Информационный женский портал

Создание искусственных органов. Искусственные органы: человек умеет все Как называется человек с искусственными органами

Новую, значительно усовершенствованную модель трехмерного принтера для печати органов. С его помощью удалось создать искусственную модель кости черепа, ухо и мышцу. Причем все органы, пересаженные лабораторным животным, прижились. Мы решили вспомнить, какие еще органы и ткани ученые уже умеют создавать искусственно, и как это делается сегодня.

Практически любой орган человека состоит из трех тесно связанных структур. Во-первых, это соединительнотканный внеклеточный матрикс — разветвленная сеть коллагеновых волокон, которая придает органу форму и плотность, а также служит каркасом для клеток. Во-вторых, это клетки, благодаря которым орган выполняет свои биологические функции (во многих органах присутствуют несколько типов клеток). В-третьих, это сосудистая сеть, которая приносит артериальную кровь, насыщает ткани кислородом и питательными веществами, забирая у них углекислый газ и продукты обмена. Создание каждой из этих структур представляет отдельную сложную задачу тканевой инженерии.

Придать форму

Для получения внеклеточного матрикса используют два принципиально разных подхода. Можно создавать его с нуля — брать подходящий материал и, придумывая инженерные ухищрения, придавать ему нужную структуру. Альтернативный путь — взять «готовый» орган животного или мертвого донора и очистить его от всего лишнего, оставив только чистый каркас, свободный от клеток и не вызывающий реакции отторжения. Каждый из этих методов имеет достоинства и недостатки.

Искусственный матрикс синтезируют из синтетических и природных веществ. Из первых чаще всего используют полилактид (полимер молочной кислоты), полигликолевую кислоту и поликапролактон. Все они со временем рассасываются в организме без выделения вредных веществ, замещаясь натуральным внеклеточным матриксом. Природные материалы имеют белковую (например, коллаген) или углеводную (например, гиалуроновая кислота) природу. Для придания материалам нужной трехмерной сетчатой структуры в экспериментах и на практике используют множество способов (самосборку нановолокон, текстильные технологии, частичное растворение, вспенивание, электроспиннинг, трехмерная печать и другие). Эти методы не воспроизводят тонкостей микроструктуры органа и не формируют каркас для сосудистой сети. Поэтому они подходят лишь для органов с относительно простым строением — кожи, сосудов, хрящей и т.п.

Наиболее перспективная на данный момент технология получения внеклеточного каркаса сложных органов, например, сердца или почки — это децеллюляризация (очистка от клеток) соответствующего органа мертвого донора или подходящего по размеру животного (чаще всего свиньи). Для этого через сосуды органа медленно, в течение нескольких дней пропускают раствор моющего средства возрастающей концентрации. Когда все клетки удалены, матрикс промывают, и он готов к заселению клетками нового хозяина. Метод хорош и тем, что бесклеточный матрикс состоит из природного материала, который обеспечивает правильное прикрепление и пролиферацию клеток. Основной недостаток этой технологии заключается в том, что она разрушает микрососудистую сеть — капилляры, фактически состоящие из одного слоя эндотелиальных клеток, удаляются при промывании.

Из-за этого до клинического применения пока дошли только созданные таким методом дыхательные пути, а менее совершенное, на первый взгляд, искусственное получение матрикса уже используется в практическом и экспериментальном протезировании.

Заставить работать

Функциональную ткань изначально наращивали на матрикс, погружая его в питательный раствор с клетками и факторами роста. В последнее время все чаще с этой целью используют гидрогели, которые, застывая, обеспечивают равномерное распределение клеток, их лучшее закрепление и диффузию питательных веществ и газов. При использовании децеллюляризированного донорского матрикса раствор клеток и факторов роста пропускают через его сосуды.

Отдельную проблему представляет размножение и выживание клеток — в дифференцированной ткани их возможность делиться и развиваться ограничена длиной теломер («насадок» на концах молекул ДНК, необходимых для ее репликации, которые укорачиваются с каждым делением клетки). Решением этой проблемы может стать использование индуцированных плюрипотентных стволовых клеток, которые по способности пролиферировать и дифференцироваться близки к эмбриональным стволовым клеткам.

Снабдить воздухом и пищей

Создание сосудистой сети, как уже говорилось, представляет собой одну из наиболее сложных задач. Ни один из существующих методов не обеспечивает достаточной плотности и функциональности — капилляры либо протекают, либо их слишком мало для кровоснабжения органа (а чаще и то, и другое). Преодолеть эту проблему различными способами пытаются многие лаборатории мира. Более-менее обнадеживающие предварительные результаты получены при использовании микрожидкостных устройств из биорастворимых материалов, однако полноценную сосудистую сеть целого органа таким способом пока создать не удалось.

Оригинальное решение недавно предложили сотрудники американского Университета Вандербильта. Они получили полимерную сеть с толщиной волокон, близкой к капиллярам, с помощью аппарата для изготовления сладкой ваты. Затем эту сеть заливали гидрогелем с клетками и после его застывания вымывали полимер и пропускали через получившиеся микрососуды питательный раствор. Эта методика пока находится на начальных этапах разработки; полученный гидрогель с живыми клетками и сосудами не имеет внеклеточного матрикса.

Используя бесклеточный матрикс для восстановления кожи и собственные клетки пациента, японские исследователи вырастили на питательной среде и успешно пересадили пациентам слизистую оболочку ротовой полости.

Еще одна ткань, сравнительно простая для создания методом тканевой инженерии — это хрящ. У взрослого человека он практически не кровоснабжается, из-за чего не восстанавливается. Однако крайне низкая потребность зрелого хряща в кислороде и питании существенно облегчает работу с ним — не приходится обеспечивать рост сосудов, поскольку хрящевая ткань получает все необходимое путем диффузии. В 2006 году сотрудники Бристольского университета успешновосстановили поврежденные коленные суставы с помощью искусственных хрящей, выращенных из клеток пациентов на матриксе из гиалуроновой кислоты.

Искусственно выращенная хрящевая ткань применялась еще в одной серии экспериментов на людях, и то с сомнительным результатом. Речь идет о работе хирурга Паоло Маккиарини, выполненной на базе Барселонского университета в Испании, Каролинского института в Швеции и Кубанского медицинского университета в Краснодаре. Он пересаживал трахеи и бронхи, выращенные на децеллюляризованном матриксе мертвых доноров из собственных мезенхимальных стволовых и эпителиальных клеток пациентов. После обвинений в нарушении этики проведения исследований и на основании данных о высокой смертности реципиентов Каролинский институт принял решение уволить Маккиарини.

Также следует упомянуть о работе Стивена Бадилака (Stephen Badylak) из Университета Питтсбурга. Он использовал высушенный порошок из децеллюляризированного матрикса свиного мочевого пузыря, содержащий коллаген и факторы роста, для устранения травматических дефектов тканей. Биосовместимый материал стимулировал стволовые клетки взрослых, благодаря чему удалось восстановить пациентам отрезанную пропеллером авиамоделифалангу пальца , мышцу , практически утраченную в ходе военных действий, и другие поврежденные ткани.

Пожалуй, наибольшего на данный момент успеха в экспериментах на людях добился уже упомянутый Атала. Его коллектив еще в 2000-х годах использовал 3D-принтер для создания матрикса мочевого пузыря.

Полученные каркасы заселили клетками, забранными при биопсии, и вырастили полноценные органы, которые затем успешно пересадили пациентам.

В 2014 году Ясуо Куримото (Yasuo Kurimoto) из Медицинского центра Кобе пересадил женщине с возрастной макулярной дегенерациейсетчатку глаза. Ее вырастили сотрудники института RIKEN во главе с Масаё Такахаси (Masayo Takahashi) из индуцированных плюрипотентных стволовых клеток (за разработку технологии их получения соотечественник ученых Синъя Яманака в 2012 году получил Нобелевскую премию). Путем долгих экспериментов лаборатории RIKEN удалось направить дифференцировку этих клеток в пигментный эпителий сетчатки и получить плоский прямоугольник ткани размером 1,3 на 3,0 миллиметра, пригодный для трансплантации. Операция прошла без осложнений; кровотечения, отторжения и общего ухудшения самочувствия у 70-летней пациентки не наблюдалось. Однако о том, наступило ли восстановление зрения, сообщений не было.

На сегодняшний день этими работами клинические испытания органов, полученных методом тканевой инженерии, практически исчерпываются. Негусто, но известия из лабораторий позволяют в ближайшее время ожидать гораздо более впечатляющих результатов. О них мы расскажем в одном из следующих материалов.

Спецпроект о проблемах старения мы продолжим рассказом о самых выдающихся и знаменитых исследователях, положивших начало работам по созданию искусственных органов. Большинство из них и сейчас продолжает работу над новыми амбициозными проектами.

Цикл статей, задуманных в рамках спецпроекта «биомолекулы» для фонда «Наука за продление жизни ».

В этом цикле рассмотрим общие проблемы старения клеток и организмов, научные подходы к долголетию и продлению здоровой жизни, связь сна и старения, питания и продолжительности жизни (обратимся к нутригеномике), расскажем про организмы с пренебрежимым старением , осветим темы (эпи)генетики старения и анабиоза.

Конечно, феномен старения настолько сложен, что пока рано говорить о радикальных успехах в борьбе с ним и даже о четком понимании его причин и механизмов. Но мы постараемся подобрать наиболее интересную и серьёзную информацию о нащупанных связях, модельных объектах, разрабатываемых и уже доступных технологиях коррекции возрастзависимых нарушений.

Следите за обновлениями!

