Информационный женский портал

Какой этап клеточного цикла самый продолжительный. Жизненный цикл клетки. Возникновение клеточной теории

Биологическое значение деления клеток. Новые клетки возникают в результате деления уже существующих. Если делится одноклеточный организм, то из него образуются два новых. Многоклеточный организм также начинает свое развитие чаще всего с одной-единственной клетки. Путем многократных делений образуется огромное количество клеток, которые и составляют организм. Деление клеток обеспечивает размножение и развитие организмов, а значит, непрерывность жизни на Земле.

Клеточный цикл — жизнь клетки с момента ее образования в процессе деления материнской клетки до собственного деления (включая это деление) или гибели.

В течение этого цикла каждая клетка растет и развивается таким образом, чтобы успешно выполнять свои функции в организме. Далее клетка функционирует определенное время, по истечении которого либо делится, образуя дочерние клетки, либо погибает.

У различных видов организмов клеточный цикл занимает разное время: например, у бактерий он длится около 20 мин, у инфузории туфельки — от 10 до 20 ч. Клетки многоклеточных организмов на ранних стадиях развития делятся часто, а затем клеточные циклы значительно удлиняются. Например, сразу после рождения человека клетки головного мозга делятся огромное число раз: 80 % нейронов головного мозга формируется именно в этот период. Однако большинство этих клеток быстро теряет способность к делению, а часть доживает до естественной смерти организма, вообще не делясь.

Клеточный цикл состоит из интерфазы и митоза (рис. 54).

Интерфаза — промежуток клеточного цикла между двумя делениями. В течение всей интерфазы хромосомы неспирализованы, они находятся в ядре клетки в виде хроматина. Как правило, интерфаза состоит из трех периодов: пре-синтетического, синтетического и постсинтетического.

Пресинтетический период (G,) — наиболее продолжительная часть интерфазы. Он может продолжаться у различных типов клеток от 2—Зч до нескольких суток. Во время этого периода клетка растет, в ней увеличивается количество органоидов, накапливается энергия и вещества для последующего удвоения ДНК- В течение Gj-периода каждая хромосома состоит из одной хроматиды, т. е. количество хромосом (п) и хроматид (с) совпадает. Набор хромосом и хро-

матид (молекул ДНК) диплоидной клетки в G r периоде клеточного цикла можно выразить записью 2п2с.

В синтетическом периоде (S) происходит удвоение ДНК, а также синтез белков, необходимых для последующего формирования хромосом. В этот же период происходит удвоение центриолей.

Удвоение ДНК называют репликацией. В ходе репликации специальные ферменты разъединяют две цепи исходной материнской молекулы ДНК, разрывая водородные связи между комплементарными нуклеотидами. С разошедшимися цепями связываются молекулы ДНК-полимеразы — главного фермента репликации. Затем молекулы ДНК-полимеразы начинают двигаться вдоль материнских цепей, используя их в качестве матриц, и синтезировать новые дочерние цепи, подбирая для них нуклеотиды по принципу комплементарности (рис. 55). Например, если участок материнской цепи ДНК имеет последовательность нуклеотидов А Ц Г Т Г А, то участок дочерней цепи будет иметь вид ТГЦАЦТ. В связи с этим репликацию относят к реакциям матричного синтеза. В результате репликации образуются две идентичные двуцепочечные молекулы ДНК- В состав каждой из них входит одна цепочка исходной материнской молекулы и одна вновь синтезированная дочерняя цепочка.

К концу S-периода каждая хромосома состоит уже из двух идентичных сестринских хроматид, соединенных друг с другом в области центромеры. Количество хроматид в каждой паре гомологичных хромосом становится равным четырем. Таким образом, набор хромосом и хроматид диплоидной клетки в конце S-периода (т. е. после репликации) выражается записью 2п4с.

Постсинтетический период (G 2) наступает после удвоения ДНК- В это время клетка накапливает энергию и синтезирует белки для предстоящего деления (например, белок тубулин для построения микротрубочек, образующих впоследствии веретено деления). В течение всего С 2 -периода набор хромосом и хроматид в клетке остается неизменным — 2п4с.

Интерфаза завершается, и начинается деление, в результате которого образуются дочерние клетки. В ходе митоза (основного способа деления клеток эукариот) сестринские хроматиды каждой хромосомы отделяются друг от друга и попадают в разные дочерние клетки. Следовательно, молодые дочерние клетки, вступающие в новый клеточный цикл, имеют набор 2п2с.

