Информационный женский портал

Удивительные способности человеческого глаза: космическое зрение и невидимые лучи. Как далеко может видеть глаз человека? Комплекс упражнений «Четкое Зрение»

Поверхность Земли изгибается и пропадает из поля видимости на расстоянии 5 километров. Но острота нашего зрения позволяет видеть далеко за горизонт. Если бы Земля была плоской, или если б вы стояли на верху горы и смотрели на гораздо больший участок планеты, чем обычно, вы смогли бы увидеть яркие огни на расстоянии сотен километров. В темную ночь вам удалось бы даже увидеть пламя свечи, находящейся в 48 километрах от вас.

Насколько далеко может видеть человеческий глаз зависит от того, сколько частиц света, или фотонов, испускает удаленный объект. Самым далеким объектом, видимым невооруженным глазом, является Туманность Андромеды, расположенная на громадном расстоянии в 2,6 миллионов световых лет от Земли. Один триллион звезд этой галактики испускает в общей сложности достаточно света для того, чтоб несколько тысяч фотонов каждую секунду сталкивались с каждым квадратным сантиметром земной поверхности. В темную ночь этого количества достаточно для активизации сетчатки глаза .

В 1941 году специалист по вопросам зрения Селиг Гехт со своими коллегами из Колумбийского университета сделал то, что до сих пор считается надежным средством измерения абсолютного порога зрения – минимального количества фотонов, которые должны попасть в сетчатку, чтобы вызвать осознание визуального восприятия. Эксперимент устанавливал порог в идеальных условиях: глазам участников давали время, чтобы полностью привыкнуть к абсолютной темноте, сине-зеленая вспышка света, действующая как раздражитель, имела длину волны 510 нанометров (к которой глаза наиболее чувствительны), и свет был направлен на периферический край сетчатки, заполненный распознающими свет клетками палочками.

По данным ученых, для того, чтоб участники эксперимента смогли распознать такую вспышку света более чем в половине случаев, в глазные яблоки должно было попасть от 54 до 148 фотонов. На основании измерений ретинальной абсорбции ученые подсчитали, что в среднем 10 фотонов в действительности впитываются палочками сетчатки человека. Таким образом, абсорбция 5-14 фотонов или, соответственно, активация 5-14 палочек указывает мозгу, что вы что-то видите.

«Это действительно очень малое количество химических реакций », - отметили Гехт и его коллеги в статье об этом эксперименте.

Принимая во внимание абсолютный порог, яркость пламени свечи и расчетное расстояние, на котором светящийся объект тускнеет, ученые пришли к выводу, что человек может различить слабое мерцание пламени свечи на расстоянии 48 километров.

Но на каком расстоянии мы можем распознать, что объект представляет собой нечто большее, чем просто мерцание света? Чтобы объект казался пространственно протяженным, а не точечным, свет от него должен активировать не менее двух смежных колбочек сетчатки – клеток, отвечающих за цветное зрение. В идеальных условиях объект должен лежать под углом не менее 1 аркминута, или одна шестая градуса, чтобы возбудить смежные колбочки. Эта угловая мера остается одной и той же вне зависимости от того, близко или далеко находится объект (удаленный объект должен быть гораздо больше, чтобы находиться под тем же углом, что и ближний). Полная Луна лежит под углом 30 аркминут, тогда как Венера едва различима как протяженный объект под углом около 1 акрминуты.

Объекты величиной с человека различимы как протяженные на расстоянии лишь около 3 километров. В сравнении на таком расстоянии мы смогли бы четко различить две

Сколько цветов мы можем видеть?

Здоровый человеческий глаз имеет три типа колбочек, каждый из которых может различать порядка 100 разных цветовых оттенков, поэтому большинство исследователей сходятся во мнении, что наши глаза в общем могут различить примерно миллион оттенков. Тем не менее восприятие цвета — это довольно субъективная способность, которая варьируется от человека к человеку, поэтому определить точные цифры довольно сложно.

«Довольно трудно переложить это на цифры, - говорит Кимберли Джеймисон, научный сотрудник Калифорнийского университета в Ирвине. - То, что видит один человек, может быть лишь частью цветов, которые видит другой человек».

Джеймисон знает, о чем говорит, поскольку работает с «тетрахроматами» - людьми, обладающими «сверхчеловеческим» зрением. Эти редкие индивиды, в основном женщины, обладают генетической мутацией, которая подарила им дополнительные четвертые колбочки. Грубо говоря, благодаря четвертому набору колбочек, тетрахроматы могут разглядеть 100 миллионов цветов. (Люди с цветовой слепотой, дихроматы, имеют только два вида колбочек и видят примерно 10 000 цветов).

Сколько минимум фотонов нам нужно видеть?

Для того чтобы цветное зрение работало, колбочкам, как правило, нужно намного больше света, чем их коллегам-палочкам. Поэтому в условиях низкой освещенности цвет «гаснет», поскольку на передний план выходят монохроматические палочки.

В идеальных лабораторных условиях и в местах сетчатки, где палочки по большей части отсутствуют, колбочки могут быть активированы лишь горсткой фотонов. И все же палочки лучше справляются в условиях рассеянного света. Как показали эксперименты 40-х годов, одного кванта света достаточно, чтобы привлечь наше внимание. «Люди могут реагировать на один фотон, - говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфорде. - Нет никакого смысла в еще большей чувствительности».


