Информационный женский портал

По полочкам: вакцины – какие, когда, кому. Вакцины, требования к вакцинам. Виды вакцин, характеристика, методы приготовления. Новые подходы к созданию вакцин Современные прививки

Открытие метода вакцинации дало старт новой эре борьбы с болезнями.

В состав прививочного материала входят убитые или сильно ослабленные микроорганизмы либо их компоненты (части). Они служат своеобразным муляжом, обучающим иммунную систему давать правильный ответ инфекционным атакам. Вещества, входящие в состав вакцины (прививки), не способны вызвать полноценное заболевание, но могут дать возможность иммунитету запомнить характерные признаки микробов и при встрече с настоящим возбудителем быстро его определить и уничтожить.

Производство вакцин получило массовые масштабы в начале ХХ века, после того как фармацевты научились обезвреживать токсины бактерий. Процесс ослабления потенциальных возбудителей инфекций получил название аттенуации.

Сегодня медицина располагает более, чем 100 видами вакцин от десятков инфекций.

Препараты для иммунизации по основным характеристикам делятся на три основных класса.

  1. Живые вакцины. Защищают от полиомиелита, кори, краснухи, гриппа, эпидемического паротита, ветряной оспы, туберкулеза, ротавирусной инфекции. Основу препарата составляют ослабленные микроорганизмы - возбудители болезней. Их сил недостаточно для развития значительного недомогания у пациента, но хватает, чтобы выработать адекватный иммунный ответ.
  2. Инактивированные вакцины. Прививки против гриппа, брюшного тифа, клещевого энцефалита, бешенства, гепатита А, менингококковой инфекции и др. В составе мертвые (убитые) бактерии или их фрагменты.
  3. Анатоксины (токсоиды). Особым образом обработанные токсины бактерий. На их основе делают прививочный материал от коклюша, столбняка, дифтерии.

В последние годы появился еще один вид вакцин - молекулярные. Материалом для них становятся рекомбинантные белки или их фрагменты, синтезированные в лабораториях путем применения методов генной инженерии (рекомбининтная вакцина против вирусного гепатита В).

Схемы изготовления некоторых видов вакцин

Живые бактериальные

Схема подходит для вакцины БЦЖ, БЦЖ-М.

Живые противовирусные

Схема подходит для производства вакцин от гриппа, ротавируса, герпеса I и II степеней, краснухи, ветряной оспы.

Субстратами для выращивания вирусных штаммов при производстве вакцин могут становиться:

  • куриные эмбрионы;
  • перепелиные эмбриональные фибробласты;
  • первичные клеточные культуры (куриные эмбриональные фибробласты, клетки почек сирийских хомячков);
  • перевиваемые клеточные культуры (MDCK, Vero, MRC-5, BHK, 293).

Первичный сырьевой материал очищают от клеточного дебриса в центрифугах и с помощью сложных фильтров.

Инактивированные антибактериальные вакцины

  • Культивация и очистка штаммов бактерий.
  • Инактивация биомассы.
  • Для расщепленных вакцин клетки микробов дезинтегрируют и осаждают антигены с последующим их хроматографическим выделением.
  • Для конъюгированных вакцин полученные при предыдущей обработке антигены (как правило, полисахаридные) сближают с белком-носителем (конъюгация).

Инактивированные противовирусные вакцины

  • Субстратами для выращивания вирусных штаммов при производстве вакцин могут становиться куриные эмбрионы, перепелиные эмбриональные фибробласты, первичные клеточные культуры (куриные эмбриональные фибробласты, клетки почек сирийских хомячков), перевиваемые клеточные культуры (MDCK, Vero, MRC-5, BHK, 293). Первичная очистка для удаления клеточного дебриса проводится методами ультрацентрифугирования и диафильтрации.
  • Для инактивации используются ультрафиолет, формалин, бета-пропиолактон.
  • В случае приготовления расщепленных или субъединичных вакцин полупродукт подвергают действию детергента с целью разрушить вирусные частицы, а затем выделяют специфические антигены тонкой хроматографией.
  • Человеческий сывороточный альбумин применяется для стабилизации полученного вещества.
  • Криопротекторы (в лиофилизатах): сахароза, поливинилпирролидон, желатин.

Схема подходит для производства прививочного материала против гепатита А, желтой лихорадки, бешенства, гриппа, полиомиелита, клещевого и японского энцефалитов.