Линда Гриффит и Чарльз Ваканти

Линда Гриффит - профессор биоинженерии и механической инженерии . В 2006 году получила стипендию Мак-Артура, также известную как «грант для гениев». Соавтор пионерской работы по выращиванию хряща в форме человеческого уха. На данный момент развивает технологии культивации 3D-культур клеток, а также участвует в проекте «Человек на чипе».

Чарльз Ваканти - профессор медицинской школы Гарварда . Соавтор пионерских работ по выращиванию хряща в форме человеческого уха, а также первой искусственной кости анатомической формы (для пациента с травмой большого пальца). Убежден в существовании способа переключения специализированных клеток в состояние стволовых, не использующего генетические модификации. Его убежденность не поколебал даже скандал с его бывшей аспиранткой, Харуко Обоката, сфабриковавшей результаты эксперимента по получению стволовых клеток. Чарльз Ваканти до последнего момента утверждал, что протоколы Харуко Обоката должны работать. В сентябре прошлого года, после того, как фальсификация данных японской исследовательницей была доказана, ушел в годовой академический отпуск. Судя по всему, после его окончания Чарльз Ваканти планирует продолжать поиски простого способа получения стволовых клеток.

В конце 1990-х годов по интернету разошлась жуткая картинка - мышь с человеческим ухом на спине (рис. 1). Картинку рассылали в основном по электронной почте, и подписи к ней со временем терялись. Многие люди не верили, что картинка настоящая, а другие начинали активно протестовать против генетической инженерии, в результате которой, по мнению этих людей, уродливая мышь появилась на свет. Картинка была настоящей. Человеческое ухо на спине у мыши вырастили, разумеется, без применения генетических модификаций (уже в те времена было понятно, что органы формируются при сложном взаимодействии многофункциональных генов, и никакого «гена человеческого уха» существовать не может). А работа, для которой была получена несчастная мышь, была одной из пионерских в области инженерии искусственных органов человека .

Рисунок 1. Знаменитая фотография из работы, сделанной в 90-х годах. Животное, вопреки предположениям многих напуганных людей, не подвергалось генетическим модификациям, а всего лишь служило средой, в которой синтетическая основа уха заселялась нанесёнными на нее клетками. Биореакторов, более подходящих для инкубации искусственного органа, в то время просто не существовало.

Ухо, по правде говоря, было человеческим лишь по форме, а составляющие его клетки были взяты у теленка. Тем не менее авторы работы, в числе которых были Линда Гриффит и Чарльз Ваканти, сделали первый шаг к созданию таких пугающе сложных структур как человеческие органы. Донорских органов настолько мало, и с ними так много проблем (и иммунологических, и психологических), что робость перед созданием искусственных частей человеческого тела было просто необходимо преодолеть.

Стратегия, которую применили Линда Гриффит и Чарльз Ваканти, до сих пор популярна в биоинженерии искусственных органов со сложной структурой. Сначала получают каркас из деградируемого полимера, а потом заселяют его клетками, которые постепенно разъедают каркас, делятся и осваивают освободившееся пространство. В менее «чистом» варианте того же метода используют основы органов, полученные от других животных или доноров, уничтожают их клетки, и заселяют полученный матрикс клетками реципиента. Такой орган нельзя считать полностью искусственным, и все же, он лучше донорского, так как не содержит его клеток и не вызывает отторжения иммунной системой. Такой вариант метода применяют, когда каркас сложно получить искусственно из-за его сложной структуры или состава и когда этот каркас должен войти в состав получившегося органа, а не разъедаться в процессе заселения клетками.

Заселение каркаса должно происходить в условиях, максимально приближенных к условиям внутри организма - с правильной температурой и течением питательных растворов через его части. Сейчас для этого используют специальные реакторы, которые приходится настраивать на форму определенного органа. А в первых работах 90-х годов в качестве биореакторов использовали мышей и крыс, которым заселенные клетками основы органов просто вживляли под кожу. Выглядели такие животные пугающе, зато цель - первые искусственные хрящи в форме человеческого уха - была достигнута.

Линда Гриффит продолжила работу в области инженерии искусственных тканей. Сейчас под ее руководством в специальном биореакторе поддерживают трехмерную культуру клеток печени. Такой культуре далеко до искусственной печени - она не похожа на нее по структуре, но тем не менее подходит для исследований лекарств и метаболизма гепатоцитов в условиях, близких к природным. Занимается исследовательница и разработкой органов на чипах, которые изобрел в 2010 году Дональд Ингбер (о нем речь пойдет позже).

Чарльз Ваканти заинтересовался другой стороной вопроса о выращивании искусственных органов - исследованиями стволовых клеток. Дело в том, что клетки, необходимые для выращивания нового органа, не всегда удобно (если вообще возможно) брать у донора. Поэтому, прежде чем учиться выращивать из подходящих клеток сложные структуры, сначала разумнее научиться получать эти подходящие клетки. Чарльза Ваканти интересовало преобразование клеток, которые легко взять у донора (например, с поверхности кожи), в клетки требуемого типа. Для этого нужно было научиться превращать специализированные клетки в стволовые - то есть способные приобрести любую специализацию. И, конечно, для биоинженеров важно, чтобы способ перепрограммирования клеток был не слишком сложным, иначе выгоды от его применения сойдут на нет. Чарльз Ваканти был убежден, что у организма должен быть способ переключать клетки в стволовое состояние , если это необходимо, - такая способность казалась ему слишком выгодной.

Возможно, решение кроется в ИПСК - индуцированных плюрипотентных стволовых клетках, которые можно получать из клеток различной специализации. О проблемах их получения и рисках использования читайте в статьях «В поисках клеток для ИПСК - шаг за шагом к медицине будущего » и «Предохранитель ИПСК » , .

Организму могут понадобиться стволовые клетки, если он испытывает сильный стресс, поэтому Чарльз Ваканти считал, что именно стресс может заставить клетки переключиться в стволовое состояние. Убедительных доказательств этой гипотезы ученому найти не удавалось. Зато ему удалось заинтересовать своими идеями японскую аспирантку Харуко Обоката . Поработав в лаборатории Ваканти в Гарварде, молодая исследовательница вернулась в институт RIKEN , где продолжила искать тот самый тип стресса, который заставит специализированные клетки стать стволовыми. Через Харуко Обоката история Чарльза Ваканти переплелась с судьбой еще одного выдающегося биоинженера - Ёсики Сасаи.

Ёсики Сасаи

Ёсики Сасаи - выдающийся биоинженер, пионер в области получения мини-органоидов методом воспроизведения первых этапов эмбрионального развития человека. Воспроизвел начальные этапы развития коры головного мозга, а также глазного бокала и гипофиза зародыша. В его лаборатории молодая исследовательница Харуко Обоката вела поиски простого метода превращения специализированных клеток в стволовые. Данные об успехе ее исследований Харуко Обоката сфабриковала. Устав от внимания прессы и обвинений научной общественности в недостаточном контроле за ходом работ под его руководством, Ёсики Сасаи в августе 2014 года повесился на перилах лестницы своего института .

Все живые организмы проходят долгий и трудный путь развития, прежде чем приобретают окончательную, зачастую очень сложную структуру. Если мы хотим получить копию искусственного органа, стоит вспомнить, как именно этот орган образуется в природе. Воспроизведение эмбрионального развития органа - очень перспективный путь для биоинженеров. Работами именно в этой области и прославился Ёсики Сасаи. В 2008 году были опубликованы результаты работы по воспроизведению первых этапов развития ни много ни мало человеческого мозга . А в 2011 году японские исследователи под руководством Сасаи получили зачатки гипофиза и глазных бокалов (рис. 2) . «В пробирке» (точнее, на чашке Петри) удается вырастить только мини-органоиды, потому что дальнейшие этапы их развития требуют сложного трехмерного окружения, которое, в свою очередь, тоже должно развиваться с ростом органа. Тем не менее, подбор условий, стимулирующих клетки повторять хотя бы первые стадии развития органа, уже дает много полезных данных для эмбриологии. Кроме того, на мини-органоидах, выращенных из клеток с генетическими мутациями, можно проследить становление патологии. И конечно, мини-органоиды подходят для тестирования лекарств и особенно для изучения их влияния на ранние стадии развития организма.

К несчастью для Ёсики Сасаи, под его руководством шли работы и на другие темы. В начале 2014 года в журнале Nature была опубликована статья, первым автором которой была Харуко Обоката, а последним - Ёсики Сасаи. В статье был описан на удивление простой метод перепрограммирования специализированных клеток в стволовые - с помощью непродолжительной инкубации в растворе лимонной кислоты. Стволовые клетки, полученные таким способом, назвали STAP (stimulus-triggered acquisition of pluripotency ). STAP-клетки могли бы вызвать настоящую революцию в регенеративной медицине - таким простым методом, как описали японские ученые, стволовые клетки можно было бы получать в огромных количествах. К сожалению, никаким другим исследователям, кроме Харуко Обоката, получить STAP-клетки не удалось. На японских ученых посыпались вопросы от разочарованных коллег и прессы, и Харуко Обоката пришлось повторить эксперименты в собственной лаборатории, чтобы доказать, что метод может работать. Ей это не удалось. В ходе расследования под эгидой института RIKEN выяснилось, что Харуко Обоката подтасовала данные скандальной публикации, а руководитель исследования - Ёсики Сасаи - об этом не знал. В августе 2014 ученый, тяжело переживавший скандал вокруг исследования, покончил жизнь самоубийством. Харуко Обоката не стала оспаривать решение экспертной комиссии о подтасовке результатов.

Интересно, что в ходе скандала Чарльз Ваканти (бывший руководитель Харуко Обоката) активно выступал в защиту японских ученых. В конце концов ему пришлось признать, что статья была отозвана обоснованно, но, несмотря на это, он не отказался от своей любимой идеи о возможности получить стволовые клетки из специализированных без трудоемких генетических модификаций. В сентябре прошлого года Чарльз Ваканти ушел в годовой академический отпуск, который к настоящему моменту как раз закончился.