В 1941 году исследователи Колумбийского университета усадили людей в темную комнату и дали их глазам приспособиться. Палочкам потребовалось несколько минут, чтобы достичь полной чувствительности - вот почему у нас возникают проблемы со зрением, когда внезапно гаснет свет.

Затем ученые зажгли сине-зеленый свет перед лицами испытуемых. На уровне, превышающем статистическую случайность, участники смогли зафиксировать свет, когда первые 54 фотона достигли их глаз.

После компенсации потери фотонов через всасывание другими компонентами глаза, ученые обнаружили, что уже пять фотонов активируют пять отдельных палочек, которые дают ощущение света участникам.

Каков предел самого мелкого и дальнего, что мы можем увидеть?

Этот факт может вас удивить: нет никакого внутреннего ограничения мельчайшей или самой далекой вещи, которую мы можем увидеть. Пока объекты любого размера, на любом расстоянии передают фотоны клеткам сетчатки, мы можем их видеть.

«Все, что волнует глаз, это количество света, которое попадает на глаз, - говорит Лэнди. - Общее число фотонов. Вы можете сделать источник света до смешного малым и удаленным, но если он излучает мощные фотоны, вы его увидите».

К примеру, расхожее мнение гласит, что темной ясной ночью мы можем разглядеть огонек свечи с расстояния 48 километров. На практике, конечно, наши глаза будут просто купаться в фотонах, поэтому блуждающие кванты света с больших расстояний просто потеряются в этой мешанине. «Когда вы увеличиваете интенсивность фона, количество света, которое вам необходимо, чтобы что-то разглядеть, увеличивается», - говорит Лэнди.


Ночное небо с темным фоном, усеянным звездами, являет собой поразительный пример дальности нашего зрения. Звезды огромны; многие из тех, что мы видим в ночном небе, составляют миллионы километров в диаметре. Но даже ближайшие звезды находятся минимум в 24 триллионах километров от нас, а потому настолько малы для нашего глаза, что их не разберешь. И все же мы их видим как мощные излучающие точки света, поскольку фотоны пересекают космические расстояния и попадают в наши глаза.

Все отдельные звезды, которые мы видим в ночном небе, находятся в нашей галактике - . Самый далекий объект, который мы можем разглядеть невооруженным глазом, находится за пределами нашей галактики: это галактика Андромеды, расположенная в 2,5 миллионах световых лет от нас. (Хотя это спорно, некоторые индивиды заявляют, что могут разглядеть галактику Треугольника в чрезвычайно темном ночном небе, а она находится в трех миллионах световых лет от нас, только придется поверить им на слово).

Триллион звезд в галактике Андромеды, учитывая расстояние до нее, расплываются в смутный светящийся клочок неба. И все же ее размеры колоссальны. С точки зрения видимого размера, даже будучи в квинтиллионах километрах от нас, эта галактика в шесть раз шире полной Луны. Однако наших глаз достигает так мало фотонов, что этот небесный монстр почти незаметен.

Насколько острым может быть зрение?

Почему мы не различаем отдельных звезд в галактике Андромеды? Пределы нашего визуального разрешения, или остроты зрения, накладывают свои ограничения. Острота зрения - это возможность различать такие детали, как точки или линии, отдельно друг от друга, чтобы те не сливались воедино. Таким образом, можно считать пределы зрения числом «точек», которые мы можем различить.


Границы остроты зрения устанавливают несколько факторов, например, расстояния между колбочками и палочками, упакованными в сетчатке. Также важна оптика самого глазного яблока, которое, как мы уже говорили, предотвращает проникновение всех возможных фотонов к светочувствительным клеткам.

Теоретически, как показали исследования, лучшее, что мы можем разглядеть, это примерно 120 пикселей на градус дуги, единицу углового измерения. Можете представить это как черно-белую шахматную доску 60 на 60 клеток, которая умещается на ногте вытянутой руки. «Это самый четкий паттерн, который вы можете разглядеть», - говорит Лэнди.

Проверка зрения, вроде таблицы с мелкими буквами, руководствуется теми же принципами. Эти же пределы остроты объясняют, почему мы не может различить и сосредоточиться на одной тусклой биологической клетке шириной в несколько микрометров.

Но не списывайте себя со счетов. Миллион цветов, одиночные фотоны, галактические миры за квантиллионы километров от нас - не так уж и плохо для пузырька желе в наших глазницах, подключенных к 1,4-килограммовой губке в наших черепах.

Рассказывает об удивительных свойствах нашего зрения - от способности видеть далекие галактики до возможности улавливать невидимые, казалось бы, световые волны.

Окиньте взглядом комнату, в которой находитесь – что вы видите? Стены, окна, разноцветные предметы – все это кажется таким привычным и само собой разумеющимся. Легко забыть о том, что мы видим окружающий нас мир лишь благодаря фотонам - световым частицам, отражающимся от объектов и попадающим на сетчатку глаза.

В сетчатке каждого из наших глаз расположено примерно 126 млн светочувствительных клеток. Мозг расшифровывает получаемую от этих клеток информацию о направлении и энергии попадающих на них фотонов и превращает ее в разнообразие форм, цветов и интенсивности освещения окружающих предметов.