Анатоксины

Для дезактивации вредного воздействия токсинов используют методы:

  • химический (обработка спиртом, ацетоном или формальдегидом);
  • физический (подогрев).

Схема подходит для производства вакцин против столбняка и дифтерии.

По данным Всемирной Организации Здравоохранения (ВОЗ), на долю инфекционных заболеваний приходится 25 % от общего количества смертей на планете ежегодно. То есть инфекции до сих пор остаются в списке главных причин, обрывающих жизнь человека.

Одним из факторов, способствующих распространению инфекционных и вирусных заболеваний, являются миграция потоков населения и туризм. Перемещение человеческих масс по планете влияет на уровень здоровья нации даже в таких высокоразвитых странах, как США, ОАЭ и государства Евросоюза.

По материалам: «Наука и жизнь» № 3, 2006, «Вакцины: от Дженнера и Пастера до наших дней», академик РАМН В. В. Зверев, директор НИИ вакцин и сывороток им. И. И. Мечникова РАМН.

Задать вопрос специалисту

Вопрос экспертам вакцинопрофилактики

Вопросы и ответы

Вакцина "Менюгейт" зарегистрирована в России? С какого возраста разрешена к применению?

Да, зарегистрирована, вакцина – от менингококка С, сейчас также есть вакцина конъюгированная, но уже против 4 типов менингококков – А, С, Y, W135 – Менактра. Прививки проводят с 9 мес.жизни.

Муж транспортировал вакцину РотаТек в другой город.Покупая ее в аптеке мужу посоветовали купить охлаждающий контейнер,и перед поездкой его заморозить в морозильной камере,потом привязать вакцину и так ее транспортировать. Время в пути заняло 5 часов. Можно ли вводить такую вакцину ребенку? Мне кажется,что если привязать вакцину к замороженному контейнеру, то вакцина замерзнет!

Отвечает Харит Сусанна Михайловна

Вы абсолютно правы, если в контейнере был лед. Но если там была смесь воды и льда- вакцина не должна замерзать. Однако живые вакцины, к которым относится ротавирусная, не увеличивают реактогенность при температуре менее 0, в отличие от неживых, а, например, для живой полиомиелитной допускается замораживание до -20 град С.

Моему сыну сейчас 7 месяцев.

В 3 месяца у него случился отек Квинке на молочную смесь Малютка.

Прививку от гепатита сделали в роддоме, вторую в два месяца и третью вчера в семь месяцев. Реакция нормальная, даже без температуры.

Но вот на прививку АКДС нам устно дали медотвод.

Я за прививки!! И хочу сделать прививку АКДС. Но хочу сделать ИНФАНРИКС ГЕКСА. Живем в Крыму!!! В крыму ее нигде нет. Посоветуйте как поступить в такой ситуации. Может есть зарубежный аналог? Бесплатную делать категорически не хочу. Хочу качественную очищеную, что бы как монжно меньше риска!!!

В Инфанрикс Гекса содержится компонент против гепатита В. Ребенок полностью привит против гепатита. Поэтому в качестве зарубежного аналога АКДС можно сделать вакцину Пентаксим. Кроме того, следует сказать, что отек Квинке на молочную смесь не является противопоказанием к вакцине АКДС.

Подскажите, пожалуйста, на ком и как тестируют вакцины?

Отвечает Полибин Роман Владимирович

Как и все лекарственные препараты вакцины проходят доклинические исследования (в лаборатории, на животных), а затем клинические на добровольцах (на взрослых, а далее на подростках, детях с разрешения и согласия их родителей). Прежде чем разрешить применение в национальном календаре прививок исследования проводят на большом числе добровольцев, например вакцина против ротавирусной инфекции испытывалась почти на 70 000 в разных странах мира.

Почему на сайте не представлен состав вакцин? Почему до сих пор проводится ежегодная реакция Манту (зачастую не информативна), а не делается анализ по крови, например, квантифероновый тест? Как можно утверждать реакции иммунитета на введенную вакцину, если еще ни кому не известно в принципе, что такое иммунитет и как он работает, особенно если рассматривать каждого отдельно взятого человека?

Отвечает Полибин Роман Владимирович

Состав вакцин изложен в инструкциях к препаратам.