Неизвестно, будет ли найден однажды простой способ получения стволовых клеток. Как бы то ни было, другое направление исследований Ёсики Сасаи - получение органоидов - оказалось очень плодотворным. В последующие годы ученым разных групп удалось получить мини-органоиды кишечника, желудка и почек . Последнее достижение в этой области - органоиды сердца - принадлежит знаменитому специалисту по созданию искусственных органов Энтони Атала .

Энтони Атала

Энтони Атала - директор . Научился получать из собственных клеток пациентов искусственный мочевой пузырь, уретру и влагалище. Сейчас во всем мире живут десятки людей с такими искусственными органами, созданными под руководством Энтони Атала. Сейчас знаменитый биоинженер работает над созданием искусственного пениса, который подошел бы жертвам несчастных случаев и мужчинам с врожденными патологиями репродуктивной системы.

Энтони Атала - директор целого института регенеративной медицины. Под руководством ученого в этой области было сделано много замечательных работ, все более и более сложных. В основном Энтони Атала занимается созданием искусственных органов мочеполовой системы. Начал он с самого простого - мочевого пузыря . По сути дела, мочевой пузырь - это просто мешок из клеток, и операции, в которых мочевые пузыри делают из тканей кишечника, проводятся уже довольно давно. Конечно, у этих органов очень разные функции - стенки кишечника всасывают питательные вещества, а мочевой пузырь просто служит резервуаром для мочи перед ее выведением. Поэтому, конечно, хотелось научиться получать этот несложный орган из более подходящего материала. Энтони Атала использовал для этого уже упомянутый метод - выращивание клеток на специальном каркасе анатомической формы. Такие искусственные мочевые пузыри вживили нескольким мальчикам с патологиями этого органа в 1999 году. Спустя 5 лет наблюдений Энтони Атала с коллегами доложили, что искусственные органы прижились хорошо, и не вызвали осложнений у реципиентов . После этого ученый перешел к более сложной задаче - созданию искусственных влагалищ. В отличие от мочевых пузырей, эти органы никогда не пытались получить искусственно. В то же время, устройство влагалища тоже не очень сложное - это трубка из клеток. В 2005-2009 годах четырем девочкам с редкими патологиями, при которых половая система развивается неправильно, были вживлены такие искусственные влагалища. В 2014 году ученый доложил об успехе всех операций, благодаря которым подросшие пациентки смогли жить нормальной половой жизнью . Параллельно ученые под руководством Энтони Атала научились получать другой орган трубчатой структуры - уретру (мочеиспускательный канал) . Такие искусственные органы вживили пяти мальчикам, и операции также прошли успешно и не вызвали осложнений.

На очереди оказался самый сложный орган мочеполовой системы - пенис. Современная хирургия уже позволяет пришивать пациентам, потерявшим пенис из-за несчастных случаев, орган донора. Первая такая операция была проведена еще в 2006 году. Однако спустя две недели после этой сложнейшей операции пациент попросил удалить донорский пенис . Такое решение кажется странным лишь на первый взгляд. Пенис относится к органам, которые жертвуют лишь посмертно, а привыкнуть к жизни с пенисом умершего человека явно сложнее, чем к жизни с донорской почкой. От первой в мире пересаженной руки, к примеру, реципиент также отказался вскоре после операции . Так что инженерия наружных органов - вопрос, в определенном смысле, даже более срочный, чем инженерия жизненно важных частей тела. Ведь, пока хирургам в качестве материала предоставляют только донорские органы, многие сложнейшие операции будут проходить напрасно. К тому же, помимо психологических проблем, с донорскими органами возникают еще и проблемы иммунологической совместимости - пациентам часто приходится принимать препараты, подавляющие деятельности иммунной системы, чтобы она не начинала атаковать чужеродную часть тела.

Пенис сконструировать намного труднее, чем просто пузырь или трубку из клеток, ведь для функционирования этого органа необходима правильная структура во всем его объеме. Совершенно необходимо воспроизвести губчатую ткань пещеристых тел, которые разбухают при эрекции, а также структуру сосудов, по которым к этой ткани поступает кровь. И, само собой, нужно разместить в нем уретру, которая не должна пережиматься при набухании пещеристых тел. С нуля воспроизвести такую структуру очень сложно, поэтому Энтони Атала использует для получения искусственных пенисов коллагеновые основы донорских органов, которые очищают от клеток с помощью ферментов. Потом ее заселяют клетками человека, которому орган впоследствии можно будет без проблем пересадить (пока такие операции не проводили). По словам Энтони Атала, какой бы тяжелой не была травма пениса, благодаря тому, что этот орган продолжается и внутри таза, у человека всегда можно взять клетки на выращивание нового .

Человеческие искусственные пенисы пока в разработке - чтобы их можно было пересаживать реципиентам, они должны пройти много сложных тестов. Зато уже есть успешные результаты для кроликов - животные с пенисами, полученными методом Энтони Атала, успешно спариваются и обзаводятся потомством. Однако перейти от кроликов к людям оказалось не так просто - чтобы получить орган большего размера, недостаточно просто пропорционально увеличить количество клеток, время инкубации и прочие параметры. К тому же с увеличением объема органа становятся выше и требования к его внутренней структуре - ведь каждая клетка живого организма должна находиться от ближайшего капилляра на расстоянии не больше 200 микрометров (что примерно равно толщине человеческого волоса). Поэтому вырастить крупный объемный орган всегда сложнее, чем плоский (как фрагмент кожи), трубчатый (как искусственная уретра) или мешковидный (как мочевой пузырь).

Интересы Энтони Атала не ограничиваются мочеполовой системой. В его лаборатории идут работы по получению искусственных тканей печени, сердца и легких. В 2011 году во время конференции TED знаменитый ученый взбудоражил общественность, продемонстрировав полученный методом 3D-печати прототип искусственной почки . Ключевым словом, на которое многие не обратили внимания, было «прототип» - искусственная почка имела правильную форму, а также доказывала, что с помощью 3D-печати можно получить нечто, хотя бы внешне сходное с желаемым объектом. Но структура прототипа почки даже близко не приближалась к сложности настоящего органа, которая совершенно необходима, чтобы почка выполняла свою функцию. Этот орган должен состоять из тончайших канальцев, опутанных сосудами, для того, чтобы выделять с мочой только ненужные вещества, а все полезное возвращать в кровь. К такой сложности биоинженерам до сих пор не удалось подойти, и, конечно, ее невозможно было достичь в 2011 году. Однако, по-видимому, именно метод биопечати со временем позволит ученым получать точно те биологические структуры, которые ему необходимы. Этот метод разработал и активно развивает еще один знаменитый биоинженер - Габор Форгач.

Габор Форгач

Габор Форгач - знаменитый биоинженер и предприниматель от науки. Под его руководством был создан первый коммерческий 3D-биопринтер, на котором уже напечатаны образцы многих тканей. Вместе со своим сыном Андрасом основал компанию Modern Meadow , производящую искусственную кожу и искусственное мясо для употребления в пищу.

В 1996 году Габор Форгач обратил внимание на факт, уже давно известный ученым -клетки, образовавшиеся в ходе деления зародыша, могут двигаться по нему, но, попав в окончательное место назначения, склеиваются с другими клетками. Это навело его на мысль, что клетки можно использовать в качестве элементарных единиц для конструирования - если подобрать правильные условия, то клетки, уложенные в желаемые структуры, сами склеятся между собой. Однако, идея о том, что для такого укладывания клеток можно применять специальный принтер, ему в голову не пришла.

Первым додумался печатать биологические объекты Томас Боланд . Он модифицировал обычный принтер таким образом, что на нем стало возможным печатать биологическими материалами, например, белками или бактериями. Для 3D-печати прибор не подходил. Идея, тем не менее, оказалась здравой, и со временем привела к разработке биопринтеров, способных печатать сложные объемные структуры.

Форгачу потребовалось много времени, чтобы развить свою идею о самостоятельном склеивании клеток в технологию получения трехмерных искусственных тканей. Несколько лет потребовалось и на разработку принтера, способного применить эту технологию. Устройство должно было стать достаточно точным и деликатным по отношению к чувствительным клеточным «чернилам». Такой прибор под названием Organovo компании Форгача удалось создать только в 2009 году . В 2010 году на этом первом биопринтере напечатали человеческий сосуд, и, что с самого начала было важно для Форгача, без всяких дополнительных каркасов. Благодаря этому появляется уверенность, что в органе не будет содержаться абсолютно ничего, вызывающего иммунологическое отторжение у реципиента (если орган выращивать из его собственных клеток).

Чтобы сделать из клеток аналог чернил принтера, их помещают в специальный гель, который не позволяет клеткам слипаться раньше времени. Принтер печатает, как правило, не единичными клетками, а их шарообразными скоплениями - сфероидами (хотя метод позволяет использовать для печати и отдельные клетки, что необходимо для некоторых структур), идея которых также принадлежит Габору Форгачу . Каждый напечатанный слой клеток отделяют слоем геля, а уже готовый орган отправляют дозревать в инкубатор. При этом гель, использованный для печати, растворяется, а внутри органа развивается его сосудистая сеть - от сосудов отрастают тончайшие капилляры. Это очень удобно для биоинженеров, потому что получать такие мелкие сосуды они пока не умеют. Кроме того, если орган пересадить реципиенту, то в новую часть тела обязательно проникнет сосудистая сеть хозяина. Однако такая практика скорее подходит для животных, а не для человека - в его случае слишком опасно полагаться на то, что нужные сосуды врастут в орган сами. К тому же надеяться на то, что сосуды сами вырастут как нужно, совершенно точно нельзя в случае органов со сложной структурой - таких, как уже обсуждавшиеся почки. Так что остается надеяться на повышение точности 3D-печати в будущем.

