Информационный женский портал

Екатерина Захарова: «Чтобы избежать тяжелых инвалидизирующих последствий, необходима ранняя диагностика. Лаборатория наследственных болезней обмена веществ Лаборатория нбо

Руководитель направления
„Онкогенетика“

Жусина
Юлия Геннадьевна

Окончила педиатрический факультет Воронежского государственного медицинского университета им. Н.Н. Бурденко в 2014 году.

2015 - интернатура по терапии на базе кафедры факультетской терапии ВГМУ им. Н.Н. Бурденко.

2015 - сертификационный курс по специальности «Гематология» на базе Гематологического научного центра г. Москвы.

2015-2016 – врач терапевт ВГКБСМП №1.

2016 - утверждена тема диссертации на соискание ученой степени кандидата медицинских наук «изучение клинического течения заболевания и прогноза у больных хронической обструктивной болезнью легких с анемическим синдромом». Соавтор более 10 печатных работ. Участник научно-практических конференций по генетике и онкологии.

2017 - курс повышения квалификации по теме: «интерпретация результатов генетических исследований у больных с наследственными заболеваниями».

С 2017 года ординатура по специальности «Генетика» на базе РМАНПО.

Руководитель направления
„Генетика“

Канивец
Илья Вячеславович

Канивец Илья Вячеславович, врач-генетик, кандидат медицинских наук, руководитель отдела генетики медико-генетического центра Геномед. Ассистент кафедры медицинской генетики Российской медицинской академии непрерывного профессионального образования.

Окончил лечебный факультет Московского государственного медико-стоматологического университета в 2009 году, а в 2011 – ординатуру по специальности «Генетика» на кафедре Медицинской генетики того же университета. В 2017 году защитил диссертацию на соискание ученой степени кандидата медицинских наук на тему: Молекулярная диагностика вариаций числа копий участков ДНК (CNVs) у детей с врожденными пороками развития, аномалиями фенотипа и/или умственной отсталостью при использовании SNP олигонуклеотидных микроматриц высокой плотности»

C 2011-2017 работал врачом-генетиком в Детской клинической больнице им. Н.Ф. Филатова, научно-консультативном отделе ФГБНУ «Медико-генетический научный центр». С 2014 года по настоящее время руководит отделом генетики МГЦ Геномед.

Основные направления деятельности: диагностика и ведение пациентов с наследственными заболеваниями и врожденными пороками развития, эпилепсией, медико-генетическое консультирование семей, в которых родился ребенок с наследственной патологией или пороками развития, пренатальная диагностика. В процессе консультации проводится анализ клинических данных и генеалогии для определения клинической гипотезы и необходимого объема генетического тестирования. По результатам обследования проводится интерпретация данных и разъяснение полученной информации консультирующимся.

Является одним из основателей проекта «Школа Генетики». Регулярно выступает с докладами на конференциях. Читает лекции для врачей генетиков, неврологов и акушеров-гинекологов, а также для родителей пациентов с наследственными заболеваниями. Является автором и соавтором более 20 статей и обзоров в российских и зарубежных журналах.

Область профессиональных интересов – внедрение современных полногеномных исследований в клиническую практику, интерпретация их результатов.

Время приема: СР, ПТ 16-19

Руководитель направления
„Неврология“

Шарков
Артем Алексеевич

Шарков Артём Алексеевич – врач-невролог, эпилептолог

В 2012 году обучался по международной программе “Oriental medicine” в университете Daegu Haanu в Южной Корее.

С 2012 года - участие в организации базы данных и алгоритма для интерпретации генетических тестов xGenCloud (https://www.xgencloud.com/, Руководитель проекта - Игорь Угаров)

В 2013 году окончил Педиатрический факультет Российского национального исследовательского медицинского университета имени Н.И. Пирогова.

C 2013 по 2015 год обучался в клинической ординатуре по неврологии в ФГБНУ «Научный центр неврологии».

С 2015 года работает неврологом, научным сотрудником в Научно- исследовательском клиническом институте педиатрии имени академика Ю.Е. Вельтищева ГБОУ ВПО РНИМУ им. Н.И. Пирогова. Также работает врачом- неврологом и врачом лаборатории видео-ЭЭГ мониторинга в клиниках «Центр эпилептологии и неврологии им. А.А.Казаряна» и «Эпилепси-центр».

В 2015 году прошел обучение в Италии на школе «2nd International Residential Course on Drug Resistant Epilepsies, ILAE, 2015».

В 2015 году повышение квалификации - «Клиническая и молекулярная генетика для практикующих врачей», РДКБ, РОСНАНО.

В 2016 году повышение квалификации - «Основы молекулярной генетики» под руководством биоинформатика, к.б.н. Коновалова Ф.А.

С 2016 года - руководитель неврологического направления лаборатории "Геномед".

В 2016 году прошел обучение в Италии на школе «San Servolo international advanced course: Brain Exploration and Epilepsy Surger, ILAE, 2016».

В 2016 году повышение квалификации - "Инновационные генетические технологии для врачей", "Институт лабораторной медицины".

В 2017 году – школа «NGS в медицинской генетике 2017», МГНЦ

В настоящее время проводит научные исследования в области генетики эпилепсии под руководством профессора, д.м.н. Белоусовой Е.Д. и профессора, д.м.н. Дадали Е.Л.

Утверждена тема диссертации на соискание ученой степени кандидата медицинских наук "Клинико-генетические характеристики моногенных вариантов ранних эпилептических энцефалопатий".

Основные направления деятельности – диагностика и лечение эпилепсии у детей и взрослых. Узкая специализация – хирургическое лечение эпилепсии, генетика эпилепсий. Нейрогенетика.

Научные публикации

Шарков А., Шаркова И., Головтеев А., Угаров И. «Оптимизация дифференциальной диагностики и интерпретации результатов генетического тестирования экспертной системой XGenCloud при некоторых формах эпилепсий». Медицинская генетика, № 4, 2015, с. 41.
*
Шарков А.А., Воробьев А.Н., Троицкий А.А., Савкина И.С., Дорофеева М.Ю., Меликян А.Г., Головтеев А.Л. "Хирургия эпилепсии при многоочаговом поражении головного мозга у детей с туберозным склерозом." Тезисы XIV Российского Конгресса «ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ В ПЕДИАТРИИ И ДЕТСКОЙ ХИРУРГИИ». Российский Вестник Перинатологии и Педиатрии, 4, 2015. - с.226-227.
*
Дадали Е.Л., Белоусова Е.Д., Шарков А.А. "Молекулярно-генетические подходы к диагностике моногенных идиопатических и симптоматических эпилепсий". Тезис XIV Российского Конгресса «ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ В ПЕДИАТРИИ И ДЕТСКОЙ ХИРУРГИИ». Российский Вестник Перинатологии и Педиатрии, 4, 2015. - с.221.
*
Шарков А.А., Дадали Е.Л., Шаркова И.В. «Редкий вариант ранней эпилептической энцефалопатии 2 типа, обусловленной мутациями в гене CDKL5 у больного мужского пола». Конференция "Эпилептология в системе нейронаук". Сборник материалов конференции: / Под редакцией: проф. Незнанова Н.Г., проф. Михайлова В.А. СПб.: 2015. – с. 210-212.
*
Дадали Е.Л., Шарков А.А., Канивец И.В., Гундорова П., Фоминых В.В., Шаркова И,В,. Троицкий А.А., Головтеев А.Л., Поляков А.В. Новый аллельный вариант миоклонус-эпилепсии 3 типа, обусловленный мутациями в гене KCTD7// Медицинская генетика.-2015.- т.14.-№9.- с.44-47
*
Дадали Е.Л., Шаркова И.В., Шарков А.А., Акимова И.А. «Клинико-генетические особенности и современные способы диагностики наследственных эпилепсий». Сборник материалов «Молекулярно-биологические технологии в медицинской практике» / Под ред. чл.-корр. РАЕН А.Б. Масленникова.- Вып. 24.- Новосибирск: Академиздат, 2016.- 262: с. 52-63
*
Белоусова Е.Д., Дорофеева М.Ю., Шарков А.А. Эпилепсия при туберозном склерозе. В "Болезни мозга, медицинские и социальные аспекты" под редакцией Гусева Е.И., Гехт А.Б., Москва; 2016; стр.391-399
*
Дадали Е.Л., Шарков А.А., Шаркова И.В., Канивец И.В., Коновалов Ф.А., Акимова И.А. Наследственные заболевания и синдромы, сопровождающиеся фебрильными судорогами: клинико-генетические характеристики и способы диагностики. //Русский Журнал Детской Неврологии.- Т. 11.- №2, с. 33- 41. doi: 10.17650/ 2073-8803- 2016-11- 2-33- 41
*
Шарков А.А., Коновалов Ф.А., Шаркова И.В., Белоусова Е.Д., Дадали Е.Л. Молекулярно-генетические подходы к диагностике эпилептических энцефалопатий. Сборник тезисов «VI БАЛТИЙСКИЙ КОНГРЕСС ПО ДЕТСКОЙ НЕВРОЛОГИИ» / Под редакцией профессора Гузевой В.И. Санкт- Петербург, 2016, с. 391
*
Гемисферотомии при фармакорезистентной эпилепсии у детей с билатеральным поражением головного мозга Зубкова Н.С., Алтунина Г.Е., Землянский М.Ю., Троицкий А.А., Шарков А.А., Головтеев А.Л. Сборник тезисов «VI БАЛТИЙСКИЙ КОНГРЕСС ПО ДЕТСКОЙ НЕВРОЛОГИИ» / Под редакцией профессора Гузевой В.И. Санкт-Петербург, 2016, с. 157.
*
*
Статья: Генетика и дифференцированное лечение ранних эпилептических энцефалопатий. А.А. Шарков*, И.В. Шаркова, Е.Д. Белоусова, Е.Л. Дадали. Журнал неврологии и психиатрии, 9, 2016; Вып. 2doi: 10.17116/jnevro 20161169267-73
*
Головтеев А.Л., Шарков А.А., Троицкий А.А., Алтунина Г.Е., Землянский М.Ю., Копачев Д.Н., Дорофеева М.Ю. "Хирургическое лечение эпилепсии при туберозном склерозе" под редакцией Дорофеевой М.Ю., Москва; 2017; стр.274
*
Новые международные классификации эпилепсий и эпилептических приступов Международной Лиги по борьбе с эпилепсией. Журнал неврологии и психиатрии им. C.C. Корсакова. 2017. Т. 117. № 7. С. 99-106