Реакция Манту. По Приказу № 109 «О совершенствовании противотуберкулезных мероприятий в Российской Федерациии» и Санитарным правилам СП 3.1.2.3114-13 "Профилактика туберкулеза", несмотря на наличие новых тестов, детям необходимо ежегодно делать реакцию Манту, но так как этот тест может давать ложноположительные результаты, то при подозрении на тубинфицирование и активную туберкулезную инфекцию проводят Диаскин-тест. Диаскин-тест является высоко чувствительным (эффективным) для выявления активной туберкулезной инфекции (когда идет размножение микобактерий). Однако полностью перейти на Диаскин-тест и не делать реакцию Манту фтизиатры не рекомендуют, так как, он не "улавливает" раннее инфицирование, а это важно, особенно для детей, поскольку профилактика развития локальных форм туберкулеза эффективна именно в раннем периоде инфицирования. Кроме того, инфицирование микобактерией туберкулеза необходимо определять для решения вопроса о ревакцинации БЦЖ. К сожалению, нет ни одного теста, который бы со 100% точностью ответил на вопрос, есть инфицирование микобактерией или заболевание. Квантифероновый тест также выявляет только активные формы туберкулеза. Поэтому при подозрении на инфицирование или заболевание (положительная реакция Манту, контакт с больным, наличие жалоб и пр.) используются комплексные методы (диаскин-тест, квантифероновый тест, рентгенография и др.).

Что касается «иммунитета и как он работает», в настоящее время иммунология - это высокоразвитая наука и многое, в частности, что касается процессов на фоне вакцинации – открыто и хорошо изучено.

Ребёнку 1 год и 8 месяцев, все прививки ставились в соответствии с календарем прививок. В том числе 3 пентаксима и ревакцинация в полтора года тоже пентаксим. В 20 месяцев надо ставить от полиомиелита. Очень всегда переживаю и отношусь тщательно к выбору нужных прививок, вот и сейчас перерыла весь интернет, но так и не могу решить. Мы ставили всегда инъекцию (в пентаксиме). А теперь говорят капли. Но капли-живая вакцина, я боюсь различных побочек и считаю, что лучше перестраховаться. Но вот читала, что капли от полиомиелита вырабатывают больше антител, в том числе и в желудке, то есть более эффективные, чем инъекция. Я запуталась. Поясните, инъекция менее эффективна (имовакс-полио, например)? Отчего ведутся такие разговоры? У каплей боюсь хоть и минимальный, но риск осложнения в виде болезни.

Отвечает Полибин Роман Владимирович

В настоящее время Национальный календарь прививок России предполагает комбинированную схему вакцинации против полиомиелита, т.е. только 2 первых введения инактивированной вакциной и остальные – оральной полиовакциной. Это связано с тем, чтобы полностью исключить риск развития вакциноассоциированного полиомиелита, который возможен только на первое и в минимальном проценте случаев на второе введение. Соответственно, при наличии 2-х и более прививок от полиомиелита инактивированной вакциной, осложнения на живую полиовакцину исключены. Действительно, считалось и признается некоторыми специалистами, что оральная вакцина имеет преимущества, так как формирует местный иммунитет на слизистых кишечника в отличие от ИПВ. Однако сейчас стало известно, что инактивированная вакцина в меньшей степени, но также формирует местный иммунитет. Кроме того, 5 введений вакцины против полиомиелита как оральной живой, так и инактивированной вне зависимости от уровня местного иммунитета на слизистых оболочках кишечника, полностью защищают ребенка от паралитических форм полиомиелита. В связи с вышесказанным вашему ребенку необходимо сделать пятую прививку ОПВ или ИПВ.

Следует также сказать, что на сегодняшний день идет реализация глобального плана Всемирной организации здравоохранения по ликвидации полиомиелита в мире, которая предполагает полный переход всех стран к 2019 году на инактивированную вакцину.

В нашей стране уже очень долгая история использования многих вакцин – ведутся ли долгосрочные исследования их безопасности и можно ли ознакомиться с результатами воздействия вакцин на поколения людей?

Отвечает Шамшева Ольга Васильевна

За прошлый век продолжительность жизни людей возросла на 30 лет, из них 25 дополнительных лет жизни люди получили за счет вакцинации. Больше людей выживают, они живут дольше и качественнее за счет того, что снизилось инвалидность из-за инфекционных заболеваний. Это общий ответ на то, как влияют вакцины на поколения людей.