3D-биопечать продолжает развиваться уже во всем мире: в 2010 году впервые удалось напечатать фрагмент кожи , а в 2014 - сердечный клапан (рис. 3) и фрагмент ткани печени . Такие ткани прекрасно подходят для предварительных испытаний прототипов лекарственных препаратов, а кожа - еще и для тестов косметических средств (компания L’Oreal, к примеру, уже использует для тестов искусственную кожу, напечатанную Organovo ). Такие тесты проще организовать, чем тесты на животных, которые требуют согласования с биоэтическими комиссиями. Кроме того, тесты на человеческих, пусть и выращенных в лаборатории, органах и коже, дают более достоверные результаты о влиянии продукта на человеческий организм, чем исследования на лабораторных животных.

О том, как в России развивается 3D-печать, рассказано в статье «Органы из лаборатории » .

Последнее достижение биопечати на данный момент - фрагмент нервной ткани человека с точно позиционированными нейронами, полученный в этом году под руководством австралийского биоинженера Гордона Уэлласа (тот самый случай, когда необходимо печатать ткань отдельными клетками, а не сфероидами) .

Габор Форгач не только положил начало 3D-печати органов человека для больных людей или переживших несчастный случай. Он еще и первым понял, что искусственные ткани и органы могут пригодиться всем людям без исключения. Некоторые продукты животного происхождения - такие как мясо и кожа - настолько хороши, что им трудно создать полноценную замену. Но теперь, благодаря биоинженерии, их можно будет получать этичным образом - без убийств животных. Габору Форгачу первому пришло в голову, что мы уже знаем достаточно для выращивания искусственного бифштекса или куска кожи. Получать их значительно проще, чем многие искусственные органы, над разработкой которых бьются ученые, а потребность в мясе и коже значительно выше, чем в человеческих органах. Также переход на мясо и кожу искусственного происхождения благоприятно сказался бы на экологической ситуации - ведь биореакторы не вытаптывают огромные пастбища и не выделяют в атмосферу такое количество метана, какое может существенно усилить парниковый эффект.

Поэтому вторая компания Форгача, которую он основал вместе со своим сыном Андрасом - Modern Meadow - выращивает мясо и кожу в лабораторных условиях . Важный аспект деятельности компании - это оптимизация методик, поскольку сейчас искусственные копии продуктов животного происхождения обходятся дороговато. Другая проблема состоит в том, что общественность с недоверием относится к выращенным в лаборатории продуктам. Согласно опросу, проведенному в 2014 году, лишь 20% американцев готово попробовать полученное лабораторными методами мясо . Поэтому сам Форгач старается доказать людям, что его продукты безопасны, в том числе на собственном примере. Например, в 2011 году на конференции TedMed Форгач собственноручно приготовил, а затем съел выращенное в лаборатории мясо . Кроме того, биоинженер уверяет, что его лаборатории открыты для потенциальных клиентов, и каждый может увидеть, как делается сосиска, в то время как «бойни никогда не приглашают посетителей понаблюдать за их работой» .

Габор Форгач уловил, что в биотехнологиях не хватает собственно технологичности - многие методы, использовавшиеся при попытках воспроизвести сложнейшую структуру органов, были старомодными по своей сути. Биология остается не очень точной наукой, но при создании искусственных органов для живых людей, по мнению Форгача, неприемлемо рассчитывать на то, что правильная структура образуется как-нибудь сама. 3D-биопринтеры следуют веяниям времени и воплощают в жизнь мечты о точном контроле над тем, что кажется полностью хаотичным и загадочным, - жизнью. И только одно направление биоинженерии, возможно, еще более технологично и футуристично - органы на чипах.

Дональд Ингбер

Дональд Ингбер - биолог, знаменитый своим инженерным взглядом на живые объекты, благодаря которому ученый сделал несколько открытий в области биологии клетки (например, о влиянии механических воздействий на активность генов). Автор идеи «органа на чипе» - простейшей клеточной системы, расположенной на пластинке стандартного размера и воспроизводящей основные функции моделируемого органа. Создал множество органов на чипах, и сейчас работает над объединением десяти таких органов в «человека на чипе».

До начала двухтысячных Дональд Ингбер исследовал биологию рака - параметры, влияющие на развитие опухолей и метастазирование раковых клеток. При этом ученый смотрел на живую клетку как инженер. На подход ученого к исследованиям клеточной биологии повлияла, как ни странно, одна необычная скульптура, которую Дональд Ингбер увидел в середине 70-х годов. Скульптура была сконструирована по принципу тенсегрити . Такие конструкции состоят из прочных балок, которые не касаются друг друга благодаря системе натянутых тросов. Вся структура поддерживается за счет точно сбалансированных натяжений гибких элементов. Дональд Ингбер предположил, что и структура живой клетки может поддерживаться благодаря тем же принципам. И действительно, ему удалось показать, например, что приложенные к поверхности клетки механические воздействия могут повлиять на форму ее ядра и даже на экспрессию генов. Глубокое понимание того, как механические силы влияют на структуру и функцию клеток, помогло ученому продвинуться в исследовании биологии рака .

Вероятно, такое стремление ввести исследования клетки в более понятную, «механическую» плоскость, в конце концов и привело Дональда Ингбера к идее органов на чипах. Орган на чипе - это пластинка размером не более кредитной карточки. В пластинке есть ячейки, заселенные клетками определенных типов. Ячейки соединяются каналами, имитирующими кровоток или обмен тканевой жидкости между группами клеток органа. Разумеется, такое устройство не отражает форму природного органа, но зато в максимально компактной и контролируемой форме моделирует саму суть его работы. Жизнедеятельность клеток в органе на чипе нужно поддерживать, помещая чип в специальный реактор, который прогоняет по каналам чипа питательные растворы под правильным давлением и поддерживает определенную температуру и содержание растворенных газов в этих жидкостях.

Важнейшее преимущество органов на чипах соответствует технологическим трендам: это модульность - возможность составлять из таких устройств разные комбинации. Чипы, изображающие различные органы, можно соединять между собой, чтобы изучать влияние этих органов друг на друга, моделировать передвижения болезнетворных микробов по различным системам организма или же изучать, что происходит с молекулами лекарства, когда оно попадает в организм.

Первое устройство такого типа - легкое на чипе - Дональд Ингбер с коллегами разработали в 2010 году . Каналы этого устройства разделены на две части пористой мембраной, с одной стороны которой располагается слой клеток легкого, а с другой - слой клеток стенки сосуда. В той части каналов, где располагались клетки сосуда, циркулирует кровь, а та, где находятся клетки легкого, заполнена воздухом. В обе части каналов ведут специальные отверстия - туда можно добавлять лекарства или, к примеру, болезнетворных микроорганизмов, чтобы смоделировать их попадание в легкое из воздуха или с током крови.

С тех пор на чипах удалось воспроизвести работу почки , печени , а также кишечника с микробиомом и перистальтикой (рис. 4) . Особенно интересной для клинических исследований оказалась разработка чипа, отражающего устройство гематоэнцефалического барьера . Разработчики воспроизвели и плотные контакты между клетками сосудов мозга, и расположение глиальных клеток - особенности, благодаря которым многие молекулы из крови не могут легко проникнуть в мозг. При тестировании прототипов лекарств очень полезно узнать, способны ли они проникать сквозь гематоэнцефалический барьер, и если да, то с какой эффективностью. Кроме этого, на чипе удалось воспроизвести устройство гематопоэтической ниши костного мозга, что крайне полезно для исследований болезней, при которых нарушается нормальное развитие клеток крови .

Рисунок 4. «Кишечник на чипе». а . Схема устройства. Гибкая пористая мембрана, выстланная эпителиальными клетками кишечника, расположена горизонтально по центру микроканала, по бокам которого находятся вакуумные камеры. б . Фотография «кишечника на чипе», состоящего из прозрачного ПДМС-эластомера (эластомера из полидиметилсилоксана). По направлению стрелок насосом заливают красную и синюю жидкости в нижний и верхний отсеки микроканала, соответственно, чтобы их визуализировать.

Евсеева Екатерина Андреевна

Глава 1. История создания искусственных органов и развитие современной биологической науки в данном направлении

Глава 2. Современные искусственные органы, материалы для их создания

Глава 3. Отношение общественности к искусственным органам

Глава 4. Практическая значимость искусственных органов и тенденция развития российской науки в данном направлении

Скачать:

Подписи к слайдам:

Муниципальное общеобразовательное учреждение -Средняя общеобразовательная школа № 3 г. Аткарска
Автор: Евсеева Екатерина учащаяся 11 класса
средней общеобразовательной школы № 3 г. Аткарска
Научный руководитель: Кузнецова Наталья Владимировна учитель биологии и химии общеобразовательной школы № 3 г. Аткарска
Аткарск 2012
или
Лечить
заменить орган? Выяснить, кода появились первые попытки воссоздания человеческих органов. Рассказать о современных искусственных органах.Показать «плюсы» и «минусы» искусственных органов. Раскрыть принцип практического применения искусственных органов. Провести социологические опросы и выявить отношение современных людей к внедрению в организм искусственных органов. Выявить тенденции развития биологической науки в направлении создании искусственных органов в России.
Разработка приборов, способных брать на себя функции органов человеческого тела - одно из передовых направлений современной медицины.
История развития искусственных органов насчитывает не один десяток лет. Создать «запасные части» - заменители естественных органов - люди стремились уже с давних времен.
Первые научные разработки в данной области относятся к 1925, когда С. Брюхоненко и С. Чечулин (советские ученые) провели опыт со стационарным аппаратом, способным заменить сердце
Рисунок 2.Брюхоненко Сергей Сергеевич
1925 год принято считать началом отсчета в истории разработок искусственных органов.
В 1936 году ученый С. Брюхоненко самостоятельно разрабатывает оксигенатор – аппарат заменяющий функцию легких.
В начале 1937 г. В. Демихов кустарно изготавливает первый образец имплантируемого сердца и испытывает его на собаке.
В 1943 году нидерландский ученый В. Кольф разрабатывает первый аппарат гемодиализа, то есть, первую искусственную почку.
В 1953 г. Дж. Гиббон, ученый из Соединенных штатов, при операции на человеческом сердце впервые успешно применяет искусственные стационарные сердце и лёгкие.
В 1969 Д. Лиотта и Д. Кули впервые испытывают в теле человека имплантируемое искусственное сердце.
В 2007 поставлен рекорд по продолжительности жизни пациента с полностью искусственными (но стационарными) лёгкими: 117 дней.
В 2008 врачи впервые в истории поддерживают жизнедеятельность пациента с одновременным искусственным восполнением функции сердца и лёгких в течение 16 дней в ожидании донорского сердца.
Современная биологическая индустрия достигла своего пика. Появляются все новые и новые аппараты и приборы, на разработки которых уходит не десятки лет, а месяцы. Если раньше создание киборгов, было только сказкой, то современные изобретения позволяют в этом усомниться.
Профессор Университета Южной Каролины после длительных исследований создал чип, способный заменить гиппокампус - часть мозга, ответственную за кратковременную память, а также ориентацию в пространстве.
Немецким ученым из Института биохимии имени Макса Планка после длительных исследований удалось совместить живые клетки головного мозга с полупроводниковым чипом.
А калифорнийской компанией Neuropace был разработан электростимулирующий прибор для эпилептиков, названный «нейростимулятором ответных реакций»
Группа специалистов консорциума Bionic Vision Australia презентовали свой бионический глаз в Университете Мельбурна
А вот подход британцев, разработавших технологию BrainPort, принципиально отличается от всех вышеописанных в части метода передачи информации.
Первая группа – лица от 16 до 25 лет. Вторая группа – от 26 до 45 лет. Количество участников в каждой группе 30 человек. Опрос состоял из следующих вопросов: Как вы относитесь к искусственным органам? Считаете ли вы, что искусственные органы способны продлить жизнь человеку? Как бы вы ответили на вопрос: «Лечить или заменить орган»?
Разработка и создание искусственных органов в ведущих западных странах относится к главным государственным программам.
Все эти годы работы по созданию и клиническому применению искусственных органов в ведущих странах и, в особенности, в России не только не прекращались, но обеспечивались приоритетным финансированием. Сегодня это направление объединяет последние мировые медико-биологические и технические разработки и технологии, в том числе, с привлечением к их созданию новейших достижений военно-промышленного комплекса. Стимулом являются невероятные рыночные прибыли и неограниченная востребованность разработок на медицинском рынке. К основным медицинским направлениям, для которых осуществляются разработки, являются сердечно - сосудистые заболевания, сахарный диабет, онкология, травматология.
заменить орган?
или
Лечить
Я считаю, что в будущем человечество либо усовершенствует ныне существующие органы, либо найдет альтернативный путь решения этой проблемы. И кто знает, может, к концу 21 века люди будут иметь неограниченные возможности, и киборги станут не сказкой, а самой настоящей реальностью. Задачи, поставленные мной в начале проекта, достигнуты. Открыто новое научное знание. Получены практические, полезные результаты. Данный проект может быть применен при проведении уроков, семинаров, в качестве учебного пособия.
Вывод:
Список используемой литературы: Брюхоненко С.С., Чечулин С.И. (1926), Опыты по изолированию головы собаки (с демонстрацией прибора) // Труды II Всесоюзного съезда физиологов. - Л.: Главнаука.Демихов В.П. (1960), Пересадка жизненно важных органов в эксперименте. - М.: МедгизГришманов В.Ю., Лебединский К.М. (2000). Искусственное питание: концепции и возможности // Мир Медицины (3-4). Шутов ЕВ (2010). Перитонеальный диализ – М.http://ru.wikipedia.org/wikihttp://medi.ru/doc/http://itc.ua/articles/iskusstvennye_organy_na_puti_k_kiborgamhttp://novostinauki.ru/news/19118/

Предварительный просмотр:

Введение

Глава 1. История создания искусственных органов и развитие современной биологической науки в данном направлении

Глава 2. Современные искусственные органы, материалы для их создания

Глава 3. Отношение общественности к искусственным органам

Глава 4. Практическая значимость искусственных органов и тенденция развития российской науки в данном направлении

Заключение

Приложения

Введение

В 20 веке научная индустрия приобрела новые приоритеты. Современный мир требует решения множества проблем: лечения смертельных болезней, возобновлению клеток человеческого тела, расшифрования генетического кода. Однако есть еще одна проблема - способность к «изнашиванию» человеческих органов. Искусственные органы – альтернативный путь решения данного вопроса. Сейчас вопрос: «Лечить или заменить орган?» - стоит ребром в биологической науке. Мой проект направлен на изучение данной проблемы и в связи с этим я ставлю для себя следующие задачи:

  1. Выяснить, кода появились первые попытки воссоздания человеческих органов
  2. Рассказать о современных искусственных органах
  3. Объяснить принцип подбора материалов для их создания
  4. Показать «плюсы» и «минусы» искусственных органов
  5. Раскрыть принцип практического применения искусственных органов
  6. Провести социологические опросы и выявить отношение современных людей к внедрению в организм искусственных органов
  7. Выявить тенденции развития биологической науки в направлении создании искусственных органов в России.

Разработка приборов, способных брать на себя функции органов человеческого тела - одно из передовых направлений современной медицины. У организма есть множество функций: моторная, сенсорная, интеллектуальная и другие.

Но особое место среди функций человеческого организма занимает функция собственного жизнеобеспечения. Если она не выполнена, то нет смысла говорить и о реализации других функций. Критически важные для жизни органы - это лёгкие, сердце, почки, сосудистая и пищеварительная системы, печень, а также некоторые другие компоненты. Уже сегодня существует оборудование, способное восполнять функции большинства основных органов жизнеобеспечения в течение продолжительного времени. Например, максимальный срок жизни человека со вспомогательным искусственным сердцем составляет 9 лет, максимальный срок жизни с использованием искусственных почек – 40 лет, максимальное время жизни пациента, питающегося от капельницы (минуя желудочно-кишечный тракт) – более 30 лет. Результаты, касающиеся других органов, пока более скромны, но и по ним есть прогресс

Данной темой я заинтересовалась по нескольким причинам. Во-первых, у одного из моих родственников, попавшего в автомобильную катастрофу, полностью функционирует только одна почка. Ему сообщили, что в будущем ему может быть имплантирована искусственная почка. Однако для этого потребуется несколько лет исследований. Меня заинтересовал принцип замены настоящих органов на искусственные. Во-вторых, в этом году я собираюсь поступать в МГМСУ на «кафедру трансплантологии и искусственных органов» и связать свою жизнь с данным типом деятельности. В-третьих, данная тема достаточно актуальна в наши дни. Ведь, создание искусственных органов позволяет продлить и сохранить жизнь человека.

1. История создания искусственных органов и развитие современной биологической науки в данном направлении.

История развития искусственных органов насчитывает не один десяток лет. Создать «запасные части» - заменители естественных органов - люди стремились уже с давних времен. Еще 2000 лет назад греческий историк Геродот рассказывал о воине, который отрубил прикованную ступню, чтобы бежать из плена, и многие годы потом ходил с деревянной ногой. А при раскопках у итальянского города Капуи археологи нашли бронзовую ногу римского легионера, заменившую потерянную им в одном из сражений более 1500 лет назад. В средние века искусственные конечности - протезы стали делать подвижными.

Первые научные разработки в данной области относятся к 1925, когда С. Брюхоненко и С. Чечулин (советские ученые) провели опыт со стационарным аппаратом, способным заменить сердце (приложение 1). Вывод из этого опыта состоял в следующем: голова собаки, отделённая от туловища, но подключенная к донорским лёгким и новому аппарату способна сохранять жизнеспособность в течение нескольких часов, оставаясь в сознании и даже употребляя пищу. 1925 год принято считать началом отсчета в истории разработок искусственных органов.

В 1936 году ученый С. Брюхоненко самостоятельно разрабатывает оксигенатор – аппарат заменяющий функцию легких. С этого момента существует теоретическая возможность поддерживать полный цикл жизнеобеспечения отделённых голов животных до нескольких суток. Однако на практике этого достичь не удаётся. Выявляется множество недостатков оборудования: разрушение эритроцитов, наполнение крови пузырьками, тромбы, высокий риск заражения. По этой причине, первое применение аналогичных аппаратов на человеке затягивается ещё на 17 лет.

В начале 1937 г. В. Демихов кустарно изготавливает первый образец имплантируемого сердца и испытывает его на собаке. Но низкие технические характеристики нового прибора позволяют непрерывно использовать его в течение лишь полутора часов, после чего собака погибает.

В 1943 году нидерландский ученый В. Кольфф разрабатывает первый аппарат гемодиализа, то есть, первую искусственную почку. Через год он уже применяет аппарат во врачебной практике, в течение 11 часов поддерживая жизнь пациентки с крайней степенью почечной недостаточности.

В 1953 г. Дж. Гиббон, ученый из Соединенных штатов, при операции на человеческом сердце впервые успешно применяет искусственные стационарные сердце и лёгкие. Начиная с этого времени, стационарные аппараты искусственного кровообращения становятся неотъемлемой частью кардиохирургии.