Таким образом, клеточный цикл охватывает промежуток времени от возникновения клетки до ее полного разделения на две дочерние и включает интерфазу (G r , S-, С 2 -периоды) и митоз (см. рис. 54). Такая последовательность периодов клеточного цикла характерна для постоянно делящихся клеток, например для клеток росткового слоя эпидермиса кожи, красного костного мозга, слизистой оболочки желудочно-кишечного тракта животных, клеток образовательной ткани растений. Они способны делиться каждые 12—36 ч.

В противоположность этому большинство клеток многоклеточного организма встают на путь специализации и после прохождения части Gj-периода могут переходить в так называемый период покоя (Go-период). Клетки, пребывающие в G n -периоде, выполняют свои специфические функции в организме, в них протекают процессы обмена веществ и энергии, но не происходит подготовка к репликации. Такие клетки, как правило, навсегда утрачивают способность к делению. Примерами могут служить нейроны, клетки хрусталика глаза и многие другие.

Однако некоторые клетки, находящиеся в Gn-периоде (например, лейкоциты, клетки печени), могут выходить из него и продолжать клеточный цикл, пройдя все периоды интерфазы и митоз. Так, клетки печени могут снова приобретать способность к делению спустя несколько месяцев пребывания в периоде покоя.

Клеточная гибель. Гибель (смерть) отдельных клеток или их групп постоянно встречается у многоклеточных организмов, так же как гибель одноклеточных организмов. Гибель клеток можно разделить на две категории: некроз (от греч. некрос — мертвый) и ап о птоз, который часто называют программируемой клеточной смертью или даже клеточным самоубийством.

Некроз — отмирание клеток и тканей в живом организме, вызванное действием повреждающих факторов. Причинами некроза может быть воздействие высоких и низких температур, ионизирующих излучений, различных химических веществ (в том числе токсинов, выделяемых болезнетворными микроорганизмами). Некротическая гибель клеток наблюдается также в результате их механического повреждения, нарушения кровоснабжения и иннервации тканей, при аллергических реакциях.

В повре>вденных клетках нарушается проницаемость мембран, останавливается синтез белков, прекращаются другие процессы обмена веществ, происходит разрушение ядра, органоидов и, наконец, всей клетки. Особенностью некроза является то, что такой гибели подвергаются целые группы клеток (например, при инфаркте миокарда из-за прекращения снабжения кислородом отмирает участок сердечной мышцы, содержащий множество клеток). Обычно отмирающие клетки подвергаются атаке лейкоцитов, и в зоне некроза развивается воспалительная реакция.

Апоптоз — запрограммированная гибель клеток, регулируемая организмом. В ходе развития и функционирования организма часть его клеток погибает без непосредственного повреждения. Этот процесс протекает на всех стадиях жизни организма, даже в эмбриональный период.

Во взрослом организме также постоянно происходит запланированная гибель клеток. Миллионами гибнут клетки крови, эпидермиса кожи, слизистой оболочки желудочно-кишечного тракта и др. После овуляции погибает часть фолликулярных клеток яичника, после лактации — клетки молочных желез. В организме взрослого человека ежедневно в результате апоптоза гибнет 50—70 миллиардов клеток. При апоптозе клетка распадается на отдельные фрагменты, окруженные плазмалеммой. Обычно фрагменты погибших клеток поглощаются лейкоцитами или соседними клетками без запуска воспалительной реакции. Восполнение утраченных клеток обеспечивается путем деления.

Таким образом, апоптоз как бы прерывает бесконечность клеточных делений. От своего «рождения» до апоптоза клетки проходят определенное количество нормальных клеточных циклов. После каждого из них клетка переходит либо к новому клеточному циклу, либо к апоптозу.

1. Что такое клеточный цикл?

2. Что называется интерфазой? Какие основные события происходят в G r , S- и 0 2 -периодах интерфазы?

3. Для каких клеток характерен G 0 -nepnofl? Что происходит в этот период?

4. Каким образом осуществляется репликация ДНК?

5. Одинаковы ли молекулы ДНК, входящие в состав гомологичных хромосом? В состав сестринских хроматид? Почему?

6. Что представляет собой некроз? Апоптоз? В чем заключается сходство и различия некроза и апоптоза?

7. Каково значение запрограммированной гибели клеток в жизни многоклеточных организмов?

8. Как вы думаете, почему у подавляющего большинства живых организмов основным хранителем наследственной информации является ДНК, а РНК выполняет лишь вспомогательные функции?

