Информационный женский портал

Строение головного мозга млекопитающего – победа эволюции! Головной мозг Головной мозг млекопитающего название структур

Эволюция головного мозга у млекопитающих

Со стороны эволюции головного мозга характерно прогрессивное увеличение его массы, объема и сложности организации неокортекса. В ходе эволюции архи- и палеокортекс оттесняются к мозговой перегородке.

У животных разных отрядов прослеживается постепенное формирование складчатости.

Для млекопитающих характерно несколько типов организации головного мозга.

Лиссэнцефалический тип организации головного мозга характерен для однопроходных животных (утконос). При этом типе организации постоянно выражена центральная борозда, которая разделяет корковые структуры на лобную и теменную часть. Количественно доминируют палеокортекс, а неокортекс занимает относительно меньшую площадь корковых структур. Отличительной чертой этого типа организации является отсутствие мозолистого тела. В лиссэнцефалическом мозге между корковыми полями существует перекрытия проекций разных видов чувств. Нейроны накладываются и получают информацию от разных каналов. В коре перекрываются двигательная и сенсорная области. В промежуточном мозге происходит углубление дифференцировки ядер таламуса: наблюдается группа, которая у насекомоядных сформировывает ассоциативную группу ядер. В коре выделяется область α-мотонейронов, которые регулируют α-мотонейроны спинного мозга, это приводит к формированию в мозжечке неоцеребелума, который включается в регуляцию двигательной активности.

У сумчатых сохраняется такая же организация головного мозга.

Гирэнцефалический тип организации головного мозга характерен для насекомоядных и грызунов. При данном типе организации появляется мозолистое тело, повышается площадь новой коры, проявляются борозды и извилины.

У насекомоядных образуются две полисенсорные зоны – аналоги ассоциативных областей.

У грызунов морфологически выделяются лобная и теменная области, но они еще не выполняют роль ассоциативных зон. Эту функцию выполняют несколько полей неокортекса разной локализации. Также у этой группы животных наблюдается четкая специализация сенсорных зон на определенные виды чувств, т.е. они больше между собой не перекрываются. У грызунов появляется другой вариант проекции зрительной информации (исходно основным было переключение было ретино-тектальное (однопроходные, сумчатые, насекомоядные)) – ретино-таламическая. Он отличается тем, что основной отбор и обработку информации осуществляется коленчатыми телами таламуса. У грызунов наблюдаются уже сформированные таламо-кортикальные связи, однако, их функциональная дифференцировка относительно слабая.

Дейтерогирэнцефалический тип организации головного мозга характерен для хищных млекопитающих. У хищников кроме постоянных борозд и извилин происходит значительное развитие складчатости неокортекса. Четко выделяются дифференцированные зоны: специальные проекционные зоны (обрабатывают информацию от сенсорной системы), моторные (двигательные) зоны, хорошо сформированные ассоциативные зоны, что представлены в теменной доле и лобной. Корковые ассоциативные зоны входят в состав двух таламо-кортикальных ассоциативных систем:

  1. Таламо-париетальная система отвечает за компоненты вышей нервной системы: участвует в формировании ориентационных рефлексов, формирует представление о пространственной схеме тела, участвует в механизмах кратковременной памяти.
  2. Таламо-фронтальная система связана со структурами лимбической системы. Формирует акцептор действия (сравнивает на уровне корковых форм на сколько соответствует приспособлению результат).

Гоминидный тип организации головного мозга характеризуется у высших приматов шестислойным неокортексом. Все функциональные зоны коры не перекрываются между собой, формируют три интегративные системы:

  1. Таламо-париетальная, в ее состав входят 5 и 7 поля ассоциативной коры и она выполняет следующие функции: запуск ориентировочной реакции, формирование кратковременной памяти, ощущение пространственной схемы тела.
  2. Таламо-фронтальная система обеспечивает оценку обстановки: акцептор результата действия, обеспечивает механизм долговременной памяти, формирование тонких временных связей в результате поведенческих действий (высшие формы торможения).
  3. Таламо-височная интегральная система обеспечивает высшею регуляцию со стороны коры вегетативных функций через интегративные центры ЦНС, прежде всего гипоталамус, миндалевидный комплекс, базальные ядра.

Список литературы:

1. Ноздрачев А.Д. Начала физиологии/ А.Д.Ноздрачев, Ю.И.Баженов, И.А.Баранников и др.-СПб.:Изд-во "Лань", 2002,-1088с.