Руководитель направления
"Пренатальная диагностика"

Киевская
Юлия Кирилловна

В 2011 году Окончила Московский Государственный Медико-Стоматологический Университет им. А.И. Евдокимова по специальности «Лечебное дело» Обучалась в ординатуре на кафедре Медицинской генетики того же университета по специальности «Генетика»

В 2015 году окончила интернатуру по специальности Акушерство и Гинекология в Медицинском институте усовершенствования врачей ФГБОУ ВПО «МГУПП»

С 2013 года ведет консультативный прием в ГБУЗ «Центр Планирования Семьи и Репродукции» ДЗМ

С 2017 года является руководителем направления «Пренатальная Диагностика» лаборатории Геномед

Регулярно выступает с докладами на конференциях и семинарах. Читает лекции для врачей различных специальной в области репродуции и пренатальной диагностики

Проводит медико-генетическое консультирование беременных по вопросам пренатальной диагностики с целью предупреждения рождения детей с врождёнными пороками развития, а так же семей с предположительно наследственной или врожденной патологией. Проводит интерпретацию полученных результатов ДНК-диагностики.

СПЕЦИАЛИСТЫ

Латыпов
Артур Шамилевич

Латыпов Артур Шамилевич – врач генетик высшей квалификационной категории.

После окончания в 1976 году лечебного факультета Казанского государственного медицинского института в течение многих работал сначала врачом кабинета медицинской генетики, затем заведующим медико-генетическим центром Республиканской больницы Татарстана, главным специалистом министерства здравоохранения Республики Татарстан, преподавателем кафедр Казанского медуниверситета.

Автор более 20 научных работ по проблемам репродукционной и биохимической генетики, участник многих отечественных и международных съездов и конференций по проблемам медицинской генетики. Внедрил в практическую работу центра методы массового скрининга беременных и новорожденных на наследственные заболевания, провел тысячи инвазивных процедур при подозрении на наследственные заболевания плода на разных сроках беременности.

С 2012 года работает на кафедре медицинской генетики с курсом пренатальной диагностики Российской академии последипломного образования.

Область научных интересов – метаболические болезни у детей, дородовая диагностика.

Время приема: СР 12-15, СБ 10-14

Прием врачей осуществляется по предварительной записи.

Врач-генетик

Габелко
Денис Игоревич

В 2009 году закончил лечебный факультет КГМУ им. С. В. Курашова (специальность «Лечебное дело»).

Интернатура в Санкт-Петербургской медицинской академии последипломного образования Федерального агентства по здравоохранению и социальному развитию (специальность «Генетика»).

Интернатура по терапии. Первичная переподготовка по специальности «Ультразвуковая диагностика». С 2016 года является сотрудником кафедры кафедры фундаментальных основ клинической медицины института фундаментальной медицины и биологии.

Сфера профессиональных интересов: пренатальная диагностика, применение современных скрининговых и диагностических методов для выявления генетической патологии плода. Определение риска повторного возникновения наследственных болезней в семье.

Участник научно-практических конференций по генетике и акушерству и гинекологии.

Стаж работы 5 лет.

Консультация по предварительной записи

Прием врачей осуществляется по предварительной записи.

Врач-генетик

Гришина
Кристина Александровна

Окончила в 2015 году Московский Государственный Медико-Стоматологический Университет по специальности «Лечебное дело». В том же году поступила в ординатуру по специальности 30.08.30 «Генетика» в ФГБНУ «Медико-генетический научный центр».
Принята на работу в лабораторию молекулярной генетики сложно наследуемых заболеваний (заведующий – д.б.н. Карпухин А.В.) в марте 2015 года на должность лаборанта-исследователя. С сентября 2015 года переведена на должность научного сотрудника. Является автором и соавтором более 10 статей и тезисов по клинической генетике, онкогенетике и молекулярной онкологии в российских и зарубежных журналах. Постоянный участник конференций по медицинской генетике.

Область научно-практических интересов: медико-генетическое консультирование больных с наследственной синдромальной и мультифакториальной патологией.


Консультация врача-генетика позволяет ответить на вопросы:

являются ли симптомы у ребенка признаками наследственного заболевания какое исследование необходимо для выявления причины определение точного прогноза рекомендации по проведению и оценка результатов пренатальной диагностики все, что нужно знать при планировании семьи консультация при планировании ЭКО выездные и онлайн консультации

ринимала участие в научно-практической школе "Инновационные генетические технологии для врачей: применение в клинической практике", конференции Европейского общества генетики человека (ESHG) и других конференциях, посвященных генетике человека.

Проводит медико-генетическое консультирование семей с предположительно наследственной или врожденной патологией, включая моногенные заболевания и хромосомные аномалии, определяет показания к проведению лабораторных генетических исследований, проводит интерпретацию полученных результатов ДНК-диагностики. Консультирует беременных по вопросам пренатальной диагностики с целью предупреждения рождения детей с врождёнными пороками развития.

Врач-генетик, врач акушер-гинеколог, кандидат медицинских наук

Кудрявцева
Елена Владимировна

Врач-генетик, врач акушер-гинеколог, кандидат медицинских наук.

Специалист в области репродуктивного консультирования и наследственной патологии.

Окончила Уральскую государственную медицинскую академию в 2005 году.

Ординатура по специальности «Акушерство и гинекология»

Интернатура по специальности «Генетика»

Профессиональная переподготовка по специальности «Ультразвуковая диагностика»

Направления деятельности:

  • Бесплодие и невынашивание беременности
  • Василиса Юрьевна

    Является выпускницей Нижегородской государственной медицинской академии, лечебного факультета (специальность «Лечебное дело»). Окончила клиническую ординатуру ФБГНУ «МГНЦ» по специальности «Генетика». В 2014 году проходила стажировку в клинике материнства и детства (IRCCS materno infantile Burlo Garofolo, Trieste, Italy).

    С 2016 года работает на должности врача-консультанта в ООО «Геномед».

    Регулярно участвует в научно-практических конференциях по генетике.

    Основные направления деятельности: Консультирование по вопросам клинической и лабораторной диагностики генетических заболеваний и интерпретация результатов. Ведение пациентов и их семей с предположительно наследственной патологией. Консультирование при планировании беременности, а также при наступившей беременности по вопросам пренатальной диагностики с целью предупреждения рождения детей с врожденной патологией.

Лаборатория наследственных болезней обмена веществ была создана в Медико-генетическом научном Центре более 30 лет назад. Первые работы в лаборатории были связаны с разработкой тестов для выявления фенилкетонурии и программ селективного скрининга наследственные болезни обмена веществ (НБО). Постепенно лаборатория перешла к применению сложных биохимических и молекулярно-генетических методов точной диагностики наследственных заболеваний. Именно здесь под руководством профессора Ксении Дмитриевны Краснопольской были разработаны подходы к биохимической диагностике болезней клеточных органелл. Сегодня это единственная в России лаборатория, где проводится постнатальная и пренатальная диагностика подавляющего большинства заболеваний из этой группы.

Одним из научных направлений работы подразделения является поиск новых биохимических маркеров для наследственных болезней, разработка новых методов их эффективной диагностики.