    Глава 1. Химические компоненты живых организмов

  • § 1. Содержание химических элементов в организме. Макро- и микроэлементы
  • § 2. Химические соединения в живых организмах. Неорганические вещества
  • Глава 2. Клетка - структурная и функциональная единица живых организмов

  • § 10. История открытия клетки. Создание клеточной теории
  • § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизосомы
  • Глава 3. Обмен веществ и преобразование энергии в организме

  • § 24. Общая характеристика обмена веществ и преобразование энергии
  • Глава 4. Структурная организация и регуляция функций в живых организмах

Введение

Природа клеточного цикла прояснилась в результате изучения мутантных клеток, растущих и делящихся при низких температурах (34 градуса С для клеток млекопитающих, 23 градуса С для клеток дрожжей). У таких температурочувствительных мутантов обычно имеется один измененный белок, который функционирует только при низкой температуре. И у большинства таких мутантов рост нарушается вскоре после повышения температуры. Однако некоторые мутанты перестают расти лишь тогда, когда клетка достигает определенной стадии цикла, например, начала синтеза ДНК, деления ядра или цитокинеза. Мутанты по клеточному циклу лучше всего изучены у пекарских дрожжей (Saccharomyces cerevisiae: у них выделены мутанты по более чем 35 различным генам цикла клеточного деления (cell division cycle, cdc). На этих мутантах исследовали взаимосвязь между функциями определенных белков и клеточным циклом.

Согласно определения свободной энциклопедии 2008 года, клеточный цикл - это согласованная однонаправленная последовательность событий, в ходе которой клетка последовательно проходит его разные периоды без их пропуска или возврата к предыдущим стадиям. Клеточный цикл заканчивается делением исходной клетки на две дочерние клетки.

Целью данного реферативного исследования является раскрытие принципов клеточного цикла, особенностей и его значение.

Клеточный цикл, периоды

Клеточный цикл включает строго детерминированный ряд последовательных процессов, согласно позиции Hartwellа, 1995. Клетка должна между двумя последовательными делениями удвоить все свои компоненты и свою массу. Таким образом клеточный цикл составляют два периода:

1) период клеточного роста, называемый " интерфаза ", и

2) период клеточного деления, называемый " фаза М " (от слова mitosis). В свою очередь, в каждом периоде выделяют несколько фаз (рис.3).

Обычно интерфаза занимает не меньше 90% времени всего клеточного цикла. Например, у быстро делящихся клеток высших эукариот последовательные деления происходят один раз в 16-24 часа, и каждая фаза М длится 1-2 часа. Большая часть компонентов клетки синтезируется на протяжении всей интерфазы, это затрудняет выделение в ней отдельных стадий по мнению Pardee, 1989. В интерфазе выделяют фазу G1, фазу S и фазу G2. Период интерфазы, когда происходит репликация ДНК клеточного ядра, был назван " фаза S " (от слова synthesis). Период между фазой М и началом фазы S обозначен как фаза G1 (от слова gap - промежуток), а период между концом фазы S и последующей фазой М - как фаза G2. Период клеточного деления (фаза М) включает две стадии: митоз (деление клеточного ядра) и цитокинез (деление цитоплазмы). В свою очередь, митоз делится на пять стадий (рис.3), In vivo эти шесть стадий образуют динамическую последовательность. Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатах световой и электронной микроскопии фиксированных и окрашенных клеток.

Повторяющаяся совокупность событий, обеспечивающих деление эукариотических клеток, получила название клеточного цикла. Продолжительность клеточного цикла зависит от типа делящихся клеток. Некоторые клетки, например, нейроны человека, после достижения стадии терминальной дифференцировки прекращают свое деление вообще. Клетки легких, почек или печени во взрослом организме начинают делиться лишь в ответ на повреждение соответствующих органов. Клетки эпителия кишечника делятся на протяжении всей жизни человека. Даже у быстро пролиферирующих клеток подготовка к делению занимает около 24 ч. Клеточный цикл разделяют на стадии: Митоз - М-фаза, деление клеточного ядра. G1 -фаза период перед синтезом ДНК. S-фаза - период синтеза (репликации ДНК). G2-фаза - период между синтезом ДНК и митозом. Интерфаза - период, включающий в себя G1 -, S- и G2-фазы. Цитокинез - деление цитоплазмы. Точка рестрикции, R-point - время в клеточном цикле, когда продвижение клетки к делению становится необратимым. G0 фаза - состояние клеток, достигших монослоя или лишенных фактора роста в ранней G1 фазе.