2.Шмидт-Ниельсон К. Физиология животных: Приспособление и среда. Книга 1.- М: Мир, 1982,-416с.

3.Эволюционная физиология. Ч.1 / Под ред. акад. Е.М.Кребса. В серии: "Руководство по физиологии" - Л:"Наука", 1979,-603с.

Передний мозг - это наиболее крупный отдел головного мозга. У разных видов его абсолютный и относительный размеры весьма варьируют. Главная особенность переднего мозга - значительное раз­витие коры полушарий, которая собирает всю сенсорную информа­цию от органов чувств, производит высший анализ и синтез этой ин­формации и становится аппаратом тонкой условно-рефлекторной деятельности, а у высокоорганизованных млекопитающих - и психи­ческой деятельности (маммальныйтип мозга).

У наиболее высокоорганизованных млекопитающих кора имеет борозды и извилины, что значительно увеличивает ее поверхность.

Для переднего мозга млекопитающих и человека характерна функ­циональная асимметрия. У человека, она выражается в том, что пра­вое полушарие отвечает за образное мышление, и левое - за абстракт­ное. Кроме того, в левом полушарии находятся центры устной и письменной речи.

Промежуточный мозг содержит около 40 ядер. Специальные яд­ра таламуса перерабатывают зрительные, тактильные, вкусовые и интероцептивные сигналы, направляя их затем в соответствующие зоны коры больших полушарий.

В гипоталамусе сосредоточены высшие вегетативные центры, управляющие работой внутренних органов через нервные и гуморальные­ механизмы.

В среднем мозге на смену двухолмия приходит четверохолмие. Его передние холмы являются зрительными, а задние связаны со слухо­выми рефлексами. В центре среднего мозга проходит ретикулярная формация, которая служит источником восходящих влияний, активи­рующих кору больших полушарий. Хотя передние доли являются зрительными, анализ зрительной информации осуществляется в зри­тельных зонах коры, а на долю среднего мозга приходится главным образом управление глазной мускулатурой - изменение просвета зрачка, движения глаз, напряжение аккомодации. В задних холмах расположены центры, регулирующие движения ушных раковин, на­тяжение барабанной перепонки, перемещение слуховых косточек. Средний мозг также участвует в регуляции тонуса скелетной мускулатуры.

Мозжечок имеет развитые боковые доли (полушария), покрытые корой, и червь. Мозжечок связан со всеми отделами нервной системы, имеющими отношение к управлению движениями - с передним моз­гом, стволом мозга и вестибулярным аппаратом. Он обеспечивает координацию движений.

Продолговатый мозг . В нем по бокам обособляются пучки нерв­ных волокон, идущих к мозжечку, а на нижней поверхности - продол­говатые валики, получившие название пирамид.

И других живых существ, поэтому его принято выделять в отдельный тип.

Различные млекопитающих отвечают за определенные процессы жизнедеятельности организма. Так, именно в промежуточном отделе головного мозга обрабатывается зрительная информация, поступающая к особи. Кроме того, процесс терморегуляции происходит именно благодаря контролю со стороны данного органа.

Бесперебойная работа эндокринной системы контролируется гипофизом, а вся полученная информация анализируется в среднем отделе мозга.

Для того чтобы сохранялось равновесие млекопитающего, а также баланс двигательной системы в общем, необходима работа мозжечка. А основные системы жизнедеятельности имеют свои центры управления, расположенные в продолговатом мозге.

Организм животного достаточно сложен, и считается, что интеллект его занимает второе место после человеческого. Об этом говорит не только строение головного мозга млекопитающего, но и масса по отношению к массе спинного мозга. Например, у рептилий спинной и головной мозг весят примерно одинаково, тогда как у животного масса головного мозга превышает спинной в три, а то и в пятнадцать раз, в зависимости от вида.

Отдельные зоны головного мозга у одного вида развиваются сильнее, у другого слабее, в зависимости от среды обитания животного. Например, если основное время суток жизни млекопитающего - ночь, то наиболее развито у такого животного зрение. Если речь идет об обитателе водоема либо болота, отмечено, что у такого млекопитающего будут сильно развиты слух и обоняние. Исключением считается кит, у которого система обоняния довольно слаба.

В головном мозге животного расположено 12 пар черепных нервов. Головные нервы млекопитающего отвечают не только за слух, зрение и обоняние, они также принимают непосредственное участие в формировании вегетативной системы.