В 1963 Р. Вайт в течение примерно 3 суток поддерживает жизнеспособность отдельного мозга обезьяны.

В 1969 Д. Лиотта и Д. Кули впервые испытывают в теле человека имплантируемое искусственное сердце. Сердце поддерживает жизнь пациента в течение 64 часов в ожидании человеческого трансплантанта. Но вскоре после трансплантации пациент погибает.

В течение последующих десятилетий разработки новых аппаратов не производятся. Устраняются ошибки предыдущих изобретений.

В 2007 поставлен рекорд по продолжительности жизни пациента с полностью искусственными (но стационарными) лёгкими: 117 дней.

В 2008 врачи впервые в истории поддерживают жизнедеятельность пациента с одновременным искусственным восполнением функции сердца и лёгких в течение 16 дней в ожидании донорского сердца. В том же году учёные Калифорнийского университета заявляют о выпуске первого в мире образца портативной искусственной почки. Помимо этих результатов, в 2008 году происходят знаковые события в области разработки и других искусственных органов и частей тела. Так, компанией Touch Bionics был создан революционный высокореалистичный протез руки.

В 2010 в Калифорнийском университете разработана первая, имплантируемая бионическая почка, пока что не доведённая до серийного производства (приложение 2).

2. Современные искусственные органы, материалы для их создания.

Современная биологическая индустрия достигла своего пика. Появляются все новые и новые аппараты и приборы, на разработки которых уходит не десятки лет, а месяцы. Если раньше создание киборгов, было только сказкой, то современные изобретения позволяют в этом усомниться.

Первая область развития искусственных органов касается области человеческого мозга, возможности которого до конца не изучены. Тем не менее, определенные манипуляции с мозгом проводятся, в основном с целью излечения болезней. Профессор Университета Южной Каролины после длительных исследований создал чип, способный заменить гиппокампус - часть мозга, ответственную за кратковременную память, а также ориентацию в пространстве. Поскольку гиппокампус зачастую подвергается нарушениям при нейродегеративных заболеваниях, то данный чип, ныне проходящий лабораторные испытания, может стать незаменимой вещью в жизни многих больных.

Немецким ученым из Института биохимии имени Макса Планка после длительных исследований удалось совместить живые клетки головного мозга с полупроводниковым чипом. Важность открытия заключается в том, что данная технология дает возможность выращивать очень тонкие полоски тканей на чипе, в результате чего он позволит очень подробно наблюдать взаимодействие всех нервных клеток между собой путем выявления сигналов, посылаемых клетками через синапсы.

А калифорнийской компанией Neuropace был разработан электростимулирующий прибор для эпилептиков, названный «нейростимулятором ответных реакций» (приложение 3). Принцип работы заключается в том, что устройство сдерживает поток неконтролируемых импульсов во время припадков с помощью электрических разрядов из внешнего источника. Испытания Neuropace проводились на сотне пациентов, удовлетворительный результат просматривался практически у половины.

Еще одной областью внедрения искусственных органов является глазной аппарат. Существует множество вариантов создания искусственных глаз.

Группа специалистов консорциума Bionic Vision Australia презентовали свой бионический глаз в Университете Мельбурна (приложение 4). Лабораторные испытания уже проводятся, а более массовое внедрение ожидается к 2013 году.

Ученым Калифорнийского университета удалось создать протез, который способен выполнять функции сетчатки глаза. На данном этапе тестирования человек способен видеть только размытую картинку, но дальнейшие перспективы достаточно позитивны. Данный протез устроен так: на оправе очков закрепляется камера, через которую изображение передается прямо на уцелевшие нейроны в сетчатке глаза. Для перевода входящего видеосигнала в импульсы, которые способны воспринять нервные клетки, пришлось разработать специальный программно-аппаратный конвертер.

Стоит отметить, что качество зрения, которое предлагает используемая во всех вышеупомянутых устройствах технология напрямую зависит от количества светочувствительных электродов в имплантанте. Если на нынешнем этапе их всего 60, то в скором будущем это число планируют довести до 1000, что радикально улучшит восприятие – не просто передавая пятна света, но гораздо полноценнее сообщая человеку о происходящем вокруг.

А вот подход британцев, разработавших технологию BrainPort, принципиально отличается от всех вышеописанных в части метода передачи информации. Идея в том, что человек должен начать видеть с помощью языка (приложение 5).

Внешняя часть устройства, как обычно, включает в себя небольшую видеокамеру, вмонтированную в оправу очков и конвертер, преобразующий сигнал. Однако, вместо электродов, вживляемых в сетчатку и передающих данные на зрительные нервы, BrainPort оборудован небольшой трубкой с прямоугольным передатчиком, который необходимо положить на язык. Электрические импульсы передаются на него и в зависимости от их интенсивности, человек может распознавать наличие препятствий на пути.

Следующая область, в которой искусственные органы применяются достаточно часто, это слуховой аппарат человека. К счастью, в отличие от зрения, частичное и даже полное восстановление слуха реализуется проще, поэтому уже достаточно давно существуют слуховые аппараты или, по научному, кохлеарные имплантанты. Принцип их работы прост: с помощью микрофона, расположенного за ухом, аудиосигнал передается на вторую часть аппарата, стимулирующую слуховой нерв – по сути, слуховой аппарат увеличивает громкость воспринимаемого звука.

Так, например, профессором Мириам Фарст-Юст из Школы электротехники Тель-авивского университета был разработан новый вид прикладного программного обеспечения «Clearcall». Данная программа предназначена сугубо для кохлеарных имплантантов и слуховых аппаратов и позволяет более четко слышать в шумных местах звуки, распознавать речь, а также отфильтровывать фоновые шумы. Для того, что бы человек воспринимал нормально звуки, Clearcall работает с собственной базой данных звуков, в результате чего идет максимально точное отфильтровывание посторонних шумов и усиление «полезных» сигналов.

Что касается материалов для создания искусственных органов, то в основном используются полимеры. Например, полиэтилен низкой плотности и поликапролактам используется для создания изделий, контактирующих с тканями организма. Поликарбонат используется для создания корпуса и деталей желудочков и стимуляторов сердца. Флоропласт-4 используется для протезов сосудов и клапанов сердца. Полиметилметакрилат применяют для создания деталей аппаратов «искусственная почка», «сердце - легкие». А для создания бесшовных соединений используется цианакрилатный клей. Что касается плюсов и минусов современных искусственных органов, то можно сказать следующее:

Плюсы:

  1. Возможность сохранения человеческой жизни в случаях ожидания донорского органа
  2. Большое количество разработок и усовершенствование ныне существующих искусственных органов
  3. Возможность сохранения человеческой жизни в случае потери настоящего органа (имплантаты, протезы)
  4. Возможность замены нефункционирующего органа с рождения (слепота)

Минусы:

  1. Большой риск при внедрении нового органа
  2. Дорогая стоимость искусственных органов
  3. Отсутствие достаточного уровня развития современной биологической науки в данном направлении

Таким образом, подводя итог вышесказанного, можно сказать, что современная биологическая наука активно развивается в данном направлении.

3. Отношение общественности к искусственным органам

Как вы знаете, отношение к науке никогда не было однозначным. В истории развития человечества никогда не было единой точки зрения, как на происхождение человека, так и на пользу научных инноваций. Мною был проведен опрос среди 2-х социологических групп. Первая группа – лица от 16 до 25 лет. Вторая группа – от 26 до 45 лет. Количество участников в каждой группе 30 человек. Опрос состоял из следующих вопросов:

  1. Как вы относитесь к искусственным органам?
  2. Считаете ли вы, что искусственные органы способны продлить жизнь человеку?
  3. Как бы вы ответили на вопрос: «Лечить или заменить орган»?

Результаты опроса я представила в виде диаграмм (приложение 6)

Таким образом, исходя из данных диаграмм, мы видим, что люди старшего поколения наиболее презрительно относятся к искусственным органам. А молодое поколение, наоборот, считает, что искусственные органы – это будущее человечества. Отношение к развитию биологической науки в этом направлении неоднозначно. Однако я, проделав множество исследований этой проблемы, считаю, искусственные органы со временем помогут продлить жизнь человека, помогут справиться с врожденными дефектами и заболеваниями.

4. Практическая значимость искусственных органов и тенденция развития российской науки в данном направлении

Разработка и создание искусственных органов в ведущих западных странах относится к главным государственным программам. В США эта программа постоянно находится под патронажем президентов страны. Суммарные инвестиции в этих странах только частного капитала по разным направлениям программы составляют ежегодно миллиарды долларов. При этом они обеспечивают инвесторам непосредственную стабильную прибыль и гарантируют надежные политические и экономические перспективы.

Большинство искусственных органов в настоящее время достаточно большая роскошь. Исключение этому составляют протезы и слуховые аппараты. Поэтому большинство опытов и разработок искусственных органов в настоящее время происходит за рубежом, в странах Европы, в США. Но, тем не менее, современная Россия пытается идти в ногу со временем. В нашей стране все чаще финансируются биологические разработки в данной области науки, открываются все новые и новые кафедры, направленные на подготовку высококвалифицированных ученых в данном направлении. В России это направление получило государственную поддержку в 1974 году после заключения Межправительственного соглашения о сотрудничестве между СССР и США в области создания искусственного сердца.

При Государственном комитете СССР по науке и технике была создана Межведомственная комиссия, которая разработала комплексную программу НИР и ОКР на два года, полностью обеспеченную финансированием.