Делению клетки (митозу или мейозу) предшествует удвоение хромосом, которое происходит в периоде S клеточного цикла (рис.1). Период обозначают первой буквой слова synthesis - синтез ДНК. С момента окончания периода S до завершения метафазы ядро содержит в четыре раза больше ДНК, чем ядро сперматозоида или яйцеклетки, а каждая хромосома состоит из двух идентичных сестринских хроматид. Во время митоза хромосомы конденсируются и в конце профазы или начале метафазы становятся различимыми при оптической микроскопии. Для цитогенетического анализа обычно используют препараты именно метафазных хромосом.

В начале анафазы центромеры гомологичных хромосом разъединяются, и хроматиды расходятся к противоположным полюсам митотического веретена. После того как к полюсам отойдут полные наборы хроматид (с этого момента их называют хромосомами), вокруг каждого из них образуется ядерная оболочка, формируя ядра двух дочерних клеток (разрушение ядерной оболочки материнской клетки произошло в конце профазы). Дочерние клетки вступают в период G1, и только при подготовке к следующему делению они переходят в период S и в них происходит репликация ДНК.

Клетки со специализированными функциями, длительное время не вступающие в митоз или вообще утратившие способность к делению, находятся в состоянии, называемом периодом G0. Большинство клеток в организме диплоидные - то есть имеют два гаплоидных набора хромосом (гаплоидный набор - это число хромосом в гаметах, у человека он составляет 23 хромосомы, а диплоидный набор хромосом - 46). В гонадах предшественники половых клеток сначала претерпевают ряд митотических делений, а затем вступают в мейоз - процесс образования гамет, состоящий из двух последовательных делений. В мейозе гомологичные хромосомы спариваются (отцовская 1-я хромосома с материнской 1-й хромосомой и т. д.), после чего в ходе так называемого кроссинговера происходит рекомбинация, то есть обмен участками между отцовской и материнской хромосомами. В результате качественно изменяется генетический состав каждой из хромосом.

В первом делении мейоза расходятся гомологичные хромосомы (а не сестринские хроматиды, как в митозе), вследствие чего образуются клетки с гаплоидным набором хромосом, каждая из которых содержит по 22 удвоенные аутосомы и одной удвоенной половой хромосоме. Между первым и вторым делениями мейоза нет периода S (рис.2, справа), а в дочерние клетки во втором делении расходятся сестринские хроматиды. В итоге образуются клетки с гаплоидным набором хромосом, в которых вдвое меньше ДНК, чем в диплоидных соматических клетках в периоде G1, и в 4 раза меньше - чем в соматических клетках по окончании периода S.

При оплодотворении число хромосом и содержание ДНК у зиготы становится таким же, как в соматической клетке в периоде G1. Период S в зиготе открывает путь к регулярному делению, характерному для соматических клеток.

Этот урок позволяет самостоятельно изучить тему «Жизненный цикл клетки». На нем мы поговорим, что играет главную роль при клеточном делении, что передает генетическую информацию от одного поколения к другому. Также вы изучите весь жизненный цикл клетки, который еще называют последовательностью событий, протекающих от момента образования клетки до ее деления.

Тема: Размножение и индивидуальное развитие организмов

Урок: Жизненный цикл клетки

Согласно клеточной теории, новые клетки возникают только путем деления предыдущих материнских клеток. , в которых содержатся молекулы ДНК, играют важную роль в процессах клеточного деления, поскольку обеспечивают передачу генетической информации от одного поколения к другому.

Поэтому очень важно, чтобы дочерние клетки получили одинаковое количество генетического материала, и вполне естественно, что перед делением клетки происходит удвоение генетического материала, то есть молекулы ДНК (рис. 1).

Что же такое клеточный цикл? Жизненный цикл клетки - последовательность событий, происходящих от момента образования данной клетки до ее деления на дочерние клетки. Согласно другому определению, клеточный цикл - жизнь клетки от момента ее появления в результате деления материнской клетки и до ее собственного деления или гибели.

В течение клеточного цикла клетка растет и видоизменяется так, чтобы успешно выполнять свои функции в многоклеточном организме. Этот процесс носит название дифференцировки. Затем клетка успешно выполняет свои функции в течение определенного промежутка времени, после чего приступает к делению.

Понятно, что все клетки многоклеточного организма не могут делиться бесконечно, иначе все существа, в том числе и человек, были бы бессмертными.

Рис. 1. Фрагмент молекулы ДНК

Этого не происходит, потому что в ДНК имеются «гены смерти», которые активируются при определенных условиях. Они синтезируют определенные белки-ферменты, разрушающие структуры клетки, её органеллы. В результате, клетка сжимается и погибает.