У человеческого зрения есть свои пределы. Так, мы не способны ни увидеть радиоволны, излучаемые электронными устройствами, ни разглядеть невооруженным глазом мельчайшие бактерии.

Благодаря прогрессу в области физики и биологии можно определить границы естественного зрения. "У любых видимых нами объектов есть определенный "порог", ниже которого мы перестаем их различать", - говорит Майкл Лэнди, профессор психологии и нейробиологии в Нью-Йоркском университете.

Сперва рассмотрим этот порог с точки зрения нашей способности различать цвета - пожалуй, самой первой способности, которая приходит на ум применительно к зрению.

Правообладатель иллюстрации SPL Image caption Колбочки отвечают за цветовосприятие, а палочки помогают нам видеть оттенки серого цвета при низком освещении

Наша способность отличать, например, фиолетовый цвет от пурпурного связана с длиной волны фотонов, попадающих на сетчатку глаза. В сетчатке имеются два типа светочувствительных клеток - палочки и колбочки. Колбочки отвечают за цветовосприятие (так называемое дневное зрение), а палочки позволяют нам видеть оттенки серого цвета при низком освещении - например, ночью (ночное зрение).

В человеческом глазе есть три вида колбочек и соответствующее им число типов опсинов, каждый из которых отличается особой чувствительностью к фотонам с определенным диапазоном длин световых волн.

Колбочки S-типа чувствительны к фиолетово-синей, коротковолновой части видимого спектра; колбочки M-типа отвечают за зелено-желтую (средневолновую), а колбочки L-типа - за желто-красную (длинноволновую).

Все эти волны, а также их комбинации, позволяют нам видеть полный диапазон цветов радуги. "Все источники видимого человеком света, за исключением ряда искусственных (таких, как преломляющая призма или лазер), излучают смесь волн различной длины", - говорит Лэнди.

Правообладатель иллюстрации Thinkstock Image caption Не весь спектр полезен для наших глаз...

Из всех существующих в природе фотонов наши колбочки способны фиксировать лишь те, которые характеризуются длиной волн в весьма узком диапазоне (как правило, от 380 до 720 нанометров) – это и называется спектром видимого излучения. Ниже этого диапазона находятся инфракрасный и радиоспектры – длина волн низкоэнергетических фотонов последнего варьируется от миллиметров до нескольких километров.

По другую сторону видимого диапазона волн расположен ультрафиолетовый спектр, за которым следует рентгеновский, а затем - спектр гамма-излучения с фотонами, длина волн которых не превышает триллионные доли метра.

Хотя зрение большинства из нас ограничено видимым спектром, люди с афакией - отсутствием в глазу хрусталика (в результате хирургической операции при катаракте или, реже, вследствие врожденного дефекта) - способны видеть ультрафиолетовые волны.

В здоровом глазе хрусталик блокирует волны ультрафиолетового диапазона, но при его отсутствии человек способен воспринимать волны длиной примерно до 300 нанометров как бело-голубой цвет.

В исследовании 2014 г. отмечается, что в каком-то смысле мы все можем видеть и инфракрасные фотоны. Если два таких фотона практически одновременно попадут на одну и ту же клетку сетчатки, их энергия может суммироваться, превратив невидимые волны длиной, скажем, в 1000 нанометров в видимую волну длиной в 500 нанометров (большинство из нас воспринимает волны этой длины как холодный зеленый цвет).

Сколько цветов мы видим?

В глазе здорового человека три типа колбочек, каждый из которых способен различать около 100 различных цветовых оттенков. По этой причине большинство исследователей оценивает количество различаемых нами цветов примерно в миллион. Однако восприятие цвета очень субъективно и индивидуально.

Джемесон знает, о чем говорит. Она изучает зрение тетрахроматов – людей, обладающих поистине сверхчеловеческими способностями к различению цветов. Тетрахроматия встречается редко, в большинстве случаев у женщин. В результате генетической мутации у них имеется дополнительный, четвертый вид колбочек, что позволяет им, по грубым подсчетам, видеть до 100 млн цветов. (У людей, страдающих цветовой слепотой, или дихроматов, всего два типа колбочек - они различают не более 10 000 цветов.)

Сколько нам нужно фотонов, чтобы увидеть источник света?

Как правило, колбочкам для оптимального функционирования требуется гораздо больше света, чем палочкам. По этой причине при низком освещении наша способность различать цвета падает, а за работу принимаются палочки, обеспечивающие черно-белое зрение.

В идеальных лабораторных условиях на тех участках сетчатки, где палочки по большей части отсутствуют, колбочки могут активироваться при попадании на них всего нескольких фотонов. Однако палочки справляются с задачей регистрации даже самого тусклого света еще лучше.

Правообладатель иллюстрации SPL Image caption После операции на глазе некоторые люди приобретают способность видеть ультрафиолетовое излучение

Как показывают эксперименты, впервые проведенные в 1940-х гг., одного кванта света достаточно для того, чтобы наш глаз его увидел. "Человек способен увидеть один-единственный фотон, - говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфордском университете. – В большей чувствительности сетчатки просто нет смысла".