К сожалению, неудачное завершение сотрудничества по программе создания искусственного сердца, последующее сокращение финансирования, ослабление интереса руководства страны к его продолжению и наступившие в стране экономические и политические перемены 90-х годов практически полностью остановили работы по этому направлению. Развивавшиеся в России на начальном этапе дикие рыночные отношения переориентировали интересы специалистов на пересадку жизненно важных органов. При этом не был принят во внимание западный опыт современной трансплантологии, где, наряду с хорошо организованной (например, система «Евротрансплант») и законодательно защищенной клинической практикой пересадки жизненно важных органов (сердце, почка, печень, поджелудочная железа, легкие) нуждающимся больным, наблюдалось развитие криминального сектора трансплантологии.

Все эти годы работы по созданию и клиническому применению искусственных органов в ведущих странах и, в особенности, в США не только не прекращались, но обеспечивались приоритетным финансированием. Сегодня это направление объединяет последние мировые медико-биологические и технические разработки и технологии, в том числе, с привлечением к их созданию новейших достижений военно-промышленного комплекса. Стимулом являются невероятные рыночные прибыли и неограниченная востребованность разработок на медицинском рынке. К основным медицинским направлениям, для которых осуществляются разработки, являются сердечно - сосудистые заболевания, сахарный диабет, онкология, травматология.

5. Заключение

Подводя итог вышесказанного, мне хочется сказать, что вопрос о развитии и применении искусственных органов – достаточно спорный. Не существует единой точки зрения на данную проблему. Нет единой технологии производства и разработок в данной сфере, что положительно сказывается на развитии биологической науки. Вопрос о будущем применении искусственных органов остается спорным. Но лично я считаю, что в будущем человечество либо усовершенствует ныне существующие органы, либо найдет альтернативный путь решения этой проблемы. И кто знает, может, к концу 21 века люди будут иметь неограниченные возможности, и киборги станут не сказкой, а самой настоящей реальностью. Задачи, поставленные мной в начале проекта, достигнуты. Открыто новое научное знание. Получены практические, полезные результаты. Данный проект может быть применен при проведении уроков, семинаров, в качестве учебного пособия.

Список использованной литературы

  1. Брюхоненко С.С., Чечулин С.И. (1926), Опыты по изолированию головы собаки (с демонстрацией прибора) // Труды II Всесоюзного съезда физиологов. - Л.: Главнаука, - С. 289-290
  2. Демихов В.П. (1960), Пересадка жизненно важных органов в эксперименте. - М.: Медгиз
  3. Гришманов В.Ю., Лебединский К.М. (2000). Искусственное питание: концепции и возможности // Мир Медицины (3-4), 26-32 С.
  4. Шутов ЕВ (2010). Перитонеальный диализ – М - 153 с
  5. Интернет-ресурсы:

В середине двадцатого века в создание искусственных органов вряд ли кто мог поверить всерьёз, это было что-то из разряда фантастики. В наши дни в обозначенном направлении органов ведутся активные исследовательские работы, результаты которых мы уже можем наблюдать, однако остаётся и множество проблем, связанных с технической сложностью реализации данной идеи. Рассмотрим проблематику на примере создания искусственного сердца.

Одна из основных задач состоит в том, чтобы получить трехмерную ткань стенки сердца толщиной в палец или два. Получать монослои клеток и выращивать такие ткани мы уже можем. Проблема же в том, чтобы одновременно с мышечной тканью вырастить и сосудистое русло, через которое эта мышечная ткань будет снабжаться кислородом и питательными веществами и будут выводиться продукты метаболизма. Без сосудистого русла, без адекватного снабжения клетки в толстом слое погибнут. В тонком слое они могут питаться благодаря диффузии питательных веществ и кислорода, а в толстом слое диффузии уже недостаточно, и глубокие слои клеток будут погибать. Сейчас мы можем делать порядка трех слоев сердечных клеток, которые способны выжить.

Говоря о перспективных имплантатах, нужно помнить, что сосудистое русло имплантата необходимо будет подключить к сосудистому руслу, которое уже имеется в другой части сердца реципиента, то есть нужно вырастить сосудистое русло определенной анатомии. Выращивание целого сердца с множеством его отделов, клеток и собственной проводящей системой - это очень сложная многоклеточная задача. Точная копия человеческого сердца может быть получена приблизительно через 7–10 лет в хорошо оснащенных лабораториях развитых стран. Сердце - это не железа, которая вырабатывает гормоны, это насос. Нам нужно, чтобы кровь прокачивалась и не травмировалась при прокачке. Травмирование крови - это как раз проблема внешних насосов, которые используются при операциях на сердце. Когда их только разрабатывали, основной трудностью было то, что эритроциты и другие элементы крови этими насосами повреждались.

Современное развитие материалов может привести к тому, что будет создано механическое сердце, которое можно будет подшить, чтобы оно спокойно выполняло функции биологического сердца, которое дает человеку природа.

Если в целом говорить об импортируемых системах, то сердце здесь не самый удобный объект. Разумнее продвигать эксперименты на печеночных или почечных тканях. Например, полоски печени легко выживают сами по себе и относительно легко прирастают. Дать человеку, у которого печень поражена циррозом, новую часть печени, которая могла бы начать регенерировать и расти сама по себе, - это гораздо более разумное приложение сил.


В перспективе 5–10 лет станет понятно, стоит ли тратить время и силы на то, чтобы выращивать новое сердце, или проще будет поставить человеку механическое сердце, примеры успешного применения которого уже есть на данный момент.

Проблема с существующими вариантами искусственного сердца заключается в том, что для выполнения аналогичной работы они должны биться 100 тыс. раз в день и 35 млн. раз в год, поэтому быстро изнашиваются. Если бы речь шла о машине, то вопрос можно было бы легко решить – поменять масло и свечи зажигания, но в случае с сердцем все не так просто.

Уникальность нового устройства, примененного докторами из Техасского института сердца (Texas Heart Institute in Houston) как раз в том, что оно непрерывно гонит кровь и человеческий пульс прощупывается. Оно помогает справиться с образованием тромбов и кровотечением, предоставляет больше возможностей людям с тяжелой стадией сердечной недостаточности, которые ранее имели только два варианта: искусственное сердце или длительное ожидание в очереди на трансплантацию органа. Полученный аппарат предлагает третий вариант для больных с острой сердечной недостаточностью.

Для оценки прогресса в разработке и применениях искусственных органов можно обратиться также к опыту западных учёных и медиков.

Ученым из Западного резервного университета Кейза (Case Western Reserve University) удалось создать искусственное легкое, которое, в отличие от других подобных систем, использует воздух, а не чистый кислород. Прибор полностью копирует дыхательный орган. В его конструкцию включены аналоги кровеносных сосудов, выполненные из дышащей силиконовой резины. Подобно настоящим сосудам, они разветвляются и имеют разный размер: диаметр самых тонких из них составляет примерно четверть толщины человеческого волоса.

Хирурги Каролинского университета (Karolinska University Hospital) в Стокгольме впервые в мире провели операцию по трансплантации синтетической трахеи, созданной из стволовых клеток самого пациента. Данная технология позволяет обойтись без донора и избежать риска отторжения тканей, а изготовление органа достаточно быстрое и занимает от двух дней до недели.

- 87.07 Кб

Карагандинский Государственный Медицинский Университет

Кафедра медицинской биофизики и информатики

Тема: Искусственные органы.

Выполнила: Кан Лилия 142 ОМ

Проверил: Коршуков И.В.

Караганда 2012

  1. Введение.
  2. Искусственные легкие (оксигенаторы).
  3. Искусственная почка (гемодиализ).
  4. Искусственное сердце.
  5. Кардиостимуляторы.
  6. Биологические протезы. Искусственные суставы.
  7. Заключение.

Введение.

Идеи о замене больных органов здоровыми возникли у человека еще несколько веков назад. Но несовершенные методы хирургии и анестезиологии не позволяли осуществить задуманное. В современном мире трансплантация органов занимает достойное место в лечении терминальных стадий многих заболеваний. Были спасены тысячи человеческих жизней. Но проблемы возникли с другой стороны. Катастрофический дефицит донорских органов, иммунологическая несовместимость и тысячи людей в листах ожидания того или иного органа, которые так и не дождались своей операции.

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы - вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Ученые по всему миру все чаще задумывались над созданием искусственных органов, которые могли бы заменить настоящие по своим функциям, и в этом направлении были достигнуты определенные успехи. Нам известны искусственные почка, легкие, сердце, кожа, кости, суставы, сетчатка, кохлеарные импланты.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые выполняют функции оперируемых органов, позволяют на время приостановить их работу.

Искусственные легкие (оксигенаторы).

Оксигенатором называют газообменное одноразовое устройство, которое предназначается для удаления из крови углекислоты и насыщения ее кислородом. Оксигенатор используют при проведении кардиохирургических операций, или же с целью улучшить в организме больного кровообращение, если больной страдает от заболеваний легких или сердца, содержание кислорода в крови при которых сильно понижается.

Недостатками прямоточных пузырьковых оксигенаторов являются сильный поток кислорода и связанный с этим гемолиз, а также вспенивание и последующий переход в жидкое состояние всего объема крови, проходящего через оксигенатор. Кислород, поступающий в кровь из нижней части пузырькового оксигенатора противоточного типа, создает пенный столб (экран), навстречу которому из верхней части оксигенатора стекает венозная кровь. Этот принцип более экономичен и эффективен. Расход кислорода и количество крови существенно меньше, чем в прямоточных оксигенаторах. Из-за вспенивания небольшой части притекающей венозной крови меньше травмируются форменные элементы крови. Недостатком указанных оксигенаторов является сложность управления, обусловленная необходимостью постоянного наличия пенного столба. Оксигенаторами указанного типа снабжены различные модификации отечественных АИК.

Пленочные оксигенаторы.