Спектр биохимических методов, используемых в лаборатории, исключительно широк и включает: электорофорез гликозаминогликанов мочи, изоэлектрофокусирование трансферинов, хромато-масс-спектрометрию, высокоэффективную жидкостную хроматографию, анализ активности лизосомных и митохондриальных ферментов с применением хромогенных и флуорогенных субстратов, окисграфии. Некоторые из форм НБО, ранее не выявляемые в нашей стране, в лаборатории были диагностированы впервые.

Существенным прорывом в диагностике НБО стало внедрение метода тандемной масс-спектрометрии, который позволяет в микроколичествах биологического материала (пятно высушенной крови или плазмы) выявлять около 30 форм наследственных заболеваний из групп самых распространенных НБО: аминоацидопатий, органическиих ацидурий и дефектов митохондриального β-окисления.

Последние годы в лаборатории активно развиваются имолекулярно-генетические методы. Для некоторых заболеваний из группы НБО созданы протоколы ДНК-диагностики, позволяющие сократить время установления диагноза и избежать применения трудоемких и инвазивных биохимических методов. С 2015 года в лаборатории применяют секвениование нового поколения для одновременного анализа множества генов. Такие панели разработаны для митохондриальных заболеваний, наследственных болезней с преимущественным поражением печени, лейкодистрофий/ лейкоэнцефалопатий.

На сегодняшний день используемые биохимические и молекулярно-генетические методы позволяют диагностировать более 200 различных форм наследственных болезней обмена веществ.

В лаборатории ведется работа по характеристике спектра и частоты мутаций при наследственных мукополисахаридозах, сфинголипидозах, нейрональных цероидных липофусцинозах, разрабатываются алгоритмы диагностики заболеваний, протекающих с поражением белого вещества головного мозга, а также других наследственных нейрометаболических нарушений.

Генетика Интервью с экспертом

Екатерина Захарова: «Чтобы избежать тяжелых инвалидизирующих последствий, необходима ранняя диагностика»

2014-04-17

«Мы все стоим на плечах наших предков» — эта поговорка относится не только к семейным традициям, менталитету, воспитанию, но и здоровью. Дети несут в себе генетическую информацию предыдущих поколений. К сожалению, иногда в этой «цепочке» происходит сбой. Из-за чего возникает этот сбой? Как и какие болезни передаются по наследству и можно ли заранее предугадать и предотвратить их развитие? Об этом и многом другом наш разговор с заведующей лабораторией наследственных болезней обмена веществ Медико-генетического научного центра, председателем правления «Всероссийского общества редких (орфанных) заболеваний» (ВООЗ), доктором медицинских наук Екатериной Юрьевной Захаровой .

— Расскажите, чем занимается ваша лаборатория?
— Наша лаборатория является структурным подразделением Медико-генетического научного центра. Мы занимаемся диагностикой обмена веществ. Это довольно обширная группа патологий, включающая в себя 500-600 заболеваний. Эти нарушения появляются в результате генных мутаций, вызывающих существенный сдвиг метаболизма, поэтому для их диагностики вместе с молекулярно-генетическими методами применяют биохимические тесты: различные исследования метаболитов, активности ферментов.

В целом подходы к лечению разработаны для 20-30 наследственных болезней обмена веществ, среди которых галактоземия, лейциноз (болезнь кленового сиропа), тирозинемия, органические ацидурии и другие.

— Если я правильно понимаю, большинство наследственных заболеваний неизлечимы?
— Для того чтобы излечить от какого-либо заболевания, надо полностью устранить его причину. При наследственном заболевании — это мутация. Единственный метод, который может ее устранить — это генная терапия. Однако, несмотря на большие надежды, которые возлагались на генную терапию, этот метод пока не дал каких-либо значимых эффектов. На сегодняшний день существует лишь несколько официально одобренных протоколов по . Особенность наследственных болезней обмена веществ заключается в том, что некоторые такие заболевания вполне успешно поддаются лечению, а для многих из них уже существуют эффективные способы лечения и коррекции, в том числе диетотерапия и специальное лечебное питание, которые восполняют недостающий в организме человека фермент.

В целом подходы к лечению разработаны для 20-30 наследственных болезней обмена веществ, среди которых галактоземия, лейциноз (болезнь кленового сиропа), тирозинемия, органические ацидурии и другие. Ферментная заместительная терапия используется при болезни Гоше, мукополисахаридозах, болезни Помпе, болезни Фабри, а в настоящее время разрабатываются лечебные схемы для ряда других болезней из данной группы.

«Несмотря на большие надежды, которые возлагались на генную терапию, этот метод пока не дал каких-либо значимых эффектов»

— Например?
— Классическим примером является фенилкетонурия, при которой в организме не хватает определенного фермента, способного расщепить и метаболизировать сложные молекулы в клетке. В данном случае лечение заключается в пожизненном соблюдении определенной диеты, ограничивющей ряд продуктов, содержащих животный белок. Самое главное — вовремя начать диетотерапию. Если ребенок начал получать специализированные смеси в первые дни после рождения, то в дальнейшем он практически ничем не будет отличаться от своих здоровых сверстников. Если этого не случилось, то у него неминуемо разовьются тяжелые поражения центральной нервной системы, нарушение умственного развития вплоть до слабоумия.

Для того чтобы избежать тяжелых инвалидизирующих последствий, необходимо как можно раньше диагностировать заболевание. Самый перспективный метод для раннего выявления наследственных болезней — неонатальный скрининг. Первоначально в нашей стране в программу неонатального скрининга было включено 2 заболевания: и врожденный гипотериоз. С 2006 года к ним добавились еще 3 наследственных заболевания: галактоземия, и адреногенитальный синдром.

— Почему выбрали именно эти болезни? Насколько я знаю, в США, к примеру, в неонатальный скрининг включены анализы на 50 наследственных заболеваний.
— Причин тому несколько. Прежде всего, необходимо понимать, что скрининг — это не просто тест на определение того или иного заболевания. Это целая система мероприятий, которая включает в себя, помимо тестирования, консультирование семьи, обеспечение больного ребенка лечением, постоянное наблюдение за ним и так далее. Допустим, что заболевание выявлено. А как лечить ребенка, если необходимый для него лекарственный препарат или специализированное питание не зарегистрированы в России и его можно приобрести только за рубежом, если нет специалистов, которые имеют опыт ведения таких больных? Это очень сложные вопросы, которые необходимо решать в комплексе и постепенно.

Первоначально в нашей стране в программу неонатального скрининга было включено 2 заболевания: фенилкетонурия и врожденный гипотериоз. С 2006 года к ним добавились еще 3 наследственных заболевания: галактоземия, муковисцидоз и адреногенитальный синдром.

Другая серьезная проблема — финансовая. Сегодня программа неонатального скрининга финансируется из федерального бюджета, но с 2015 г. ее планируют передать в регионы. У экспертов эта ситуация вызывает большую тревогу. Неонатальный скрининг должен охватывать более 95% новорожденных, быть непрерывным и находиться под постоянным контролем со стороны государства. Только в этом случае он будет эффективным. А если какой-то регион вдруг решит, что на скрининг у него нет денег? Тогда вся система попросту обвалится, а этого ни в коем случае нельзя допустить. А на кону здоровье детей. Эксперты считают, что было бы логичнее сохранить федеральную государственную программу.

И, безусловно, скрининг на наследственные болезни следует расширять, следуя лучшей мировой практике. Первые шаги в этом направлении уже делаются. В двух российских регионах — Москве и Свердловской области — запущены пилотные проекты расширенного неонатального скрининга на 30 наследственных заболеваний.

«Прежде всего, необходимо понимать, что скрининг — это не просто тест на определение того или иного заболевания. Это целая система мероприятий»

— Можно заранее узнать о том, что у человека имеется предрасположенность к тому или иному генетическому заболеванию?
— Есть такой метод — геномное секвенирование. С его помощью геном каждого конкретного человека. Пока это достаточно дорогое удовольствие — его стоимость около 10 000 евро. Считается, что в ближайшем будущем цена этой процедуры снизится в десятки раз. Казалось бы, сделал анализ, и все известно. Однако здесь мы вторгаемся в область медицинской этики и связанных с ней решений. Могу сказать одно — современных научных знаний недостаточно, чтобы дать однозначный ответ на то, как могут повлиять те или иные изменения на качество и продолжительность жизни человека, приведут ли имеющиеся генные мутации к развитию болезни у данного конкретного человека.