Такая запрограммированная клеточная смерть носит название апоптоза. Но в период от момента появления клетки и до апоптоза, клетка проходит множество делений.

Клеточный цикл состоит из 3-х главных стадий:

1. Интерфаза - период интенсивного роста и биосинтеза определенных веществ.

2. Митоз, или кариокинез (деление ядра).

3. Цитокинез (деление цитоплазмы).

Давайте более подробно охарактеризуем стадии клеточного цикла. Итак, первая - это интерфаза. Интерфаза - наиболее продолжительная фаза, период интенсивного синтеза и роста. В клетке синтезируется много веществ, необходимых для ее роста и осуществления всех свойственных ей функций. Во время интерфазы происходит репликация ДНК.

Митоз - процесс деления ядра, при котором хроматиды отделяются друг от друга и перераспределяются в виде хромосом между дочерними клетками.

Цитокинез - процесс разделения цитоплазмы между двумя дочерними клетками. Обычно под названием митоз цитологии объединяют стадию 2 и 3, то есть деление клетки (кариокинез), и деление цитоплазмы (цитокинез).

Давайте более подробно охарактеризуем интерфазу (рис. 2). Интерфаза состоит из 3-х периодов: G 1, S и G 2. Первый период, пресинтетический (G 1) - это фаза интенсивного роста клетки.

Рис. 2. Основные стадии жизненного цикла клетки.

Здесь происходит синтез определенных веществ, это наиболее продолжительная фаза, которая следует за делением клеток. В этой фазе происходит накопление веществ и энергии, необходимой для последующего периода, то есть для удвоения ДНК.

Согласно современным представлениям, в периоде G 1 синтезируются вещества, которые ингибируют либо стимулируют следующий период клеточного цикла, а именно синтетический период.

Синтетический период (S), обычно длится от 6 до 10 часов, в отличие от пресинтетического периода, который может длиться до нескольких суток и включает удвоение ДНК, а также синтез белков, например белков гистонов, которые могут формировать хромосомы. К концу синтетического периода, каждая хромосома состоит из двух хроматид, соединенных друг с другом центромером. В этот же период центриоли удваиваются.

Постсинтетический период (G 2), наступает сразу же после удвоения хромосом. Он длится от 2-х до 5-ти часов.

В этот же период накапливается энергия, необходимая для дальнейшего процесса деления клетки, то есть непосредственно для митоза.

В этот период происходит деление митохондрий и хлоропластов, а также синтезируются белки, которые впоследствии будут образовывать микротрубочки. Микротрубочки, как вы знаете, образуют нить веретена деления, и теперь клетка готова к митозу.

Прежде чем перейти к описанию способов деления клетки, рассмотрим процесс удвоения ДНК, который приводит к образованию двух хроматид. Этот процесс происходит в синтетическом периоде. Удвоение молекулы ДНК называют репликацией или редупликацией (рис. 3).

Рис. 3. Процесс репликации (редупликации) ДНК (синтетический период интерфазы). Фермент хеликаза (зеленый) расплетает двойную спираль ДНК, а ДНК-полимеразы (голубой и оранжевый) достраивают комплементарные нуклеотиды.

Во время репликации часть молекулы материнской ДНК расплетается на две нити с помощью специального фермента - хеликазы. Причем это достигается разрывом водородных связей между комплементарными азотистыми основаниями (А-Т и Г-Ц). Далее к каждому нуклеотиду разошедшихся нитей ДНК фермент ДНК полимеразы подстраивает комплементарный ему нуклеотид.

Так образуются две двухцепочечные молекулы ДНК, в состав каждой из которой входит одна цепочка материнской молекулы и одна новая дочерняя цепочка. Эти две молекулы ДНК абсолютно идентичны.

Расплести для репликации всю большую молекулу ДНК одновременно невозможно. Поэтому репликация начинается в отдельных участках молекулы ДНК, образуются короткие фрагменты, которые затем сшиваются в длинную нить при помощи определенных ферментов.

Продолжительность клеточного цикла зависит от типа клетки и от внешних факторов, таких как температура, наличие кислорода, наличие питательных веществ. Например, бактериальные клетки в благоприятных условиях делятся каждые 20 минут, клетки эпителия кишечника каждые 8-10 часов, а клетки кончиков корней лука делятся каждые 20 часов. А некоторые клетки нервной системы не делятся никогда.