Как свидетельствует название этих устройств, оксигенация происходит при контакте пленки крови, образовавшейся на какой-либо твердой поверхности, с кислородом. Различают стационарные и ротационные пленочные оксигенаторы. В стационарных оксигенаторах кровь стекает по неподвижным экранам, которые находятся в атмосфере кислорода. Примером служит оксигенатор Гиббона, с помощью которого была проведена первая успешная операция на сердце с искусственным кровообращением.Главными недостатками экранных оксигенаторов являются их дороговизна, плохая управляемость, громоздкость конструкции и необходимость большого количества донорской крови. Более эффективны ротационные оксигенаторы. К ним относятся популярные в прошлом дисковый оксигенатор Кея - Кросса и цилиндровый оксигенатор Крафорда - Сеннинга. Пленка крови, образующаяся на поверхности вращающихся дисков или цилиндров, контактирует с кислородом, подаваемым в оксигенатор. Производительность ротационных оксигенаторов в отличие от экранных может быть увеличена за счет повышения скорости вращения дисков (цилиндров). Рассмотренные пленочные и пузырьковые оксигенаторы многоразового пользования имеют исторический интерес. На смену им пришли оксигенаторы одноразового пользования в комплекте с теплообменником, артериальным и венозным резервуарами, специальной «антифомной» (силикон) секцией внутри оксигенатора, газовыми и жидкостными фильтрами, набором канюль и катетеров. Наибольшей популярностью пользуются оксигенаторы фирм «Bentley» (США), «Harvey» (США), «Shiley» (США), «Polystan» (Дания), «Gambro» (Швеция) и др. Эти оксигенаторы полностью удовлетворяют запросы современной кардиохирургии и кардиоанестезиологии. Но если необходима длительная (более 4 ч) искусственная оксигенация крови, то вредное действие прямого контакта крови с кислородом и углекислым газом становится небезразличным для организма. Антифизиологичность этого феномена проявляется изменением электрокинетических сил, нарушением нормальной конфигурации молекул белков и их денатурацией, агрегацией тромбоцитов, выбросом кининов и т.д. Во избежание этого при длительных перфузиях более целесообразно пользоваться мембранными оксигенаторами.

Искусственная почка (гемодиализ).

Почки - жизненно важный орган, без которого человек не может жить.
Резкое нарушение функций почек у человека в короткое время может привести к смерти. Потому что организм больного теряет способность очищаться естественным путем. Токсины и прочие вредные вещества не удаляются, а накапливаются в организме, что грозит общим отравлением, в организме происходят необратимые изменения и спасти больного уже нельзя.

Гемодиализ - это механическое очищение крови от отходов, солей и жидкостей, необходимое пациентам, почки которых недостаточно здоровы для выполнения этой работы.

Гемодиализ проводят с помощью аппарата искусственной почки. В основе его работы лежат принципы диализа, позволяющего удалить из плазмы крови вещества с небольшой молекулярной массой (электролиты, мочевину, креатинин, мочевую кислоту и др.), и частично ультрафильтрации, с помощью которой выводятся избыток воды и токсические вещества с более высокой молекулярной массой.

Среди многих моделей аппаратов искусственной почки выделяют два основных типа: аппараты с целлофановой мембраной, имеющей форму трубки диаметром 25-35 мм, и аппараты с пластинчатой целлофановой мембраной.

Наиболее широко за рубежом применяют двухкатушечную искусственную почку Колффа-Уочингера. Преимуществом этой модели является то, что катушки с намотанными целлофановыми шлангами поступают с завода в стерильном состоянии и при надобности могут быть немедленно использованы. Простота установки и обращения, значительная диализирующая поверхность создали большую популярность этой модели. Недостатки аппарата - большая емкость по крови и значительное сопротивление току крови из-за тугой обмотки двух диализирующих шлангов.Поэтому на входе в диализатор устанавливается насос.

Советская модель искусственной почки относится к типу диализаторов с пластинчатой целлофановой мембраной.
Большой клинический опыт советских и зарубежных клиницистов показывает высокую эффективность гемодиализа в лечении больных почечной недостаточностью.

Присоединяют аппарат к больному вено-венозным или артериовенозным способом. При необходимости многократного применения Г. пациенту имплантируют наружный артериовенозный шунт или накладывают подкожное соустье между артерией и веной. С помощью монитора осуществляют контроль и регуляцию химического состава, рН, давления и температуры диализирующего раствора, скорости его прохождения, давления крови в аппарате и др. Длительность гемодиализа 5-6 ч.

Схема советской модели искусственной почки:

1 - катетер; 2 - насос по крови; 3 - диализатор; 4 - измеритель производительности; 5 - воздухоуловитель; 6 - фильтр; 7 - катетер возврата крови больному; 8 - нагреватель; 9 - насос по диализирующей жидкости; 10 - бак для диализирующего раствора; 11 - ротаметр по кислороду; 12 - ротаметр по углекислоте; 13 - гидропривод перфузионного насоса.

Кровь от больного поступает по катетеру (1) при помощи насоса (2) в диализатор (3). Проходя между целлофановыми пластинками последнего (по каждой из его 11 секций), кровь больного через целлофановую пластинку соприкасается с протекающим навстречу диализирующим раствором. Состав его обычно стандартный и содержит все основные ионы крови (К·, Na·, Са··, Mg·, Cl·, НСO 3) и глюкозу в концентрациях, необходимых для коррекции электролитного состава крови больного. После диализатора кровь поступает в измеритель производительности (4), где улавливаются сгустки крови и воздух. Дальше кровь по катетеру возвращается в венозную систему больного. Диализирующий раствор при помощи автоматического нагревателя (8) доводят до t° 38° и насыщают карбогеном с таким расчетом, чтобы рН его составляла 7,4. При помощи насоса (9) диализирующий раствор подается в диализатор. Скорость кровотока в диализаторе обычно равна 250-300 мл/мин.

Применение искусственной почки по строгим показаниям с выполнением всех мер предосторожности и при тщательном наблюдении за больным во время диализа и после него практически безопасно и не грозит какими-либо осложнениями.

Искусственное сердце.

Искусственное сердце - технологическое устройство, предназначенное для поддержания достаточных для жизнедеятельности параметров гемодинамики.

На данный момент под искусственным сердцем понимается две группы технических устройств.

  • К первой относятся гемооксигенаторы, по-другому аппараты искусственного кровообращения. Они состоят из артериального насоса, перекачивающего кровь, и блока оксигенатора, который насыщает кровь кислородом. Данное оборудование активно используется в кардиохирургии, при проведении операций на сердце.
  • Ко второй относятся кардиопротезы, технические устройства, имплантируемые в организм человека, призванные заменить сердечную мышцу и повысить качество жизни больного. В настоящее время данные устройства являются лишь экспериментальными и проходят клинические испытания.

Отечественные ученые и конструкторы разработали ряд моделей под общим названием «Поиск». Это четырехкамерный протез сердца с желудочками мешотчатого типа, предназначенный для имплантации в ортотопическую позицию.

В модели различают левую и правую половины, каждая из которых состоит из искусственного желудочка и искусственного предсердия. Составными элементами искусственного желудочка являются: корпус, рабочая камера, входной и выходной клапаны. Корпус желудочка изготавливается из силиконовой резины методом наслоения. Матрица погружается в жидкий полимер, вынимается и высушивается - и так раз за разом, пока на поверхности матрицы не создается многослойная плоть сердца. Рабочая камера по форме аналогична корпусу. Ее изготавливали из латексной резины, а потом из силикона. Конструктивной особенностью рабочей камеры является различная толщина стенок, в которых различают активные и пассивные участки. Конструкция рассчитана таким образом, что даже при полном напряжении активных участков противоположные стенки рабочей поверхности камеры не соприкасаются между собой, чем устраняется травма форменных элементов крови.

Одна из лучших на сегодня зарубежных систем «Искусственное сердце» это «Новакор». С ней можно целый год ждать операции. В кейсе-чемоданчике «Новакора» находятся два пластмассовых желудочка. На отдельной тележке наружный сервис компьютер управления, монитор контроля, который остается в клинике на глазах у врачей. Дома, с больным блок питания, аккумуляторные батареи, которые сменяются и подзаряжаются от сети. Задача больного - следить за зеленым индикатором ламп, показывающих заряд аккумуляторов.

Кардиостимуляторы.

Кардиостимулятор - медицинский прибор, предназначенный для воздействия на ритм сердца. Основной задачей кардиостимулятора (водителя ритма) является поддержание или навязывание частоты сердечных сокращений пациенту, у которого сердце бьётся недостаточно часто, или имеется электрофизиологическое разобщение между предсердиями и желудочками (атриовентрикулярная блокада).

Показания к применению:

  • Аритмия сердца
  • Синдром слабости синусового узла
  • Атриовентрикулярная блокада

Кардиостимулятор представляет собой прибор в герметичном металлическом корпусе небольшого размера. В корпусе располагается батарея и микропроцессорный блок. Все современные стимуляторы воспринимают собственную электрическую активность (ритм) сердца, и если возникает пауза, либо иное нарушение ритма/проводимости в течение определенного времени, прибор начинает генерировать импульсы для стимуляции миокарда. В противном случае - при наличии адекватного собственного ритма - кардиостимулятор импульсы не генерирует. Эта функция называется «по требованию» или «on demand».

Описание работы

Идеи о замене больных органов здоровыми возникли у человека еще несколько веков назад. Но несовершенные методы хирургии и анестезиологии не позволяли осуществить задуманное. В современном мире трансплантация органов занимает достойное место в лечении терминальных стадий многих заболеваний. Были спасены тысячи человеческих жизней. Но проблемы возникли с другой стороны. Катастрофический дефицит донорских органов, иммунологическая несовместимость и тысячи людей в листах ожидания того или иного органа, которые так и не дождались своей операции.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!