Учеными доказано, что строение головного мозга млекопитающего формировалось миллионы лет. А прародителями современных животных были зверьки, имеющие охотничий инстинкт, добывающие себе пищу в ночное время с помощью хорошо развитого нюха и зрения. Если сравнивать с современным животным миром, то развитие их находилось примерно в середине между современными млекопитающими и рептилиями. Каким образом происходило формирование головного мозга, исследователям так до конца и не известно. Но именно благодаря такой степени развития, древним животным удалось, значительно видоизменившись, дожить до современных времен, а некоторым - стать незаменимыми помощниками человека.

Общие характеристики: Мозг млекопитающих можно разделить на два типа: спинной и головной мозг. В свою очередь головной мозг подразделяется на: 1. Продолговатый мозг 2. Задний мозг 3. Средний мозг 4. Промежуточный мозг 5. Конечный мозг

Мозг кролика: I - сверху; II - снизу; III - сбоку; IV - продольный разрез. 1 - большие полушария; 2 - обонятельные доли; 3 - зрительный нерв; 4 - эпифиз; 5 - средний мозг; 6 - мозжечок; 7 - продолговатый мозг; 8 - гипофиз; 9 - варолиев мост; 10 - мозговая воронка; 11 - мозолистое тело

Мозговой ствол состоит из продолговатого мозга, варолиевого моста и среднего мозга. Часто в него включают мозжечок.

Мозжечок У млекопитающих мозжечок состоит из червя(средняя часть) и двух боковых долей. Стоит отметить, что у однопроходных средняя часть больше боковых, у сумчатых они приблизительно сходны, а отличительной чертой высших млекопитающих является увеличение боковых долей, связанных с корой больших полушарий. Для увеличения площади поверхности мозжечок, как и большие полушария, покрыт бороздами и извилинами. Функции мозжечка: Червь отвечает позу, тонус осевых мышц тела и проксимальных концов мышц Координация движений Регуляция равновесия

Средний мозг входит в состав ствола головного мозга. Является зрительным центром мозга. Вентральную часть составляют массивные ножки мозга, основную часть которых занимают пирамидные пути. Между ножками находится межножковая ямка (лат. fossa interpeduncularis), из которой выходит III нерв. Дорсальная часть - пластинка четверохолмия, две пары холмиков. Верхние холмики зрительные, они крупнее нижних(слуховые). С дорсальной стороны на границе с мостом отходит IV нерв. В глубине покрышки среднего мозга (под четверохолмием) находятся ядра глазодвигательных нервов, красные ядра (управление движением), чёрное вещество (инициация движений), ретикулярная формация.

Промежуточный мозг Состоит из: Таламический мозг 1. Таламус(зрительный бугор) 2. Эпиталамус 3. Метаталамус Гипоталамус Третий желудочек

Таламус – состоит из серого вещества, парное образование яйцевидной формы. Центр чувствительности. Эпиталамус – образует шишковидное тело(эпифиз), железа внутренней секреции, отвечает за синхронизацию биоритмов организма. Метаталамус – образован латеральным и медиальным коленчатыми телами, центр слуха. Гипоталамус - включает в себя сосцевидные тела, являющиеся подкорковыми центрами обоняния, гипофиз, зрительный перекрест, II пары черепных нервов, серый бугор, представляющий собой вегетативный центр обмена веществ и терморегуляции. В гипоталамусе содержатся ядра, контролирующие эндокринные и вегетативные процессы. Третий желудочек - полость промежуточного мозга. Он представляет собой узкое, расположенное в сагиттальной плоскости щелевидное пространство. Третий желудочек имеет пять стенок.

1 – кора 2 – наружный слой коры 3 – лимбическая система 4 – таламус 5 – гипоталамус 6 – четверохолмие 7 – мозжечок 8 – продолговатый мозг

Конечный мозг состоит из двух полушарий большого мозга (покрытых корой), мозолистого тела, полосатого тела и обонятельного мозга. Кора больших полушарий распределяется на древнюю, старую и новую кору. Древняя кора выполняет наиболее необходимые функции, такие как раскрытие глаз. Старая кора отвечает за проявление эмоций. Новая кора отвечает за высшую нервную деятельность. Мозолистое тело соединяет два полушария мозга. Отсутствует у сумчатых и клоачных. Полосатое тело выполняет функции гипертонуса скелетных мышц, нарушения сложных двигательных реакций и пищедобывающего поведения, торможения формирования условных рефлексов. Обонятельный мозг отвечает за все структуры конечного мозга, связанные с обонянием.

Остановимся на вопросе об изменении относительного размера мозга млекопитающих.