Возникновение клеточной теории

В XVII веке английский врач Роберт Гук (рис. 4), используя самодельный световой микроскоп, увидел, что пробка и другие растительные ткани состоят из маленьких ячеек, разделенных перегородками. Он их назвал клетками.

Рис. 4. Роберт Гук

В 1738 году немецкий ботаник Маттиас Шлейден (рис. 5) пришел к выводу, что растительные ткани состоят из клеток. Ровно через год зоолог Теодор Шванн (рис. 5) пришел к такому же выводу, но только относительно тканей животных.

Рис. 5. Маттиас Шлейден (слева) Теодор Шванн (справа)

Он заключил, что животные ткани, так же как и растительные, состоят из клеток и что клетки являются основой жизни. На основании клеточных данных ученые сформулировали клеточную теорию.

Рис. 6. Рудольф Вирхов

Через 20 лет Рудольф Вирхов (рис. 6) расширил клеточную теорию и пришел к заключению, что клетки могут появляться из других клеток. Он писал: «Где существует клетка, там должна быть и предшествующая клетка, точно так, как животные происходят только от животного, а растения - только от растения… Над всеми живыми формами, будь то организмы животных или растений, или их составные части, господствует вечный закон непрерывного развития».

Строение хромосом

Как вы знаете, хромосомы играют ключевую роль в клеточном делении, поскольку передают генетическую информацию от одного поколения к другому. Хромосомы состоят из молекулы ДНК, связанной с белками гистонами. Также в состав рибосом входит небольшое количество РНК.

В делящихся клетках хромосомы представлены в виде длинных тонких нитей, равномерно распределенных по всему объему ядра.

Отдельные хромосомы не различимы, но их хромосомный материал окрашивается основными красителями и называется хроматином. Перед делением клетки хромосомы (рис. 7) утолщаются и укорачиваются, что позволяет их хорошо видеть в световой микроскоп.

Рис. 7. Хромосомы в профазе 1 мейоза

В диспергированном, то есть растянутом состоянии, хромосомы участвуют во всех процессах биосинтеза или регулируют процессы биосинтеза, а во время клеточного деления эта их функция приостанавливается.

При всех формах клеточного деления ДНК каждой хромосомы реплицируется, так что образуются две идентичные, двойные полинуклеотидные цепи ДНК.

Рис. 8. Строение хромосомы

Эти цепи окружаются белковой оболочкой и в начале клеточного деления имеют вид идентичных нитей, лежащих бок о бок. Каждая нить носит название хроматиды и соединена со второй нитью неокрашивающимся участком, который носит название центромеры (рис. 8).

Домашнее задание

1. Что такое клеточный цикл? Из каких стадий он состоит?

2. Что происходит с клеткой во время интерфазы? Из каких этапов состоит интерфаза?

3. Что такое репликация? Каково её биологическое значение? Когда она происходит? Какие вещества в ней участвуют?

4. Как зародилась клеточная теория? Назовите имена ученых, которые участвовали в её становлении.

5. Что такое хромосома? Какова роль хромосом в клеточном делении?

1. Техническая и гуманитарная литература ().

2. Единая коллекция Цифровых Образовательных Ресурсов ().

3. Единая коллекция Цифровых Образовательных Ресурсов ().

4. Единая коллекция Цифровых Образовательных Ресурсов ().

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.

4. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. - 5-е изд., стереотип. - Дрофа, 2010. - 388 с.

5. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.

Жизненный цикл клетки , или клеточный цикл , – это промежуток времени, в течение которого существует как единица, т. е. период жизни клетки. Он длится от момента появления клетки в результате деления ее материнской и до конца деления ее самой, когда она «распадается» на две дочерние.

Бывают случаи, когда клетка не делится. Тогда ее жизненный цикл - это период от появления клетки до гибели. Обычно не делятся клетки ряда тканей многоклеточных организмов. Например, нервные клетки и эритроциты.

Принято в жизненном цикле клеток эукариот выделять ряд определенных периодов, или фаз. Они характерны для всех делящихся клеток. Фазы обозначают G 1 , S, G 2 , M. Из фазы G 1 клетка может уходить в фазу G 0 , оставаясь в которой, она не делится и во многих случаях дифференцируется. При этом некоторые клетки могут возвращаться из G 0 в G 1 и пройти по всем этапам клеточного цикла.

Буквы в аббревиатурах фаз – это первые буквы английских слов: gap (промежуток), synthesis (синтез), mitosis (митоз).

Красным флуоресцентным индикатором клетки подсвечиваются в фазу G1. Остальные фазы клеточного цикла - зеленым.