Здесь возникает и другой вопрос: насколько необходимо человеку такое знание? К примеру, есть такое тяжелое наследственное заболевание — хорея Гентингтона, в его основе лежат неврологические нарушения, которые проявляются непроизвольными и нерегулируемыми движениями, нервным тиком, подергиванием. Затем развиваются интеллектуальные изменения, и человек за достаточно короткий срок превращается в тяжелого инвалида. Происходит это обычно после 30 лет. Вылечить эту болезнь пока нельзя, но определить вероятность того, что болезнь разовьется у конкретного человека, если болеет кто-то из его родственников (мать или отец) — вполне возможно, проведя тестирование. Тем не менее некоторые люди, зная о потенциальном риске, отказываются от диагностики. Именно так и поступили две сестры, основательницы Фонда борьбы с хореей Гентингтона. Проведя колоссальную работу по сбору информации, созданию банка биоматериала, финансированию научных исследований по поиску гена, ответственного за заболевание, они сами так и не решились пройти тестирование. Это был их осознанный выбор. Иногда человек просто не хочет знать, что его ждет в будущем, если он не в силах ничего изменить.





— Один из наиболее спорных из всех обсуждаемых генетиками вопросов с этической точки зрение — моделирование эмбрионов, при котором родители смогут сами выбирать внешность, характер и способности своего будущего ребенка. Насколько реальны эти футуристические прогнозы?
— С дальнейшим развитием науки они кажутся вполне реальными, но стоит ли это делать — очень непростой вопрос. Например, в Китае запретов, регламентирующих генетическое тестирование, нет. Как известно, до недавнего времени китайским семьям разрешалось иметь только одного ребенка. Естественно, многие родители сделали выбор в пользу мальчиков. Сегодня эти дети выросли, и общество столкнулось с серьезной проблемой, связанной с серьезной диспропорцией полов: на одну девушку приходится семеро юношей. В результате многие молодые люди просто не могут найти себе пару.

В Китае запретов, регламентирующих генетическое тестирование, нет. Как известно, до недавнего времени китайским семьям разрешалось иметь только одного ребенка.

Сегодня в странах ЕС принят ряд документов, которые регулируют генетическое тестирование. В них четко прописано, что можно делать, а чего нельзя. В частности нельзя отбирать эмбрионы по определенному признаку (цвет глаз, пол и так далее). Кроме того, в странах Европы запрещено тестирование детей на заболевание, которое априори считается неизлечимым. Если в семье уже есть больной ребенок, то тестирование второго малыша делать запрещено, пока он маленький. Это делается из морально-этических соображений — велика вероятность, что родители сконцентрируются на больном или, наоборот, будут отдавать все свои силы здоровому ребенку, а права второго будут ущемлены.

«В странах Европы запрещено тестирование детей на заболевание, которое априори считается неизлечимым»

Недавно на одном из британских телевизионных каналов в передаче шла речь об отборе доноров для пересадки костного мозга. При аллогенной (то есть неродственной) пересадке донорский костный мозг, вводимый пациенту, должен генетически соответствовать его собственному насколько это возможно. К сожалению, найти такого донора не всегда удается. И тогда родители обращаются к генетикам, чтобы матери «подсадили» плод, который подошел бы этому больному ребенку как донор. Как в таком случае поступить? С одной стороны, родители хотят спасти жизнь своему ребенку. При этом малыш, который родится, не пострадает — у него возьмут пуповинную кровь, и все. С другой стороны, для того, чтобы он родился именно таким, в процессе отбора придется уничтожить несколько оплодотворенных эмбрионов. Как относиться к рождению ребенка, который должен стать донором, что произойдет с его психикой, когда он об этом узнает? Возвращаясь к вашему вопросу. Генетика — еще очень молодая наука, и мы сегодня не знаем, чем может обернуться то или иное вторжение в эту тонкую сферу.

Каждый из нас является носителем энного числа разных «вредных» мутаций — от 20 до 50 по разным данным.

— Иными словами, любое вторжение в естественные процессы чревато какими-то непредсказуемыми последствиями?
— В истории человечества немало примеров, когда подобные эксперименты заканчивались полным крахом. Но если в Германии евгенические эксперименты прекратились сразу после окончания войны, то в Швеции и других скандинавских странах соответствующие изменения в законодательстве были произведены лишь в середине 1970. В частности в этих странах широко практиковались программы стерилизации «неполноценных» (больных психическими заболеваниями, алкоголиков, наркоманов). Считалось, что насильственная стерилизация позволит снизить число в популяции людей с определенными признаками. Но ничего из этого не вышло.

— Почему?
— В основу этой деятельности был положен ложный посыл об определяющей роли одного наследственного фактора. На самом деле это далеко не так. Многие заболевания являются полигенными (мультифакториальными), то есть за их развитие отвечает множество генов, оказывает свое влияние и внешняя среда. Кроме того, мутации появляются снова, и в популяции, по законам генетики, частота носителей мутаций довольно постоянна. Каждый из нас является носителем энного числа разных «вредных» мутаций — от 20 до 50 по разным данным. И, вероятно, с точки зрения эволюции, это для чего-то нужно.

Так, еще в 30-х годах прошлого столетия была высказана гипотеза о том, что такое тяжелое наследственное заболевание, как , когда его научатся лечить, может оказаться очень полезным признаком: повышенная кровоточивость в юности будет компенсироваться отсутствием образования тромбозов у людей старшего возраста. Известен и такой факт, что носители другого наследственного заболевания — серповидноклеточной анемии — являются устойчивыми к малярии. Таким образом, генотип не существует сам по себе, и какой-то признак, оцениваемый как «вредный» в одной среде, может оказаться вполне полезным в другой.

Природа постоянно пробует разные генные комбинации. Всегда нужно помнить о том, что когда человек начинает искусственно сужать имеющееся генетическое разнообразие, это может быть чревато серьезными негативными последствиями в будущем.

«Считалось, что насильственная стерилизация позволит снизить число в популяции людей с определенными признаками. Но ничего из этого не вышло»

— То же самое касается браков между родственниками? Кроме того, как известно, определенные генетические заболевания бывают характерными для конкретных национальностей и этнических групп. Самая известная родственная группа в этом плане — евреи ашкенази...
— Близкие люди имеют более высокий шанс носительства одинаковых аллелей, и, соответственно, при заключении браков между родственниками риск того, что у их детей могут развиться наследственные болезни, достаточно велик. Что касается этнических групп, для разных популяций характерны свои генетические особенности. Например, среди чувашей гораздо чаще, чем в других популяциях, встречается остеопетроз, у русских — фенилкетонурия и муковисцидоз, а у финнов — особая форма эпилепсии.

Такие особенности могут возникнуть у народов, которые пережили резкое сокращение численности, а потом рост. Именно это и произошло с евреями ашкенази, среди которых высока частота носителей некоторых генетических заболеваний. Одно из самых распространенных из них — болезнь Тея-Сакса. В общей популяции она встречается в пропорции 1 на 100 тыс. новорожденных, а у евреев ашкенази 1 на 3 тыс. Сегодня в Израиле проводится обязательное тестирование на носительство этой болезни. И такой подход себя оправдывает: за последний год в стране родился только один ребенок с болезнь Тея-Сакса. И это было осознанное решение родителей, принятое по религиозным соображениям. Зная особенности конкретной популяции, генетики могут разрабатывать программы массового скрининга новорожденных, тестирования на носительство и так далее.

— Кто чаще всего обращается в ваш медико-генетический центр?
— Прежде всего, родители с детьми, у которых подозревается то или иное наследственное заболевание. Мы проводим также пренатальную диагностику с целью обнаружения патологии на ранней стадии внутриутробного развития. Также к нам обращаются люди, имеющие родственников с наследственными болезнями с тем, чтобы исключить их у себя.

— Проведение тестирования стоит недешево. Государство как-то поддерживает центр в этом плане?
— Оплатить такое исследование сегодня далеко не всем под силу. К сожалению, сложные генетические тесты на сегодняшний день не включены ни в одну из систем госгарантий. Некоторые заболевания тестируются в рамках научных исследований, но это капля в море. Решать эти вопросы, безусловно, необходимо. Ведь чем раньше поставить диагноз, тем больше шансов помочь человеку, улучшить качество его жизни, а иногда просто спасти ее.

— За диагнозом следует лечение, и оно не для всех людей с редкими (или «сиротскими», как их еще называют) заболеваниями доступно. Все опять упирается в финансы.
— Увы. Иногда человек годами ходит по врачам, чтобы ему поставили диагноз. В последние годы даже появился такой термин — «диагностическая одиссея». И вот, наконец, выясняется диагноз. И тут начинаются новые мытарства: лечение для этой болезни есть, но сам пациент не может его оплатить — слишком дорого, а получить бесплатно тоже не сразу и не всегда получается.

«К сожалению, сложные генетические тесты на сегодняшний день не включены ни в одну из систем госгарантий»

— В последнее время тема редких заболеваний на слуху. С 2014 г. планировалось передать финансирование программы «7 нозологий» в регионы, под давлением общественности это решение отложили на год. Кроме того, есть еще и особый перечень, в который входят 24 жизнеугрожающих редких заболевания...
— Да. Государство в той или иной мере пытается найти способы обеспечить доступ к терапии больных с редкими заболеваниями. Сегодня полностью возложено на плечи регионов, и они с этой ношей не справляются.