В 1941 г. исследователи из Колумбийского университета провели эксперимент – испытуемых заводили в темную комнату и давали их глазам определенное время на адаптацию. Для достижения полной чувствительности палочкам требуется несколько минут; именно поэтому, когда мы выключаем в помещении свет, то на какое-то время теряем способность что-либо видеть.

Затем в лицо испытуемым направляли мигающий сине-зеленый свет. С вероятностью выше обычной случайности участники эксперимента регистрировали вспышку света при попадании на сетчатку всего 54 фотонов.

Не все фотоны, достигающие сетчатки, регистрируются светочувствительными клетками. Учитывая это обстоятельство, ученые пришли к выводу, что всего пяти фотонов, активирующих пять разных палочек в сетчатке, достаточно, чтобы человек увидел вспышку.

Самый маленький и самый удаленный видимые объекты

Следующий факт может вас удивить: наша способность увидеть объект зависит вовсе не от его физических размеров или удаления, а от того, попадут ли хотя бы несколько излучаемых им фотонов на нашу сетчатку.

"Единственное, что нужно глазу, чтобы что-то увидеть, - это определенное количество света, излученного или отраженного на него объектом, - говорит Лэнди. – Все сводится к числу достигших сетчатки фотонов. Каким бы миниатюрным ни был источник света, пусть даже он просуществует доли секунды, мы все равно способны его увидеть, если он излучает достаточное количество фотонов".

Правообладатель иллюстрации Thinkstock Image caption Глазу достаточно небольшого количества фотонов, чтобы увидеть свет

В учебниках по психологии часто встречается утверждение о том, что в безоблачную темную ночь пламя свечи можно заметить с расстояния до 48 км. В реальности же наша сетчатка постоянно бомбардируется фотонами, так что один-единственный квант света, излученный с большого расстояния, просто затеряется на их фоне.

Чтобы представить себе, насколько далеко мы способны видеть, взглянем на ночное небо, усеянное звездами. Размеры звезд огромны; многие из тех, что мы наблюдаем невооруженным взглядом, достигают миллионов км в диаметре.

Однако даже самые близкие к нам звезды расположены на расстоянии свыше 38 триллионов километров от Земли, поэтому их видимые размеры настолько малы, что наш глаз не способен их различить.

С другой стороны, мы все равно наблюдаем звезды в виде ярких точечных источников света, поскольку испускаемые ими фотоны преодолевают разделяющие нас гигантские расстояния и попадают на нашу сетчатку.

Правообладатель иллюстрации Thinkstock Image caption Острота зрения снижается по мере увеличения расстояния до объекта

Все отдельные видимые звезды на ночном небосклоне находятся в нашей галактике – Млечном Пути. Самый удаленный от нас объект, который человек в состоянии разглядеть невооруженным глазом, расположен за пределами Млечного Пути и сам представляет собой звездное скопление – это Туманность Андромеды, находящаяся на расстоянии в 2,5 млн световых лет, или 37 квинтильонов км, от Солнца. (Некоторые люди утверждают, что особо темными ночами острое зрение позволяет им увидеть Галактику Треугольника, расположенную на удалении около 3 млн световых лет, но пусть это утверждение останется на их совести.)

Туманность Андромеды насчитывает один триллион звезд. Из-за большой удаленности все эти светила сливаются для нас в едва различимое пятнышко света. При этом размеры Туманности Андромеды колоссальны. Даже на таком гигантском расстоянии ее угловой размер в шесть раз превышает диаметр полной Луны. Однако до нас долетает настолько мало фотонов из этой галактики, что она едва различима на ночном небе.

Предел остроты зрения

Почему же мы не способны разглядеть отдельные звезды в Туманности Андромеды? Дело в том, что у разрешающей способности, или остроты, зрения есть свои ограничения. (Под остротой зрения подразумевается способность различать такие элементы, как точка или линия, как отдельные объекты, не сливающиеся с соседними объектами или с фоном.)

Фактически остроту зрения можно описывать так же, как и разрешение компьютерного монитора - в минимальном размере пикселей, которые мы еще способны различать как отдельные точки.

Правообладатель иллюстрации SPL Image caption Достаточно яркие объекты можно разглядеть на расстоянии в несколько световых лет

Ограничения остроты зрения зависят от нескольких факторов - таких как расстояние между отдельными колбочками и палочками сетчатки глаза. Не менее важную роль играют и оптические характеристики самого глазного яблока, из-за которых далеко не каждый фотон попадает на светочувствительную клетку.

В теории, как показывают исследования, острота нашего зрения ограничивается способностью различать около 120 пикселей на угловой градус (единицу углового измерения).

Практической иллюстрацией пределов остроты человеческого зрения может являться расположенный на расстоянии вытянутой руки объект площадью с ноготь, с нанесенными на нем 60 горизонтальными и 60 вертикальными линиями попеременно белого и черного цветов, образующими подобие шахматной доски. "По всей видимости, это самый мелкий рисунок, который еще в состоянии различить человеческий глаз", - говорит Лэнди.

На этом принципе основаны таблицы, используемые окулистами для проверки остроты зрения. Наиболее известная в России таблица Сивцева представляет собой ряды черных заглавных букв на белом фоне, размер шрифта которых с каждым рядом становится все меньше.