Период G 1 – пресинтетический – начинается сразу как только клетка появилась. В этот момент она меньше по размеру, чем материнская, в ней мало веществ, недостаточно количество органоидов. Поэтому в G 1 происходит рост клетки, синтез РНК, белков, построение органелл. Обычно G 1 – самая длительная фаза жизненного цикла клетки.

S – синтетический период . Самый главный его отличительный признак – удвоение ДНК путем репликации . Каждая хромосома становится состоящей из двух хроматид. В этот период хромосомы по-прежнему деспирализованы. В хромосомах, кроме ДНК, много белков-гистонов. Поэтому в S-фазу гистоны синтезируются в большом количестве.

В постсинтетический период – G 2 – клетка готовится к делению, обычно путем митоза. Клетка продолжает расти, активно идет синтез АТФ, могут удваиваться центриоли.

Далее клетка вступает в фазу клеточного деления – M . Здесь происходит деление клеточного ядра – кариокинез , после чего деление цитоплазмы – цитокинез . Завершение цитокинеза знаменует завершение жизненного цикла данной клетки и начало клеточных циклов двух новых.

Фаза G 0 иногда называют периодом «отдыха» клетки. Клетка «выходит» из обычного цикла. В этот период клетка может приступить к дифференциации и уже никогда не вернуться к обычному циклу. Также в фазу G 0 могут входить стареющие клетки.

Переход в каждую последующую фазу цикла контролируется специальными клеточными механизмами, так называемыми чекпоинтами – контрольными точками . Чтобы наступила следующая фаза, в клетке должно быть все готово для этого, в ДНК не содержаться грубых ошибок и др.

Фазы G 0 , G 1 , S, G 2 вместе формируют интерфазу - I .

Период жизни клетки от момента её рождения в результате деления материнской клетки до следующего деления или смерти называется жизненным (клеточным) циклом клетки.

Клеточный цикл способных к размножению клеток включает две стадии: - ИНТЕРФАЗУ (стадия между делениями, интеркинез); - ПЕРИОД ДЕЛЕНИЯ (митоз). В интерфазе происходит подготовка клетки к делению – синтез различных веществ, но главным является удвоение ДНК. По продолжительности она составляет большую часть жизненного цикла. Интерфаза состоит из 3–х периодов: 1) Предсинтетический – G1 (джи один) – наступает сразу после окончания деления. Клетка растет, накапливает различные вещества (богатые энергией), нуклеотиды, аминокислоты, ферменты. Готовится к синтезу ДНК. Хромосома содержит 1 молекулу ДНК (1 хроматида). 2) Синтетический – S происходит удвоение материала – репликация молекул ДНК. Усиленно синтезируется белки и РНК. Происходит удвоение числа центриолей.

3) Постсинтетический G2 – предмитотический, продолжается синтез РНК. Хромосомы содержат 2 свои копии – хроматиды, каждая из которых несет по 1-ой молекуле ДНК (двунитевидная). Клетка готова к делению хромосома сперализуется.

Амитоз – прямое деление

Митоз – непрямое деление

Мейоз – редукционное деление

АМИТОЗ – встречается редко, особенно у стареющих клеток или при патологических состояниях (репарация тканей), ядро остаётся в интефазном состоянии, хромосомы не сперализуются. Ядро делится путем перетяжки. Цитоплазма может и не делится, тогда образуются двуядерные клетки.

МИТОЗ – универсальный способ деления. В жизненном цикле он составляет лишь малую часть. Цикл эпитемальных клеток кишечника кошки составляет 20 – 22 ч., митоз – 1 час. Митоз состоит из 4-х фаз.

1)ПРОФАЗА – происходит укорочение и утолщение хромосом (спирализация) они хорошо видны. Хромосомы состоят из 2-х хроматид (удвоение в периоде интерфазы). Ядрышко и ядерная оболочка распадаются, цитоплазма и кариоплазма смешиваются. Разделившиеся клеточные центры расходятся по длинной оси клетки к полюсам. Образуется веретено деления (состоящее из упругих белковых нитей).

2)МЕТОФАЗА – хромосомы располагаются в одной плоскости по экватору, образуя метафазную пластинку. Веретено деления состоит из 2-х типов нитей: одни соединяют клеточные центры, вторые – (число их = числу хромосом 46) прикреплены, одним концом к центросоме (клеточному центру), другой к центромере хромосомы. Центромера тоже начинает делиться на 2. Хромосомы (в конце) расщепляются в области центромеры.