Для эффективного решения вопросов обеспечения больных редкими заболеваниями лекарственными препаратами и лечебным питанием необходимо соблюсти некий баланс между федеральным и региональным бюджетами. Найти его сложно, но возможно. Например, по подсчетам экспертов, с учетом разных нозологий в так называемый «перечень 24» входит гораздо больше заболеваний, около 58. Половина из них лечится с помощью диетотерапии. По сравнению с лекарствами специализированные смеси стоят относительно недорого, и регионы вполне могут выдержать эту финансовую нагрузку. Кроме того, зачастую закупать лечебное питание нужно в экстренном порядке, чтобы в обязательном порядке обеспечивать вновь выявленных по результатам неонатального скрининга маленьких пациентов, и региону это сделать иногда проще. Что касается остальных редких болезней, то логичнее их включить в программу «7 нозологий», ведь изначально эта программа и создавалась для лечения именно .

Например, по подсчетам экспертов, с учетом разных нозологий, в так называемый «перечень 24» входит около 58 заболеваний.

— И здесь свое веское слово должны сказать общественные пациентские организации.
— Безусловно, пациенты с редкими заболеваниями должны иметь доступ к лечению. И наша задача как общественной организации — помочь обрести им это право на жизнь. В настоящее время мы наблюдаем положительные тенденции в принятии решений: к мнению общественности прислушиваются, и проблемам людей с редкими заболеваниями стали уделять больше внимания. При Минздраве РФ создан Совет по защите прав пациентов, аналогичные советы организованы и при региональных минздравах. В их состав входят в том числе и общественные пациентские организации. Благодаря этой планомерной совместной работе удалось добиться определенных результатов: внесены изменения в некоторые законы и нормативные акты, в отдельных случаях пациенты начали получать необходимую терапию.

«Сегодня финансирование перечня 24 редких заболеваний полностью возложено на плечи регионов, и они с этой ношей не справляются»

Однако нужно двигаться дальше и способствовать совершенствованию подходов к лекарственному обеспечению больных с редкими заболеваниями. Очень важно выработать прозрачные и понятные критерии формирования списков лекарственных препаратов в программах государственного финансирования. Эксперты уверены, что списки не должны быть статичными, они должны постоянно обновляться, в том числе и с учетом появления новых заболеваний и новых возможностей лечения для редких болезней, считавшихся ранее неизлечимыми, таких, например, как туберозный склероз, болезнь Помпе, криопирин-ассоциированные заболевания. Этих больных в стране иногда всего несколько десятков, и они не получают лечения, потому что эти заболевания и препараты не включены ни в один перечень.

Наука дает возможность лечить все больше заболеваний, которые раньше были неизлечимы. Врачи и пациенты не теряют надежды на то, что при поддержке государства все эффективные и инновационные методы терапии будут доступны российским больным независимо от и диагноза.

Фото из личного архива Е. Захаровой

Беседовала Ирина Третьякова

Общие принципы лабораторной диагностики наследственных болезней обмена веществ

На клиническом уровне диагноз НБО может быть только заподозрен, и дальнейшая диагностика целиком зависит от применения необычайно широкого спектра биохимических и молекулярно-генетических методов. В большинстве случаев только сочетанная интерпретация всех полученных результатов дает возможность точно определить форму заболевания.

Стратегия достоверной диагностики НБО включает несколько этапов: 1. Выявление дефектного звена метаболического пути посредством анализа (количественного, полуколичественного или качественного) соответствующих метаболитов; 2. Выявление дисфункции белка посредством оценки его количества и/или активности; 3. Выяснение природы мутации, т.е. характеристика мутантного аллеля на уровне гена.

Такая стратегия используется не только для решения научных проблем, касающихся изучения нормального метаболизма, молекулярных механизмов патогенеза НБО, выявления гено-фенотипических корреляций, она необходима прежде всего для практической диагностики НБО. Верифицировать диагноз на уровне белка и мутантного гена необходимо как для проведения пренатальной диагностики, медико-генетического консультирования отягощенных семей, так и в ряде случаев для назначения адекватной терапии. Например, при недостаточности дигидроптеридинредуктазы клинический фенотип и уровни фенилаланина будут неотличимы от классической формы ФКУ, но подходы к терапии этих заболеваний принципиально отличаются. Важность локусной дифференциации НБО для медико-генетического консультирования может быть продемонстрирована на примере мукополисахаридоза II типа (болезнь Хантера). По спектру экскретируемых гликозаминогликанов невозможно дифференцировать между собой мукополисахаридозы II, I и VII типов, но из этих заболеваний только болезнь Хантера наследуется по Х-сцепленному рецессивному типу, что имеет принципиальное значение для прогноза потомства в отягощенной семье. Безусловна приоритетность молекулярно-генетических методов при установлении гетерозиготного носительства, а также в пренатальной диагностике заболеваний, при которых мутантный фермент не экспрессируется в клетках ворсин хориона.

Этап исследования метаболитов

Оценка метаболитов в биологических жидкостях - необходимый этап диагностики аминоацидопатий, органических ацидурий, мукополисахаридозов, митохондриальных и пероксисомных болезней, дефектов метаболизма пуринов и пиримидинов и т.д. Хроматографические методы анализа играют важнейшую роль в диагностике НБО. Это обусловлено тем, что современный арсенал хроматографических технологий чрезвычайно широк и позволяет эффективно и информативно разделять сложные многокомпонентные смеси, к которым в том числе относится и биологический материал. Для селективного скрининга НБО успешно используется тонкослойная хроматография, позволяющая получать информацию на качественном уровне. Этот метод хроматографии применим для разделения аминокислот, пуринов и пиримидинов, углеводов, олигосахаридов. Для количественного анализа маркеров-метаболитов НБО успешно применяются такие хроматографические методы как газовая и высокоэффективная жидкостная хроматографии, а также хроматомасс-спектрометрия (ГХ, ВЭЖХ и ХМС соответственно). ГХ и ВЭЖХ являются универсальными методами разделения сложных смесей соединений, отличаются высокой чувствительностью и воспроизводимостью. В обоих случаях разделение осуществляется в результате различного взаимодействия компонентов смеси с неподвижной и подвижной фазами хроматографической колонки. Для ГХ подвижной фазой является газ-носитель, для ВЭЖХ - жидкость (элюент). Выход каждого соединения фиксируется детектором прибора, сигнал которого преобразуется в пики на хроматограмме. Каждый пик характеризуется временем удерживания и площадью. Следует отметить, что ГХ проводится, как правило, при высокотемпературном режиме, поэтому ограничением для ее применения является термическая неустойчивость соединений. Для ВЭЖХ не существует подобных ограничений, т.к. в этом случае анализ проводится в мягких условиях. ХМС представляет собой комбинированную систему ГХ или ВЭЖХ с масс-селективным детектором, что позволяет получать не только количественную, но и качественную информацию, т.е. дополнительно определяется структура соединений в анализируемой смеси.

Одним из перспективных направлений в развитии программ диагностики НБО является применение методов, позволяющих количественно определять множество метаболитов, являющихся маркерами разных групп НБО. К таким методам относится тандемная масс-спектрометрия (ТМС). ТМС позволяет охарактеризовать структуру, молекулярную массу и провести количественную оценку 3000 соединений одновременно. При этом не требуется длительной подготовки проб для проведения анализа (как, например, для ГХ), а время исследования занимает несколько секунд.

Этап исследования мутантных белков

Исследование мутантных белков может проводиться с помощью различных методов:

  1. Определение активности фермента с применением естественных субстратов;
  2. Определение активности фермента с использованием искусственных субстратов;
  3. Нагрузка культивируемых фибробластов накапливаемыми субстратами;
  4. Измерение концентрации белка с помощью иммунохимических методов.

Материалом для измерения активности ферментов при НБО являются прежде всего лейкоциты периферической крови: практически при всех лизосомных болезнях накопления, метилмалоновой ацидурии, некоторых гликогенозах. Для диагностики GM2-ганглиозидозов, недостаточности биотинидазы используют плазму или сыворотку крови. В некоторых случаях объектами исследования являются мышечная или печеночная ткань: ферменты дыхательной цепи митохондрий, гликогенозы. Также широко используется для диагностики культура кожных фибробластов.

Этап исследования мутантных генов

Развитие методов молекулярной биологии явилось настоящей революцией в области клинической биохимии. Разработка стандартных протоколов молекулярных исследований и автоматизация используемых методов являются сегодня законченным комплексом диагностических подходов и становятся наряду с биохимическими методами рутинной процедурой в клинических лабораториях. Быстрое развитие исследований в области расшифровки генома человека и определение ДНК- последовательности генов делает сейчас возможным ДНК-диагностику различных наследственных заболеваний. Методы ДНК-диагностики и анализа структуры нормальных генов и их мутантных аналогов при наследственных болезнях обмена начали использоваться в течение последнего десятилетия.