Острота зрения человека определяется по тому, на каком размере шрифта он перестает четко видеть контуры букв и начинает их путать.

Правообладатель иллюстрации Thinkstock Image caption В таблицах для проверки остроты зрения используются черные буквы на белом фоне

Именно пределом остроты зрения объясняется тот факт, что мы не способны разглядеть невооруженным глазом биологическую клетку, размеры которой составляют всего несколько микрометров.

Но не стоит горевать по этому поводу. Способность различать миллион цветов, улавливать одиночные фотоны и видеть галактики на удалении в несколько квинтильонов километров – весьма неплохой результат, если учесть, что наше зрение обеспечивается парой желеобразных шариков в глазницах, соединенных с полуторакилограммовой пористой массой в черепной коробке.

От наблюдения далеких галактик за световые годы от нас до восприятия невидимых цветов, Адам Хэдхейзи на BBC объясняет, почему ваши глаза могут делать невероятные вещи. Взгляните вокруг. Что вы видите? Все эти цвета, стены, окна, все кажется очевидным, как будто так и должно быть здесь. Мысль о том, что мы все это видим благодаря частицам света - фотонам - которые отскакивают от этих объектов и попадают нам в глаза, кажется невероятной.

Эта фотонная бомбардировка всасывается примерно 126 миллионами светочувствительных клеток. Различные направления и энергии фотонов транслируются в наш мозг в разных формах, цветах, яркости, наполняя образами наш многоцветный мир.

Наше замечательное зрение, очевидно, обладает рядом ограничений. Мы не можем видеть радиоволны, исходящие от наших электронных устройств, не можем разглядеть бактерий под носом. Но с достижениями физики и биологии мы можем определить фундаментальные ограничения естественного зрения. «Все, что вы можете различить, имеет порог, самый низкий уровень, выше и ниже которого вы видеть не можете», - говорит Майкл Лэнди, профессор неврологии Нью-Йоркского университета.

Начнем рассматривать эти визуальные пороги сквозь призму - простите за каламбур - что многие ассоциируют со зрением в первую очередь: цвет.

Почему мы видим фиолетовый, а не коричневый, зависит от энергии, или длины волн, фотонов, падающих на сетчатку глаза, расположенную в задней части наших глазных яблок. Там находится два типа фоторецепторов, палочки и колбочки. Колбочки отвечают за цвет, а палочки позволяют нам видеть оттенки серого в условиях низкой освещенности, например, ночью. Опсины, или пигментные молекулы, в клетках сетчатки поглощают электромагнитную энергию падающих фотонов, генерируя электрический импульс. Этот сигнал идет через зрительный нерв к мозгу, где и рождается сознательное восприятие цветов и изображений.

У нас есть три типа колбочек и соответствующих опсинов, каждый из которых чувствителен к фотонам определенной длины волны. Эти колбочки обозначаются буквами S, M и L (короткие, средние и длинные волны соответственно). Короткие волны мы воспринимаем синими, длинные - красными. Длины волн между ними и их комбинации превращаются в полную радугу. «Весь свет, который мы видим, кроме созданного искусственно с помощью призм или хитроумных устройств вроде лазеров, представляет собой смесь разных длин волн, - говорит Лэнди».

Из всех возможных длин волн фотона наши колбочки обнаруживают небольшую полосу от 380 до 720 нанометров - то, что мы называем видимым спектром. За пределами нашего спектра восприятия есть инфракрасный и радиоспектр, у последнего диапазон волн составляет от миллиметра до километра длиной.

Над нашим видимым спектром, на более высоких энергиях и коротких длинах волн, мы находим ультрафиолетовый спектр, потом рентгеновские лучи и на вершине - гамма-лучевой спектр, длины волн которого достигают одной триллионной метра.

Хотя большинство из нас ограничены видимым спектром, люди с афакией (отсутствием хрусталика) могут видеть в ультрафиолетовом спектре. Афакия, как правило, создается вследствие оперативного удаления катаракты или врожденных дефектов. Обычно хрусталик блокирует ультрафиолетовый свет, поэтому без него люди могут видеть за пределами видимого спектра и воспринимать длины волн до 300 нанометров в голубоватом оттенке.

Исследование 2014 года показало, что, условно говоря, все мы можем видеть инфракрасные фотоны. Если два инфракрасных фотона случайно попадают в клетку сетчатки почти одновременно, их энергия объединяется, конвертируя их длину волны из невидимой (например, 1000 нанометров) в видимую 500-нанометровую (холодный зеленый цвет для большинства глаз).

Здоровый человеческий глаз имеет три типа колбочек, каждый из которых может различать порядка 100 разных цветовых оттенков, поэтому большинство исследователей сходятся во мнении, что наши глаза в общем могут различить примерно миллион оттенков. Тем не менее восприятие цвета - это довольно субъективная способность, которая варьируется от человека к человеку, поэтому определить точные цифры довольно сложно.

«Довольно трудно переложить это на цифры, - говорит Кимберли Джеймисон, научный сотрудник Калифорнийского университета в Ирвине. - То, что видит один человек, может быть лишь частью цветов, которые видит другой человек».

