". Туда входят все целые и натуральные, обозначающиеся соответственно как Z и N. Само же множество Q входит в множество R. Именно этой буквой обозначают так называемые вещественные или

Представление

Как уже было сказано, рациональные числа - это множество, в которое входят все целые и дробные значения. Они могут быть представлены в разных формах. Во-первых, в виде обыкновенной дроби: 5/7, 1/5, 11/15 и т. д. Разумеется, целые числа также могут быть записаны в подобном виде: 6/2, 15/5, 0/1, -10/2 и т. д. Во-вторых, еще один вид представления - десятичная дробь с конечной дробной частью: 0,01, -15,001006 и т. д. Это, пожалуй, одна из наиболее часто встречающихся форм.

Но есть еще и третья - периодическая дробь. Такой вид встречается не очень часто, но все же используется. Например, дробь 10/3 может быть записана как 3,33333... или 3,(3). При этом различные представления будут считаться аналогичными числами. Так же будут называться и равные между собой дроби, например 3/5 и 6/10. Похоже, что стало ясно, что такое рациональные числа. Но почему для их обозначения используют именно этот термин?

Происхождение названия

Слово "рациональный" в современном русском языке в общем случае несет немного другое значение. Это скорее "разумный", "обдуманный". Но математические термины близки к прямому смыслу этого В латыни "ratio" - это "отношение", "дробь" или "деление". Таким образом, название отражает сущность того, что такое рациональные числа. Впрочем, и второе значение

недалеко ушло от истины.

Действия с ними

При решении математических задач мы постоянно сталкиваемся с рациональными числами, сами не зная этого. И они обладают рядом интересных свойств. Все они следуют либо из определения множества, либо из действий.

Во-первых, рациональные числа обладают свойством отношения порядка. Это означает, что между двумя числами может существовать только одно соотношение - они либо равны друг другу, либо одно больше или меньше другого. Т. е.:

либо a = b ; либо a > b, либо a < b.

Кроме того, из этого свойства также вытекает транзитивность соотношения. То есть если a больше b , b больше c , то a больше c . На языке математики это выглядит следующим образом:

(a > b) ^ (b > c) => (a > c).

Во-вторых, существуют арифметические действия с рациональными числами, то есть сложение, вычитание, деление и, разумеется, умножение. При этом в процессе преобразований можно также выделить ряд свойств.

  • a + b = b + a (перемена мест слагаемых, коммутативность);
  • 0 + a = a + 0 ;
  • (a + b) + c = a + (b + c) (ассоциативность);
  • a + (-a) = 0;
  • ab = ba;
  • (ab)c = a(bc) (дистрибутивность);
  • a x 1 = 1 x a = a;
  • a x (1 / a) = 1 (при этом a не равно 0);
  • (a + b)c = ac + ab;
  • (a > b) ^ (c > 0) => (ac > bc).

Когда же речь идет об обыкновенных, а не или целых числах, действия с ними могут вызывать определенные трудности. Так, сложение и вычитание возможны только при равенстве знаменателей. Если они изначально различны, следует найти общий, используя умножение всей дроби на те или иные числа. Сравнение также чаще всего возможно только при соблюдении этого условия.

Деление и перемножение обыкновенных дробей производятся в соответствии с достаточно простыми правилами. Приведение к общему знаменателю не нужно. Отдельно перемножаются числители и знаменатели, при этом в процессе выполнения действия по возможности дробь нужно максимально сократить и упростить.

Что касается деления, то это действие аналогично первому с небольшой разницей. Для второй дроби следует найти обратную, то есть

"перевернуть" ее. Таким образом, числитель первой дроби нужно будет перемножить со знаменателем второй и наоборот.

Наконец, еще одно свойство, присущее рациональным числам, называют аксиомой Архимеда. Часто в литературе также встречается название "принцип". Он действителен для всего множества действительных чисел, однако не везде. Так, этот принцип не действует для некоторых совокупностей рациональных функций. По сути же, эта аксиома означает, что при существовании двух величин a и b всегда можно взять достаточное количество a, чтобы превзойти b.

Область применения

Итак, тем, кто узнал или вспомнил, что такое рациональные числа, становится ясно, что они используются повсеместно: в бухгалтерии, экономике, статистике, физике, химии и других науках. Естественно, также место им есть в математике. Не всегда зная, что имеем дело с ними, мы постоянно используем рациональные числа. Еще маленькие дети, учась считать предметы, разрезая на части яблоко или выполняя другие простые действия, сталкиваются с ними. Они буквально нас окружают. И все же для решения некоторых задач их недостаточно, в частности, на примере теоремы Пифагора можно понять необходимость введения понятия



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!