Этот размер часто характеризуют коэффициентом энцефализации, который равен отношению объема мозга к условному объему, определяемому как произведение среднего эмпирического параметра на объем тела, возведенный в степень 2/3. Коэффициент энцефализации млекопитающих изменяется примерно от 0,1-0,2 для наиболее примитивных животных до значения около 6, относящегося к современному человеку.

Хотя коэффициент энцефализации или другие показатели, характеризующие объем мозга, по ряду причин могут служить только очень приближенной характеристикой уровня высшей

нервной деятельности животного, существуют возможности использования соответствующих материалов для получения важной информации о развитии интеллекта ископаемых животных.

Развитие головного мозга млекопитающих было длительным процессом, который происходил на протяжении всего третичного периода. Данные таблицы следует дополнить сведениями об эволюции размера мозга у мезозойских млекопитающих. Хотя получить такие сведения трудно из-за ограниченности материалов о сравнительно малочисленных млекопитающих мезозойской эры, Джерисон сделал вывод, что уже первые наиболее примитивные группы млекопитающих обладали мозгом, относительные размеры которого были больше мозга рептилий. Затем, на протяжении свыше ста миллионов лет относительный размер мозга млекопитающих существенно не изменялся и только в третичном периоде размер их головного мозга начал возрастать.

Джерисон считает, что средний коэффициент энцефализации Для архаических млекопитающих эоцена равнялся 0,25, для животных олигоцена 0,50, для современных 1,00. Наряду с этим он отмечает, что на протяжении третичного периода эволюция головного мозга сопровождалась возрастанием «дивертификации», т. е. диапазона изменений относительных величин мозга у различных групп животных.

Можно думать, что эволюция мозга млекопитающих существенно зависела от условий окружающей их среды. Дотретичные млекопитающие были небольшими по размеру ночными животными, которые активизировались в условиях более низкой температуры темного времени суток. Они, по-видимому, в малой степени конкурировали с господствовавшими тогда разнообразными пресмыкающимися. Быстрая эволюция млекопитающих, начавшаяся после произошедшего в конце мелового периода вымирания большинства групп рептилий, в начале третичного периода не сопровождалась заметным увеличением относительного размера мозга животных, так как млекопитающие могли без острой конкуренции с другими животными заполнять различные экологические ниши, освобожденные ранее вымершими пресмыкающимися.

Как отмечает Джерисон, значительные изменения в строении мозга млекопитающих произошли в позднем эоцене, когда структура головного мозга у многих млекопитающих существенно усложнилась. В позднем эоцене число семейств млекопитающих впервые приблизилось к максимуму, соответствующему «экологической емкости» биосферы. В этих условиях возможность появления новых семейств была ограничена необходимостью вытеснения ранее существовавших сходных в экологическом отношении групп, что могло осуществиться только при значительном прогрессе новых организмов. В такой ситуации появление новых семейств должно было сопровождаться вымиранием занимавших те же экологические ниши старых групп.

Это подтверждается данными таблицы, из которой видно, что в позднем эоцене скорости появления новых и вымирания старых семейств были высокими и почти одинаковыми по величине. Возрастание среднего объема головного мозга в олигоцене, о котором говорит Джерисон, вероятно, объясняется резким изменением природных условий, что, в частности, ускорило вымирание архаических форм, обладавших меньшим размером мозга.

Хотя изменения климата в миоцене и плиоцене были меньшими олигоценового похолодания, они усложняли задачу приспособления животных к меняющимся природным условиям, что способствовало выживанию животных с более высоким уровнем высшей нервной деятельности.

Из приведенных выше соображений следует, что развитие головного мозга ускоряется: а) при высоком уровне заполнения «экологической емкости» биосферы прогрессивными группами животных; б) при существенных изменениях природных условий.

Это заключение можно подтвердить, кроме приведенных выше данных, материалами об эволюции третичных животных на двух изолированных континентах - Южной Америке и Австралии.

Оба эти континента в третичном периоде размещались в основном в зоне низких широт, где климатические колебания были наименьшими. Как Южная Америка, так и Австралия в это время были изолированы от других континентов.

В Южной Америке основными группами плацентарных млекопитающих были разнообразные копытные. Джерисон отмечает, что на протяжении 50 млн. лет размер мозга этих животных практически не увеличился. Нечто подобное произошло в Австралии, населенной в основном сумчатыми животными.