Джеймисон знает, о чем говорит, поскольку работает с «тетрахроматами» - людьми, обладающими «сверхчеловеческим» зрением. Эти редкие индивиды, в основном женщины, обладают генетической мутацией, которая подарила им дополнительные четвертые колбочки. Грубо говоря, благодаря четвертому набору колбочек, тетрахроматы могут разглядеть 100 миллионов цветов. (Люди с цветовой слепотой, дихроматы, имеют только два вида колбочек и видят примерно 10 000 цветов).

Сколько минимум фотонов нам нужно видеть?

Для того чтобы цветное зрение работало, колбочкам, как правило, нужно намного больше света, чем их коллегам-палочкам. Поэтому в условиях низкой освещенности цвет «гаснет», поскольку на передний план выходят монохроматические палочки.

В идеальных лабораторных условиях и в местах сетчатки, где палочки по большей части отсутствуют, колбочки могут быть активированы лишь горсткой фотонов. И все же палочки лучше справляются в условиях рассеянного света. Как показали эксперименты 40-х годов, одного кванта света достаточно, чтобы привлечь наше внимание. «Люди могут реагировать на один фотон, - говорит Брайан Уонделл, профессор психологии и электротехники в Стэнфорде. - Нет никакого смысла в еще большей чувствительности».

В 1941 году исследователи Колумбийского университета усадили людей в темную комнату и дали их глазам приспособиться. Палочкам потребовалось несколько минут, чтобы достичь полной чувствительности - вот почему у нас возникают проблемы со зрением, когда внезапно гаснет свет.

Затем ученые зажгли сине-зеленый свет перед лицами испытуемых. На уровне, превышающем статистическую случайность, участники смогли зафиксировать свет, когда первые 54 фотона достигли их глаз.

После компенсации потери фотонов через всасывание другими компонентами глаза, ученые обнаружили, что уже пять фотонов активируют пять отдельных палочек, которые дают ощущение света участникам.

Каков предел самого мелкого и дальнего, что мы можем увидеть?

Этот факт может вас удивить: нет никакого внутреннего ограничения мельчайшей или самой далекой вещи, которую мы можем увидеть. Пока объекты любого размера, на любом расстоянии передают фотоны клеткам сетчатки, мы можем их видеть.

«Все, что волнует глаз, это количество света, которое попадает на глаз, - говорит Лэнди. - Общее число фотонов. Вы можете сделать источник света до смешного малым и удаленным, но если он излучает мощные фотоны, вы его увидите».

К примеру, расхожее мнение гласит, что темной ясной ночью мы можем разглядеть огонек свечи с расстояния 48 километров. На практике, конечно, наши глаза будут просто купаться в фотонах, поэтому блуждающие кванты света с больших расстояний просто потеряются в этой мешанине. «Когда вы увеличиваете интенсивность фона, количество света, которое вам необходимо, чтобы что-то разглядеть, увеличивается», - говорит Лэнди.

Ночное небо с темным фоном, усеянным звездами, являет собой поразительный пример дальности нашего зрения. Звезды огромны; многие из тех, что мы видим в ночном небе, составляют миллионы километров в диаметре. Но даже ближайшие звезды находятся минимум в 24 триллионах километров от нас, а потому настолько малы для нашего глаза, что их не разберешь. И все же мы их видим как мощные излучающие точки света, поскольку фотоны пересекают космические расстояния и попадают в наши глаза.

Все отдельные звезды, которые мы видим в ночном небе, находятся в нашей галактике - Млечный Путь. Самый далекий объект, который мы можем разглядеть невооруженным глазом, находится за пределами нашей галактики: это галактика Андромеды, расположенная в 2,5 миллионах световых лет от нас. (Хотя это спорно, некоторые индивиды заявляют, что могут разглядеть галактику Треугольника в чрезвычайно темном ночном небе, а она находится в трех миллионах световых лет от нас, только придется поверить им на слово).

Триллион звезд в галактике Андромеды, учитывая расстояние до нее, расплываются в смутный светящийся клочок неба. И все же ее размеры колоссальны. С точки зрения видимого размера, даже будучи в квинтиллионах километрах от нас, эта галактика в шесть раз шире полной Луны. Однако наших глаз достигает так мало фотонов, что этот небесный монстр почти незаметен.

Насколько острым может быть зрение?

Почему мы не различаем отдельных звезд в галактике Андромеды? Пределы нашего визуального разрешения, или остроты зрения, накладывают свои ограничения. Острота зрения - это возможность различать такие детали, как точки или линии, отдельно друг от друга, чтобы те не сливались воедино. Таким образом, можно считать пределы зрения числом «точек», которые мы можем различить.

Границы остроты зрения устанавливают несколько факторов, например, расстояния между колбочками и палочками, упакованными в сетчатке. Также важна оптика самого глазного яблока, которое, как мы уже говорили, предотвращает проникновение всех возможных фотонов к светочувствительным клеткам.

Теоретически, как показали исследования, лучшее, что мы можем разглядеть, это примерно 120 пикселей на градус дуги, единицу углового измерения. Можете представить это как черно-белую шахматную доску 60 на 60 клеток, которая умещается на ногте вытянутой руки. «Это самый четкий паттерн, который вы можете разглядеть», - говорит Лэнди.