Для ДНК-диагностики наследственных заболеваний используются два основных подхода - прямая и косвенная ДНК-диагностика. Прямая ДНК-диагностика представляет собой исследование первичной структуры поврежденного гена и выделение мутаций, ведущих к заболеванию. Для детекции молекулярных повреждений в генах, обуславливающих наследственные болезни, используется стандартный арсенал методов молекулярной биологии. В зависимости от характеристики и типов мутаций, частот их встречаемости при различных наследственных заболеваниях, те или иные методы являются наиболее предпочтительными.

Для диагностики НБО в тех случаях, когда биохимический дефект точно известен, легко и достоверно определяем с использованием биохимических методик, ДНК-методы вряд ли займут приоритетное место. В этих случаях применение ДНК-анализа является скорее научно-исследовательским, а не диагностическим подходом. Однако после точно установленного диагноза методы ДНК-анализа будут полезны для последующей пренатальной диагностики, идентификации гетерозиготных носителей в семье и прогноза заболевания у гомозигот, а также для отбора больных с целью проведения казуальной терапии в будущем (фермент-заместительной и генотерапии). Также в случаях, когда биохимический дефект точно не известен, биохимическая диагностика затруднена, недостаточно достоверна или требует инвазивных методов исследования, методы ДНК-диагностики являются единственными и незаменимыми для точной постановки диагноза.

В общем виде тактика проведения диагностики НБО в каждом конкретном случае должна планироваться совместно с врачом-биохимиком и врачом-генетиком. Необходимыми условиями успешной и быстрой диагностики является понимание этиологии, механизмов патогенеза заболевания, знание специфических биохимических маркеров.

Описание

Подготовка

Показания

Интерпретация результатов

Документы к заполнению

Описание

Метод определения

Тандемная масс-спектрометрия с ионизацией в электроспрее.

Исследуемый материал Капиллярная кровь, собранная на специальную карточку-фильтр №903

Анализ спектра аминокислот и ацилкарнитинов методом тандемной масс-спектрометрии (ТМС)

Что такое нарушения метаболизма? Наследственные нарушения метаболизма или по-другому обмена веществ - это около 500 различных заболеваний, которые обусловлены нарушением работы особых биохимических катализаторов - ферментов. Ферменты обеспечивают процессы расщепления аминокислот, органических кислот, жирных кислот и других биомолекул. Многие ошибочно считают, что поскольку заболевания этой группы встречаются крайне редко, то и исключать их нужно в последнюю очередь. Однако по данным литературы*, наследственными нарушениями метаболизма страдает один из 3000 новорождённых!

Особое место среди этих заболеваний занимают болезни, которые начинаются в раннем детском возрасте. Эти заболевания часто сочетаются с тяжёлой неонатальной патологией и/или протекают под маской таких состояний как сепсис, перинатальное поражение нервной системы, внутриутробная инфекция. Позднее выявление заболеваний этой группы может привести к тяжёлой инвалидности или даже летальному исходу. Установлено, что 5%** всех случаев «синдрома внезапной смерти младенцев» - следствие наследственных нарушений метаболизма. Однако некоторые из этих заболеваний эффективно лечатся при своевременной диагностике. Одним из современных методов диагностики нарушений метаболизма является тандемная масс-спектрометрия (ТМС). Этот метод позволяет определить в небольшом количестве биологического материала (капля высушенной крови) , что позволяет с определённой вероятностью заподозрить наследственное заболевание. В некоторых странах этим методом проводится обследование всех новорождённых на 10-30 наследственных нарушений метаболизма. Другими словами, все новорождённые подвергаются специальному биохимическому исследованию называемому скрининг. * Vilarinho L, Rocha H, Sousa C, Marcão A, Fonseca H, Bogas M, Osório RV. Four years of expanded newborn screening in Portugal with tandem mass spectrometry. J Inherit Metab Dis. 2010 Feb 23 ** Olpin SE The metabolic investigation of sudden infant death. Ann Clin Biochem, 2004, Jul 41 (Pt4), 282-293 **Opdal SH, Rognum TO The sudden Infant Death Syndrome Gene: Does It Exist? Pediatrics, 2004, V.114, N.4, pp. e506-e512 Что такое скрининг? Скрининг (от англ. Screening – просеивание) — это массовое обследование пациентов для выявления различных заболеваний, ранняя диагностика которых позволяет предотвратить развитие тяжёлых осложнений и инвалидности. На какие заболевания проводится обязательное скрининговое обследование новорождённых в нашей стране? В России существует государственная программа, которая включает в себя обязательное обследование (скрининг) всех новорождённых только на 5 наследственных заболеваний: фенилкетонурии (ФКУ), муковисцидоза, галактоземии, адреногенитального синдрома и врождённого гипотиреоза.

Обращаем Ваше внимание на то, что из этого перечня в состав исследования «ПЯТОЧКА» входит только скрининг на фенилкетонурию (полный перечень выявляемых наследственных болезней обмена веществ при помощи скринига «ПЯТОЧКА» см. ниже по тексту).

На какие заболевания можно обследовать ребёнка дополнительно? Скрининга новорождённых, направленного на диагностику нарушений метаболизма методом ТМС, в России на настоящий момент не проводится. В России это исследование пока проводится по назначению врача при наличии подозрений на наследственные болезни обмена веществ, хотя многие из заболеваний этой группы проявляют себя не сразу после рождения, но при этом уже есть у новорождённого. Однако, уже упомянутым ранее методом тандемной масс-спектрометрии (ТМС) можно дополнительно обследовать новорождённого ребенка на исключение 37 различных наследственных заболеваний, которые относятся к нарушениям обмена аминокислот, органических кислот и дефектам ß -окисления жирных кислот. Аминоацидопатии Аминоацидопатии развиваются вследствие недостатка специфических ферментов, необходимых для метаболизма аминокислот. Это приводит к аномально высокому уровню аминокислот и их производных в крови и моче, которые оказывают токсическое действие на клетки и ткани организма. Основные симптомы: задержка развития, судороги, коматозные состояния, рвота, диарея, необычный запах мочи, нарушения зрения и слуха. Лечение заключается в назначении специальной диеты и витаминов. Эффективность терапии зависит от того, насколько рано и точно установлен диагноз. К сожалению, некоторые заболевания из этой группы не поддаются лечению. Органические ацидурии/ацидемии Органические ацидурии/ацидемии являются результатом нарушения химического расщепления аминокислот вследствие недостаточной активности ферментов. Их клинические проявления схожи с проявлениями аминоацидопатий. Лечение заключается в назначении специальной диеты и/или витаминов. К сожалению, некоторые заболевания из этой группы не поддаются лечению. Дефекты ß-окисления жирных кислот ß-окисление жирных кислот – многоступенчатый процесс их расщепления, в результате которого образуется энергия, необходимая для жизнедеятельности клетки. Каждый шаг процесса окисления производится под действием специфических ферментов. При отсутствии одного из ферментов процесс нарушается. Симптомы: сонливость, кома, рвота, низкий уровень сахара в крови, поражение печени, сердца, мышц. Лечение заключается в назначении низкожировой диеты с частым и дробным кормлением, других специализированных диетических продуктов, а также, левокарнитина. Полный перечень выявляемых наследственных болезней обмена веществ