Можно думать, что медленное развитие мозга животных на этих континентах объяснялось, с одной стороны, сравнительным постоянством природных условий, с другой - неполным использованием «экологического пространства», которое имелось для млекопитающих на этих континентах. В частности, в Южной Америке до конца третичного периода плацентарных хищников заменяли сумчатые, которые менее эффективно преследовали копытных животных. Внешнее сходство разнообразных сумчатых в Австралии с экологически аналогичными плацентарными животными других континентов отнюдь не означает, что сумчатые могли поддерживать характерный для плацентарных животных высокий уровень межвидовой конкуренции, способствующей значительной скорости эволюции.

К этому нужно добавить, что территории Южной Америки и Австралии были малы по сравнению с обширной системой связанных между собой континентов, которую составляли Африка, Евразия и Северная Америка. Так как возникновение новых групп животных основано на процессах, имеющих вероятностный характер, размер территории, на которой осуществляется соответствующий «эволюционный эксперимент», часто оказывается решающим фактором для его успешного завершения.

В заключение остановимся на эволюции мозга приматов.

Хотя низшие приматы имели сравнительно большой относительный размер мозга уже в палеогене, быстрое возрастание размера мозга началось с появлением высших приматов и в особенности человекообразных обезьян, ветвь которых отделилась от общего родословного дерева приматов в олигоцене. Тогда же или несколько позже образовалась ветвь обезьяноподобных предков человека.

У всех высших приматов относительный размер мозга заметно больше среднего для других современных групп млекопитающих, у австралопитеков и непосредственных предков человека этот размер был еще большим.

Можно думать, что скорость эволюции приматов существенно зависела от степени изменчивости окружающей их среды. Хотя приматы существовали на протяжении всего третичного периода, в течение его первой половины, когда условия окружающей среды были наиболее устойчивыми, прогресс этой группы млекопитающих был сравнительно невелик. Скорость эволюции приматов (в том числе скорость роста коэффициента энцефализации) резко возросла во второй половине третичного периода, в эпоху значительных колебаний природных условий, происходивших начиная с олигоцена.

Неоднократно высказывалось предположение о том, что происхождению современного человека способствовали резкие изменения природной среды, имевшие место в четвертичном периоде.

Представление о связи эволюции приматов с изменениями условий окружающей среды может быть использовано для ответа на вопрос о месте исходного центра антропогенеза. Как известно, по этому вопросу имеются две точки зрения. Соглашаясь, что первые этапы этого процесса происходили в низких широтах, часть ученых (в том числе Дарвин и Уоллес) считали центром антропогенеза Африку, где до настоящего времени сохранились наиболее близкие к человеку виды обезьян. Другие, основываясь на ряде палеонтологических находок, предполагали, что первые прямые предки человека появились в Южной Азии. Экологические соображения позволяют поддержать первый из этих взглядов.

Как указано выше, даже при крупных изменениях глобального климата температура в тропиках менялась сравнительно мало. Главный результат колебаний климата в тропиках - изменение режима осадков, которое во многих случаях было значительным.

Так как в Южной Азии преобладают условия избыточного увлажнения, влияние некоторого изменения сумм осадков на растительный покров и другие компоненты природной среды для основной части этой территории было сравнительно малосущественным.

Совершенно другие последствия имели колебания глобального климата в Африке, большая часть территории которой находится сейчас и находилась в прошлом в условиях умеренного, недостаточного и крайне недостаточного увлажнения. Колебания режима осадков в Африке неизбежно приводили к значительным изменениям границ природных зон, что сопровождалось разрушением старых экологических систем и открывало условия для возникновения новых форм экологических взаимоотношений между организмами. В таких условиях скорость эволюции многих групп живых существ, включая приматов, должна быть более высокой.

Принимая во внимание соображения, приведенные в этом и предыдущих разделах, можно сделать вывод, что возникновение ноосферы стало возможным в результате двух различных форм изменений состояния среды, окружающей организмы.

Первая из них - сравнительно медленные колебания газового состава атмосферы, в ходе которых заметно увеличивалось количество атмосферного кислорода. В эпохи повышения количества кислорода возникли многие прогрессивные группы животных, включая основные классы позвоночных. Вторая форма изменений окружающей среды - кратковременные резкие изменения термического режима, которые неоднократно приводили к вымиранию многочисленных групп животных, создавая возможность для широкого распространения более прогрессивных форм, сохранившихся в эпохи вымирания.

Можно высказать предположение, что при постоянных условиях окружающей среды эволюция была бы слишком медленной не только для создания ноосферы, но и для возникновения сколько-нибудь сложных организмов за время существования биосферы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!