Проверка зрения, вроде таблицы с мелкими буквами, руководствуется теми же принципами. Эти же пределы остроты объясняют, почему мы не может различить и сосредоточиться на одной тусклой биологической клетке шириной в несколько микрометров.

Но не списывайте себя со счетов. Миллион цветов, одиночные фотоны, галактические миры за квантиллионы километров от нас - не так уж и плохо для пузырька желе в наших глазницах, подключенных к 1,4-килограммовой губке в наших черепах.

Изучение самых далёких галактик может показать нам объекты, расположенные в миллиардах световых лет от нас, но даже с идеальной технологией пространственный промежуток между самой далёкой галактикой и Большим взрывом будет оставаться огромным.

Вглядываясь во Вселенную, мы видим свет везде, на всех расстояниях, на которые только способны заглянуть наши телескопы. Но в какой-то момент мы наткнёмся на ограничения. Одно из них накладывается космической структурой, формирующейся во Вселенной: мы можем видеть только звёзды, галактики и прочее, только если они излучают свет. Без этого наши телескопы ничего не способны разглядеть. Другое ограничение, при использовании видов астрономии, не ограничивающихся светом - это ограничение того, какая часть Вселенной доступна для нас с момента Большого взрыва. Две эти величины могут не быть связанными друг с другом, и именно по этой теме нам задаёт вопрос наш читатель:

Почему красное смещение реликтового излучения находится в пределах 1000, хотя самое большое красное смещение любой галактики из тех, что мы видели, равно 11?
Сначала мы должны разобраться с тем, что происходит в нашей Вселенной с момента Большого взрыва.



Наблюдаемая Вселенная может простираться на 46 млрд световых лет во всех направлениях с нашей точки зрения, но наверняка есть и другие её участки, ненаблюдаемые нами, и, возможно, они даже бесконечны.

Весь набор того, что мы знаем, видим, наблюдаем и с чем взаимодействуем, называют «наблюдаемой Вселенной». За пределами него, скорее всего, находится ещё больше участков Вселенной, и со временем у нас будет возможность видеть всё больше и больше этих участков, когда свет от удалённых объектов, наконец, достигнет нас после космического путешествия в миллиарды лет. Мы можем видеть то, что видим (и больше, а не меньше), благодаря комбинации из трёх факторов:


  • Со времени Большого взрыва прошло конечное количество времени, 13,8 млрд лет.

  • Скорость света, максимальная скорость для любого сигнала или частицы, передвигающегося по Вселенной, конечна и постоянна.

  • Сама ткань пространства растягивается и расширяется с момента Большого взрыва.


Временная шкала истории наблюдаемой Вселенной

То, что нам видно сегодня, является результатом работы трёх этих факторов, совместно с изначальным распределением материи и энергии, работающих по законам физики на протяжении всей истории Вселенной. Если мы хотим узнать, какой была Вселенная в любой ранний момент времени, нам надо всего лишь пронаблюдать, какой она стала сегодня, измерить все связанные с этим параметры, и подсчитать, какой она была в прошлом. Для этого нам потребуется много наблюдений и измерений, но уравнения Эйнштейна, пусть и такие трудные, по крайней мере, недвусмысленны. Выводимые результаты выливаются в два уравнения, известные, как уравнения Фридмана , и с задачей их решения каждый студент, изучающий космологию, сталкивается напрямую. Но мы, честно говоря, сумели провести несколько удивительных измерений параметров Вселенной.


Глядя в направлении северного полюса Галактики Млечный Путь, мы можем заглядывать в глубины космоса. На этом изображении размечены сотни тысяч галактик, и каждый его пиксель - это отдельная галактика.

Мы знаем, с какой скоростью она расширяется сегодня. Мы знаем, какова плотность материи в любом направлении, в котором мы смотрим. Мы знаем, сколько структур формируется на всех масштабах, от шаровых скоплений до карликовых галактик, от крупных галактик до их групп, скоплений и крупномасштабных нитевидных структур. Мы знаем, сколько во Вселенной нормальной материи, тёмной материи, тёмной энергии, а также более мелких составляющих, таких, как нейтрино, излучение, и даже чёрные дыры. И только исходя из этой информации, экстраполируя назад во времени, мы можем вычислить как размер Вселенной, так и скорость её расширения в любой момент её космической истории.


Логарифмический график зависимости размера наблюдаемой Вселенной от возраста

Сегодня наша обозримая Вселенная простирается на примерно 46,1 млрд световых лет во всех направлениях с нашей точки зрения. На таком расстоянии находится точка старта воображаемой частицы, которая отправилась в путь в момент Большого взрыва, и, путешествуя со скоростью света, прибыла бы к нам сегодня, спустя 13,8 млрд лет. В принципе, на этом расстоянии были порождены все гравитационные волны, оставшиеся от космической инфляции - состояния, предшествовавшего Большому взрыву, настроившего Вселенную и обеспечившего все начальные условия.


Гравитационные волны, созданные космической инфляцией - это самый старый сигнал из всех, которые человечество в принципе могло бы засечь. Они родились в конце космической инфляции и в самом начале горячего Большого взрыва.