На сайте Всемирной Организации Здравоохранения (ВОЗ) есть обширный фактический материал о благотворном влиянии вакцинации на здоровье отдельных людей и человечества в целом. Отмечу, что вакцинация –это не система верований, это - область деятельности, опирающаяся на систему научных фактов и данных.

На основании чего мы можем судить о безопасности вакцинации? Во-первых, ведется учет и регистрация побочных действий и нежелательных явлений и выяснение их причинно-следственной связи с применением вакцин (фармаконадзор). Во-вторых, важную роль в отслеживании нежелательных реакций играют постмаркетинговые исследования (возможного отсроченного неблагоприятного действия вакцин на организм), которые проводят компании - владельцы регистрационных свидетельств. И, наконец, проводится оценка эпидемиологической, клинической и социально-экономической эффективности вакцинации в ходе эпидемиологических исследований.

Что качается фармаконадзора, то у нас в России система фармаконадзора только формируется, но демонстрирует очень высокие темпы развития. Только за 5 лет число зарегистрированных сообщений о нежелательных реакциях на лекарственные средства в подсистему «Фармаконадзор» АИС Росздравнадзора выросло в 159 раз. 17 033 жалобы в 2013 году против 107 в 2008. Для сравнения – в США в год обрабатываются данные около 1 млн случаев. Система фармаконадзора позволяет отслеживать безопасность препаратов, накапливаются статистические данные, на основании которых может измениться инструкция по медицинскому применению препарата, препарат может быть отозван с рынка и т.п. Таким образом, обеспечивается безопасность пациентов.

И по закону «Об обращении лекарственных средств» от 2010 года врачи обязаны сообщать федеральным органам контроля обо всех случаях побочного действия лекарственных средств.

Современная медицина рассматривает вакцинацию, как самый эффективный и самый экономически выгодный способ профилактики инфекционных болезней. Однако на всех этапах - от производства вакцинных препаратов до последствий прививки, сделанной конкретному ребенку, - имеется множество реальных проблем. Проблем, решение которых позволит сделать вакцинацию еще более эффективной, безопасной, удобной.

О некоторых проблемах мы уже говорили - взаимосвязь принципиальной возможности вакцинации вообще и применения конкретных вакцин в частности с финансовым благополучием страны, наличие в вакцинах дополнительных веществ, помимо иммуногена, сложности с транспортировкой и хранением препаратов, риск технических ошибок во время прививки и др. Понятно, что перечень сложностей этим списком не ограничивается, в связи с чем хотелось бы обратить внимание читателей еще на некоторые проблемы. Итак, в чем проблемы современной вакцинации?

Современная вакцинация - проблемы

Невозможность практического прогнозирования прививочных осложнений

Мы уже писали о том, что осложнения, в отличие от прививочных реакций, представляют собой не столько проявление реактогенности препарата, сколько индивидуальную особенность системы иммунитета конкретного ребенка. Мечтой практикующих врачей остается некое массовое тестовое обследование, по результатам которого можно сказать: этому ребенку нельзя делать, например, прививку от кори, а этому можно.

К сожалению, многие родители убеждены в том, что такие анализы существуют, более того, эта убежденность часто поддерживается антипрививочной литературой - дескать, это врачи виноваты в осложнениях, потому что «даже не удосужились назначить хоть какие-нибудь анализы». Парадоксальность ситуации усугубляется еще и тем, что, во-первых, никто не может сказать, какие все-таки анализы нужны, а во-вторых, спрос на обследования готовы удовлетворить множество коммерческих лабораторий, предлагающие многочисленные, но малодостоверные «пробы на прививки» или «допрививочные анализы».

Есть еще один нюанс, касающийся обследования перед прививками, - развитие вакцино-ассоциированных инфекций у детей с невыявленным до вакцинации тяжелым врожденным иммунодефицитом. Это, кстати, один из аргументов тех, кто считает, что прививаться надо попозже. Вот если бы мы не делали прививку БЦЖ на третий день после рождения, а вместо этого за ребенком понаблюдали да плюс провели обследование его иммунологического статуса - так мы бы вовремя выявили иммунодефицит, и у ребенка не было бы генерализованной БЦЖ-инфекции.