  1. Болезнь с запахом кленового сиропа мочи (лейциноз).
  2. Цитрулинемия тип 1, неонатальная цитрулинемия.
  3. Аргининосукциновая ацидурия (АСА)/ недостаточность аргининосукцинат лиазы лиазы.
  4. Недостаточность орнитин транскарбамилазы.
  5. Недостаточность карбамилфосфат синтазы.
  6. Недостаточность N-ацетилглютамат синтазы.
  7. Некетотическая гиперглицинемия.
  8. Тирозинемия тип 1.
  9. Тирозинемия тип 2.
  10. Гомоцистинурия/недостаточность цистатионин бета-синтетазы.
  11. Фенилкетонурия.
  12. Аргининемия/недостаточность аргиназы.
  13. Пропионовая ацидемия (недостаточность пропионил КоА карбоксилазы).
  14. Метилмалоновая ацидемия.
  15. Изовалериановая ацидемия (недостаточность изовалерил КоА дегидрогеназы).
  16. Недостаточность 2-метилбутирил КоА дегидрогеназы.
  17. Недостаточность изобутирил КоА дегидрогеназы.
  18. Глутаровая ацидемия тип 1 (недостаточность глутарил КоА дегидрогеназы тип 1).
  19. Недостаточность 3-метилкротонил КоА карбоксилазы.
  20. Множественная карбоксилазная недостаточность.
  21. Недостаточность биотинидазы.
  22. Малоновая ацидемия (недостаточность малонил КоА декарбоксилазы).
  23. Недостаточность митохондриальной ацетоацетил КоА тиолазы.
  24. Недостаточность 2-метил-3-гидроксибутирил КоА дегидрогеназы.
  25. Недостаточность 3-гидрокси-3-метилглутарил КоА лиазы.
  26. Недостаточность 3-метилглутаконил КоА гидратазы.
  27. Недостаточность среднецепочечной ацил-КоА дегидрогеназы.
  28. Недостаточность очень длинноцепочечной ацил-КоА дегидрогеназы.
  29. Недостаточность короткоцепочечной ацил-КоА дегидрогеназы.
  30. Недостаточность длинноцепочечной 3-гидроксиацил-КоА дегидрогеназы (дефект трифункционального белка).
  31. Глутаровая ацидемия тип II (недостаточность глутарил КоА дегидрогеназы тип II), множественная недостаточность ацил-КоА дегидрогеназ.
  32. Нарушение транспорта карнитина.
  33. Недостаточность карнитин палмитоил трансферазы тип I.
  34. Недостаточность карнитин палмитоил трансферазы тип II.
  35. Недостаточность карнитин/ацилкарнитин транслоказы.
  36. Недостаточность 2,4-диеноил КоА редуктазы.
  37. Недостаточность среднецепочечной 3-кетоацил-КоА тиолазы.
  38. Недостаточность средне-/короткоцепочечной ацил-КоА дегидрогеназы.

Материал для исследования: капиллярная кровь, собранная на специальную карточку-фильтр №903.

Литература

  1. Chace D.H., Kalas T.A., Naylor E.W. The application of tandem mass spectrometry to neonatal screening for inherited disorders of intermediary metabolism. Annu Rev Genomics Hum Genet. 2002; vol. 3; p. 17-45.
  2. Leonard J.V., Dezateux C. Screening for inherited metabolic disease in newborn infants using tandem mass spectrometry. BMJ. 2002; vol. 324(7328); p. 4-5.
  3. Millington D., Kodo N., Terada N., Roe D., Chace D. The analysis of diagnostic markers of genetic disorders in human blood and urine using tandem mass spectrometry with liquid secondary ion mass spectrometry.1991 Int.J.Mass Spectr.Ion Process. 111:211-28.
  4. Chace D.H. Mass spectrometry in the clinical laboratory. Chem Rev. 2001 Feb;101(2):445-77.
  5. Duran M., Ketting D., Dorland L., Wadman S.K. The identification of acylcarnitines by desorption chemical ionization mass spectrometry. J Inherit Metab Dis. 1985;8 Suppl 2:143-4.
  6. Millington D.S., Kodo N., Norwood D.L., Roe C.R. Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis. 1990;13(3):321-4.
  7. Chace D.H., DiPerna J.C., Mitchell B.L., Sgroi B., Hofman L.F., Naylor E.W.. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. Clin Chem. 2001;47(7):1166-82.
  8. Rashed M.S., Bucknall M.P., Little D., Awad A., Jacob M., Alamoudi M., Alwattar M., Ozand P.T. Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles. Clin Chem. 1997 Jul; 43(7):1129-41.
  9. Millington D.S., Terada N., Chace D.H., Chen Y.T., Ding J.H., Kodo N., Roe C.R. The role of tandem mass spectrometry in the diagnosis of fatty acid oxidation disorders. Prog Clin Biol Res. 1992; 375:339-54.
  10. Rashed M.S., Ozan P.T., Harrison M.E., Watkins P.J.F., Evans S. 1994. Electrospray tandem mass spectrometry in the analysis of organic acidemias. Rapid Commun. Mass Spectrom. 8:122-33
  11. Vreken P., van Lint A.E., Bootsma A.H., Overmars H., Wanders R.J., van Gennip A.H. Rapid diagnosis of organic acidemias and fatty-acid oxidation defects by quantitative electrospray tandem-MS acyl-carnitine analysis in plasma. Adv Exp Med Biol. 1999; 466:327-37.
  12. Griffiths W.J., Jonsson A..P, Liu S., Rai D.K., Wang Y. Electrospray and tandem mass spectrometry in biochemistry. Biochem J. 2001 May 1; 355(Pt 3):545-61.
  13. Dooley K.C. Tandem mass spectrometry in the clinical chemistry laboratory. Clin Biochem. 2003 Sep; 36(6):471-81.
  14. Михайлова С.В., Ильина Е.С., Захарова Е.Ю., Байдакова Г.В., Бембеева Р.Ц., Шехтер О.В., Захаров С.Ф. «Множественная карбоксилазная недостаточность, обусловленная мутациями в гене биотинидазы// Медицинская генетика. - 2005. - №2. - C. 633-638.
  15. Байдакова Г.В., Букина А.М., Гончаров В.М., Шехтер О.В., Букина Т.М., Покровская А.Я., Захарова Е.Ю., Михайлова С.В., Федонюк И.Д., Колпакчи Л.М., Семыкина Л.И., Ильина Е.С. Диагностика наследственных болезней обмена веществ на основе сочетания методов тандемной масс-спектрометрии и энзимодиагностики, Медицинская генетика, 2005, т. 4, №1, с. 28-33.
  16. Захарова Е.Ю., Ильина Е.С., Букина А.М., Букина Т.М., Захаров С.Ф., Михайлова С.Ф., Федонюк И.Д., Байдакова Г.В., Семыкина Л.И., Колпакчи Л.М., Зайцева М.Н. «Результаты проведения селективного скрининга на наследственные болезни обмена веществ среди пациентов психоневрологических отделений». Второй Всероссийский Конгресс, «Современные технологии в педиатрии и детской хирургии», Материалы Конгресса, стр. 141-142.
  17. Baidakova G.V., Boukina A.M., Boukina T.M., Shechter O.V., Michaylova S.V. I’lina E.S, Zakharova E.Yu Combination of tandem mass spectrometry and lysosomal enzymes analysis - effective tool for selective screening for IEM in neurological clinic. SSIEM 41st Annual Symposium, Amsterdam, August 31- September 3, 2004.
  18. Mikhaylova S.V., Baydakova G.V., Zakharova E.Y., Il’ina E.S. First cases of biotinidase deficiency in Russia. European Journal of Human Genetics Vol.13-Supplement1-May, 2005, p. 386.
  19. Байдакова Г.В., Захарова Е.Ю., Зинченко Р.А. Недостаточность среднецепочечной ацил-КоА-дегидрогеназы жирных кислот. Материалы V съезда Российского общества медицинских генетиков, Уфа, май 2005, Медицинская Генетика, т. 4, № 4, с. 153.
  20. Захарова Е.Ю., Байдакова Г.В., Шехтер О.В., Ильина Е.С., Михайлова С.В. Тандемная масс-спектрометрия – новый подход диагностики наследственных нарушений обмена веществ, Материалы V съезда Российского общества медицинских генетиков, Уфа, май 2005, Медицинская Генетика, т. 4, №4, с.188.
  21. Mikhaylova S.V., Zakharova E.Y, Baidakova G.V., Shehter O.V., Ilina E.S Clinical outcome of glutaric aciduria type I in Russia. J.Inherit. Metab.Dis 2007, v. 30, p. 38 22. Baydakova GV, Tsygankova PG. Diagnosis of mitochondrial β-oxidation defects in Russia. J Inherit Metab Dis (2008) 31 (Suppl 1) p.39

Подготовка

Что делать, если необходимо обследовать ребёнка на наследственные нарушения метаболизма?