Но во Вселенной остались и другие сигналы. Когда ей было 380 000 лет, остаточное излучение от Большого взрыва прекратило рассеиваться со свободных заряженных частиц, поскольку те образовали нейтральные атомы. И эти фотоны, после образования атомов, продолжают испытывать красное смещение вместе с расширением Вселенной, и их можно увидеть сегодня при помощи микроволновой или радиоантенны/телескопа. Но из-за большой скорости расширения Вселенной на ранних этапах, «поверхность», которая «светится» для нас этим остаточным светом - космический микроволновой фон - находится всего в 45,2 млрд световых лет от нас. Расстояние от начала Вселенной до того места, где Вселенная находилась через 380 000 лет, получается равным 900 млн световых лет!


Холодные флуктуации (синие) в реликтовом излучении не холоднее сами по себе, а просто представляют участки с усиленным гравитационным притяжением из-за увеличенной плотности материи. Горячие (красные) участки горячее, потому что излучение в этих регионах живёт в менее глубоком гравитационном колодце. Со временем более плотные регионы с большей вероятностью вырастут в звёзды, галактики и скопления, а менее плотные сделают это с меньшей вероятностью.

Пройдёт ещё немало времени, прежде чем мы найдём самую удалённую из всех открытых нами галактик Вселенной. Хотя симуляции и расчёты показывают, что самые первые звёзды могли сформироваться через 50-100 млн лет с начала Вселенной, а первые галактики - через 200 млн лет, так далеко назад мы ещё не заглядывали (хотя, есть надежда, что после запуска в следующем году космического телескопа им. Джеймса Уэбба мы сможем это сделать!). На сегодня космическим рекордом владеет галактика, показанная ниже, существовавшая, когда Вселенной было 400 млн лет - это всего 3% от текущего возраста. Однако эта галактика, GN-z11, расположена всего в 32 млрд световых лет от нас: это порядка 14 млрд световых лет от «края» наблюдаемой Вселенной.


Самая удалённая из всех обнаруженных галактик: GN-z11, фото с наблюдения GOODS-N, проведённого телескопом Хаббл.

Причина этого состоит в том, что вначале скорость расширения со временем очень быстро падала. Ко времени, когда галактика Gz-11 существовала в наблюдаемом нами виде, Вселенная расширялась в 20 раз быстрее, чем сегодня. Когда было испущено реликтовое излучение, Вселенная расширялась в 20 000 раз быстрее, чем сегодня. На момент Большого взрыва, насколько мы знаем, Вселенная расширялась в 10 36 раз быстрее, или в 1 000 000 000 000 000 000 000 000 000 000 000 000 раз быстрее, чем сегодня. Со временем скорость расширения Вселенной сильно уменьшилась.

И для нас это очень хорошо! Баланс между первичной скоростью расширения и общим количеством энергии во Вселенной во всех её формах идеально соблюдается, вплоть до погрешности наших наблюдений. Если бы во Вселенной было хоть немного больше материи или излучения на ранних этапах, она бы схлопнулась обратно миллиарды лет назад, и нас бы не было. Если бы во Вселенной было слишком мало материи или излучения на ранних этапах, она бы расширилась так быстро, что частицы не смогли бы встретиться друг с другом, чтобы даже сформировать атомы, не говоря уже о более сложных структурах типа галактик, звёзд, планет и людей. Космическая история, которую рассказывает нам Вселенная, это история чрезвычайной сбалансированности, благодаря которой мы и существуем.


Замысловатый баланс между скоростью расширения и общей плотностью Вселенной настолько хрупок, что даже отклонение в 0,00000000001% в любую сторону сделало бы Вселенную совершенно необитаемой для любой жизни, звёзд или даже планет в любой момент времени.

Если верны лучшие из наших современных теорий, то первые настоящие галактики должны были сформироваться в возрасте от 120 до 210 млн лет. Это соответствует расстоянию от нас до них в 35-37 млрд световых лет, и расстоянию от самой дальней галактики до края наблюдаемой Вселенной в 9-11 млрд световых лет на сегодня. Это чрезвычайно далеко, и говорит об одном удивительном факте: Вселенная чрезвычайно быстро расширялась на ранних этапах, а сегодня расширяется гораздо медленнее. 1% возраста Вселенной отвечает за 20% её общего расширения!


История Вселенной полна фантастических событий, но с тех пор, как закончилась инфляция и произошёл Большой взрыв, скорость расширения стремительно падала, и замедляется, пока плотность продолжает уменьшаться.

Расширение Вселенной растягивает длину волны света (и отвечает за видимое нами красное смещение), и за большое расстояние между микроволновым фоном и самой далёкой галактикой отвечает большая скорость этого расширения. Но размер Вселенной сегодня свидетельствует ещё кое о чём удивительном: об невероятных эффектах, происходивших с течением времени. Со временем Вселенная продолжит расширяться всё больше и больше, и к тому времени, когда её возраст будет в десять раз превышать сегодняшний, расстояния увеличатся так сильно, что нам уже не будут видны никакие галактики за исключением членов нашей местной группы, даже с телескопом, эквивалентным Хабблу. Наслаждайтесь всем тем, что видно сегодня, великим разнообразием того, что присутствует на всех космических масштабах. Оно не будет существовать вечно!



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!