3)АНАФАЗА – самая короткая фаза митоза. Нити веретена деления начинают укорачиваться и хроматиды каждой хромосомы удаляются друг от друга по направлению к полюсам. Каждая хромосома состоит только из 1 хроматиды.

4)ТЕЛОФАЗА – хромосомы концентрируются у соответствующих клеточных центров, деспирализуются. Формируются ядрышки, ядерная оболочка, образуется мембрана, отделяющая сестринские клетки друг от друга. Сестринские клетки расходятся.

Биологическое значение митоза состоит в том, что в результате его каждая дочерняя клетка получает точно такой же набор хромосом, а следовательно, и точно такую же генетическую информацию, какими обладала материнская клетка.

7. МЕЙОЗ – ДЕЛЕНИЕ, СОЗРЕВАНИЕ ПОЛОВЫХ КЛЕТОК

Сущность полового размножения заключается в слиянии 2-х ядер половых клеток (гамет) сперматозоидов (муж) и яйцеклетки (жен). В процессе развития половые клетки претерпевают митотическое деление, а в период созревания – мейотическое. Поэтому зрелые половые клетки содержат гаплоидный набор хромосом (п): П +П=2П (зигота). Если бы гаметы имели 2п (диплоидн.) то, потомки имели бы тетраплоидное (2п+2п)=4п число хромосом и т.д. Число хромосом у родителей и потомков остаётся постоянным. Уменьшение числа хромосом вдвое происходит путем мейоза, (гаметогенез). Он состоит из 2-х идущих друг за другом делений:

Редукционного

Эквационного (уравнительного)

без интерфазы между ними.

ПРОФАЗА 1 ОТЛИЧАЕТСЯ ОТ ПРОФАЗЫ МИТОЗА.

1.Лептонема (тонкие нити) в ядре диплоидный набор (2п) длинных тонких хромосом 46 шт.

2.Зигонема – гомологические хромосомы (парные) – 23 пары у человека коньюгируют (молния) «подгонка» гена к гену соединяются по всей длине 2п – 23 шт.

3.Пахинема (толстые нити) гомолог. хромосомы тесно связаны (бивалентны). Каждая хромосома состоит из 2-х хроматид, т.е. бивалент – из 4-х хроматид.

4.Диплонема (двойные нити) коньюгирование хромосомы отталкиваются друг от друга. Происходит перекручивание, а иногда обмен обломившимися частями хромосом – перекрест (кроссинговер) – это резко увеличивает наследственную изменчивость, новые комбинации генов.

5.Диакинез (движение вдаль) – заканчивается профаза хромосомы сперализуются, ядерная оболочка, распадается и наступает вторая фаза – метафаза первого деления.

Метафаза 1 – по экватору клетки лежат биваленты (тетрады), веретено деления сформировано (23 пары).

Анафаза 1 – к каждому полюсу расходятся не по 1-ой хроматиде, а по 2 хромосомы. Связь между гомологичными хромосомами ослабляются. Парные хромосомы отходят друг от друга к разным полюсам. Образуется гаплоидный набор.

Телофаза 1 – у полюсов веретена собирается одинарный, гаплоидный набор хромосом, в которых каждый вид хромосом представлен не парой, а 1-ой хромосомой состоящей из 2-х хроматид цитоплазма не всегда делится.

Мейоз 1- деление приводит к образованию клеток, несущих гаплоидный набор хромосом, но хромосомы состоят из 2-х хроматид, т.е. имеют удвоенное количество ДНК. Поэтому клетки уже готовы ко 2-му делению.

Мейоз 2 деление (эквивалентное). Все стадии: профаза 2, метафаза 2, анафаза 2 и телофаза 2. Проходит как митоз, но делятся гаплоидные клетки.

В результате деления материнские двунитчатые хромосомы, расщепляясь, образуют однонитчатые дочерние хромосомы. В каждой клетке (4) будет гаплоидный набор хромосом.

Т.О. в результате 2-х метотических делений происходит:

Увеличивается наследственная изменчивость благодаря различным комбинациям хромосом в дочерних наборах

Число возможных комбинаций пар хромосом = 2 в степени n (число хромосом в гаплоидном наборе 23 – человек).

Основные назначения мейоза заключается, в создание клеток с гаплоидным набором хромосом – осуществляется благодаря образованию в начале 1 мейотического деления пар гомологичных хромосом и последующему расхождению гомологов в разные дочерние клетки. Образование мужских половых клеток – это сперматогенез, женских - овогенез.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!