  • По назначению врача или самостоятельно в любом медицинском офисе ИНВИТРО необходимо заранее приобрести набор для проведения исследования, в который входит:

Подготовка к исследованию и правила взятия крови у новорождённых

  1. Взятие образцов крови у новорождённых детей осуществляется в родовспомогательных учреждениях специально подготовленным сотрудником, а в случае ранней выписки новорождённого (до 4 дня жизни) - специально подготовленной патронажной сестрой.
  2. При обследовании новорождённых взятие пробы крови следует проводить не ранее 4-х суток у доношенных и 7-х суток у недоношенных детей. У новорождённых кровь берут из пяточки, у детей старше 3 мес - из пальца.
  3. У новорождённых от начала полного грудного или искусственного вскармливания до взятия крови должно пройти не менее 4-х суток. Взятие крови проводят через 3 часа после кормления (у новорождённых - перед очередным кормлением).
  4. Перед взятием крови у новорождённого стопу ребёнка необходимо тщательно вымыть мылом, протереть стерильным тампоном, смоченным 70% спиртом, а затем обработанное место промокнуть стерильной сухой салфеткой!
  5. Прокол делают одноразовым стерильным скарификатором на глубину 2,0 мм (зоны прокола изображены на ). Первую каплю крови удаляют стерильным сухим тампоном.
  6. Мягким надавливанием на пятку способствуют накоплению второй капли крови, к которой перпендикулярно прикладывают специальную карточку из фильтровальной бумаги и пропитывают полностью и насквозь 5 зон, очерченных круговой линией. Пятна крови должны быть не меньше указанного на бланке размера, вид пятен должен быть одинаков с обеих сторон , . Никогда не используйте противоположную сторону фильтровальной бумаги для заполнения окружностей.
  7. После взятия крови осушите зону прокола стерильным тампоном и наклейте бактерицидный пластырь на участок прокола. Внимание! От качества взятия крови зависит точность и достоверность исследования!
  8. Специальную карточку из фильтровальной бумаги высушивают не менее 2 - 4 часов при комнатной температуре. Избегайте попадания прямых солнечных лучей! Для этого отведите внешний клапан карточки и подведите его край под противоположную поверхность фильтра (где не обозначены окружности), . После полного высыхания капель крови переместите клапан карточки над поверхностью фильтра. Подпишите Фамилию И. О. ребёнка внизу карточки (Name) и укажите дату взятия крови (Date), . Карточку поместите в маленький конверт и вложите его в предварительно подписанный большой конверт. Заполните направительный бланк заказа и также вложите его в большой конверт.
  9. Передайте большой конверт в ближайший медицинский офис ИНВИТРО (конверт не запечатывается). Сотрудник ИНВИТРО в вашем присутствии проверит содержимое конверта и правильность заполнения бланка заказа.

Хранение и транспортировка: до и после взятия крови набор хранить при комнатной температуре в сухом месте; избегать контакта с системами отопления; избегать попадания прямых солнечных лучей; при транспортировке упаковать набор (наборы) в полиэтиленовый герметично закрывающийся пакет.

Показания к назначению

  • Сходные случаи заболевания в семье.
  • Случаи внезапной смерти ребёнка в раннем возрасте в семье.
  • Резкое ухудшение состояния ребёнка после кратковременного периода нормального развития (бессимптомный промежуток может составлять от нескольких часов до нескольких недель).
  • Необычный запах тела и/или мочи («сладкий», «мышиный», «варёной капусты», «потных ног» и др.).
  • Неврологические нарушения - нарушения сознания (летаргия, кома), различные типы судорожных приступов, изменение мышечного тонуса (мышечная гипотония или спастический тетрапарез).
  • Нарушения ритма дыхания (брадипноэ, тахипноэ, апноэ).
  • Нарушения со стороны других органов и систем (поражение печени, гепатоспленомегалия, кардиомиопатия, ретинопатия).
  • Изменения лабораторных показателей крови и мочи - нейтропения, анемия, метаболический ацидоз/алкалоз, гипогликемия/гипергликемия, повышение активности печёночных ферментов и уровня креатинфосфокиназы, кетонурия.
  • Дополнительная диагностика 37 наследственных болезней обмена веществ наряду с обязательной государственной программой выявления 5-ти наследственных заболеваний: скрининг новорождённых: «ПЯТОЧКА».

Интерпретация результатов

Интерпретация результатов исследований содержит информацию для лечащего врача и не является диагнозом. Информацию из этого раздела нельзя использовать для самодиагностики и самолечения. Точный диагноз ставит врач, используя как результаты данного обследования, так и нужную информацию из других источников: анамнеза, результатов других обследований и т.д.

Единицы измерения в лаборатории ИНВИТРО: мкмоль/литр. Референсные значения для определяемых параметров (детализированная интерпретация результатов)

Общая интерпретация результата

Наследственные заболевания обмена веществ Изменение концентрации метаболитов
Болезнь «с запахом кленового сиропа мочи» (лейциноз) Лейцин Валин
Цитрулинемия тип 1, неонатальная цитрулинемия Цитрулин
Аргининосукциновая ацидурия (АСА)/ недостаточность аргининосукцинат лиазы лиазы Цитрулин
Недостаточность орнитин транскарбамилазы Цитрулин
Недостаточность карбамилфосфат синтазы Цитрулин
Недостаточность N-ацетилглютамат синтазы Цитрулин
Некетотическая гиперглицинемия Глицин
Тирозинемия тип 1 Тирозин
Тирозинемия тип 2 Тирозин
Гомоцистинурия/недостаточность цистатионин бета-синтетазы Метионин
Фенилкетонурия Фенилаланин
Аргининемия/недостаточность аргиназы Аргинин
Пропионовая ацидемия (недостаточность пропионил КоА карбоксилазы) С3
Метилмалоновая ацидемия С3 (С4DC )
Изовалериановая ацидемия (недостаточность изовалерил КоА дегидрогеназы) С5
Недостаточность 2-метилбутирил КоА дегидрогеназы С5
Недостаточность изобутирил КоА дегидрогеназы С4
Глутаровая ацидемия тип 1 (недостаточность глутарил КоА дегидрогеназы тип 1) С5DC
Недостаточность 3-метилкротонил КоА карбоксилазы С5ОН
Множественная карбоксилазная недостаточность С5ОН С3
Недостаточность биотинидазы С5ОН
Малоновая ацидемия (недостаточность малонил КоА декарбоксилазы) С3DC
Недостаточность митохондриальной ацетоацетил КоА тиолазы С5:1 С5ОН
Недостаточность 2-метил-3-гидроксибутирил КоА дегидрогеназы С5:1 С5ОН
Недостаточность 3-гидрокси-3-метилглутарил КоА лиазы С5ОН С6DC
Недостаточность 3-метилглутаконил КоА гидратазы С6DC
Недостаточность среднецепочечной ацил-КоА дегидрогеназы С6 С8 С10 С10:1
Недостаточность очень длинноцепочечной ацил-КоА дегидрогеназы С14 С14:1 С14:2 С16:1
Недостаточность короткоцепочечной ацил-КоА дегидрогеназы С4
Недостаточность длинноцепочечной 3-гидроксиацил-КоА дегидрогеназы (дефект трифункционального белка) С16OH С18ОН С18:1OH С18:2OH
Глутаровая ацидемия тип II (недостаточность глутарил КоА дегидрогеназы тип II), множественная недостаточность ацил-КоА дегидрогеназ С4 С5 С6 С8 С10 С12 С14 С16 С18
Нарушение транспорта карнитина C0 ↓ тотальное снижение ацилкарнитинов
Недостаточность карнитин палмитоил трансферазы тип I С0 С16 ↓ С18:1 ↓ С18:2 ↓
Недостаточность карнитин палмитоил трансферазы тип II C0 ↓ С16 С18:1 С18:2
Недостаточность карнитин/ацилкарнитин транслоказы C0 ↓ С16 С18:1 С18:2
Недостаточность 2,4-диеноил КоА редуктазы С10:2
Недостаточность среднецепочечной 3-кетоацил-КоА тиолазы С6DC С8DC
недостаточность средне-/короткоцепочечной ацил-КоА дегидрогеназы С4ОН С6ОН

Что делать, если в результате исследования выявлено изменение показателей? Необходимо понимать, что изменения, выявленные при ТМС, полностью не подтверждают заболевание, а в ряде случаев, необходимо пройти дополнительные тесты, (см. список дополнительных тестов и ) чтобы убедиться в достоверности выявленных нарушений. Рекомендуется консультация врача-генетика и педиатра, чтобы выработать тактику совместных действий. Используемая литература (референсные значения)

  1. Wiley V., Carpenter K., Wilcken B. Newborn screening with tandem mass spectrometry: 12 months’ experience in NSW Australia. Acta Paediatrica 1999; 88 (Suppl):48-51.
  2. Rashed MS, Rahbeeni Z, Ozand PT. Application of electrospray tandem mass spectrometry to neonatal screening. Semin Perinatol 1999; 23:183–93.
  3. Schulze A., Lindner M., Kohlmüller D., Olgemöller K., Mayatepek E., Hoffmann G.F. Expanded Newborn Screening for Inborn Errors of Metabolism by Electrospray Ionization-Tandem Mass Spectrometry: Results, Outcome, and Implications, Pediatrics, 2003; 111; 1399-1406.
  4. Hoffman G., Litsheim T., Laessig R. Implementation of tandem mass spectrometry in Wisconsin’s newborn screening program. MMWR Morb MortalWkly Rep 2001; 50 (RR-3): 26–7.
  5. Lin W.D., Wu J.Y., Lai C.C., Tsai F.J., Tsai C.H., Lin S.P., Niu D.M. A pilot study of neonatal screening by electrospray ionization tandem mass spectrometry in Taiwan. Acta Paediatr Taiwan 2001; 42:224–30.
  6. Zytkovicz T.H., Fitzgerald E.F., Marsden D., Larson C.A., Shih V.E., Johnson D.M., et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two year summary from the New England Newborn Screening Program. Clin Chem 2001;47:1945–55.


Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!