С грустью приходится признавать, что формальная правота этого утверждения не имеет никакого практического выхода. Во-первых, массовое обследование иммунологического статуса не могут себе позволить даже экономически развитые страны, во-вторых, и это, пожалуй, главное, - современная медицина не имеет эффективных способов лечения тяжелых врожденных иммунодефицитов. Обследование поможет избежать фатальной прививки, но не защитит от рокового стафилококка или неизбежного ротавируса.

«Детские» болезни у взрослых - проблема вакцинации

В условиях массовой вакцинации имеется отчетливая тенденция к тому, что распространенными детскими инфекциями чаще начинают болеть взрослые. А корь, краснуха, эпидемический паротит и ветрянка у взрослых - намного серьезнее и тяжелее в сравнении с детьми. Тем не менее решение этой совершенно реальной проблемы вполне возможно и возможно двумя путями: во-первых, своевременной ревакцинацией взрослых и, во-вторых, массовой привитостью детей.

Парадоксальность ситуации как раз и состоит в том, что «повзросление» детских инфекций возникает лишь тогда, когда привито менее 80-90% детей (для разных болезней по-разному). Чем больше отказов от вакцинации, чем больше противопоказаний к прививкам, тем чаще будут болеть взрослые. Описанное положение вещей прекрасно иллюстрирует позиция ВОЗ в отношении прививок от ветряной оспы: если государство не может себе позволить привить более 90% детей, так и не надо включать эту вакцинацию в прививочный календарь.

Сложности с получением информации - проблема вакцинации

Отсутствие адекватной информации в отношении прививок - весьма актуальная проблема. Острый дефицит понятных агитационных материалов, отсутствие лиц, способных и желающих объяснять и разъяснять. Родители нередко не могут получить элементарную информацию о том, каким вакцинным препаратом будет проведена прививка.

Организация прививок - проблема вакцинации

Проблемы современной вакцинации знакомы каждому, кто посетил с ребенком поликлинику. Занятость врачей и самодеятельность медсестер, очереди и контакт с больными детьми в коридоре поликлиники, невозможность общественного контроля за соблюдением правил хранения вакцинных препаратов, нарушение техники вакцинации, отсутствие условий для квалифицированного оказания неотложной помощи при возникновении осложнений и многое другое.

Сложности статистики

Наличие нищего здравоохранения вообще и нищих врачей в частности обуславливает вероятность абсолютно криминальной ситуации, когда прививки не делаются, но покупается документ об их проведении. На некоторых территориях количество бумажно-привитых детей достигает 10%, что впоследствии дает повод говорить о неэффективности прививок и о том, что никакого коллективного иммунитета не существует - действительно, откуда возникла вспышка кори, если 90% детей привиты (якобы привиты!). Еще один статистический нонсенс - несвоевременное информирование или неинформирование контролирующих органов о возникновении отклонений в здоровье, связанных или возможно связанных с вакцинацией.

Помощь при осложнениях - проблема вакцинации

Нередко имеет место аморальная ситуация, когда общество, поощряющее вакцинацию, при возникновении осложнений просто вычеркивает пострадавшего из своих членов: человек, ставший инвалидом вследствие вакцинации, не может выжить на компенсационные выплаты, предоставляемые государством.

Антивакцинаторство - проблема вакцинации

Уникальная проблема. Фактически имеется огромное количество умных, интеллигентных, совестливых людей, которые способны создать мощное общественное движение, направленное на решение реальных проблем вакцинации, описанных выше. Но появляется десяток экстремистов, которым удается это стихийное движение возглавить, используя ложную, недоказанную и непроверенную информацию, передергивание фактов, эмоциональные лозунги, не имеющие научной основы. Как следствие - реальная проблема: вместо конструктивной оптимизации самого эффективного способа профилактики инфекций имеем заведомо деструктивное общественное движение.

Современная вакцинация - задачи

Вакцинация - метод создания иммунитета против определенной инфекционной болезни посредством введения соответствующей вакцины. Иногда в качестве синонима слова «вакцинация» используется понятие «иммунизация», что не совсем верно. Иммунизация объединяет в себе все методы создания иммунитета - не только прививки (когда организм вырабатывает защитные антитела самостоятельно), но и введение с лечебной или профилактической целью сывороток, иммуноглобулинов, крови, плазмы (когда организм получает уже готовые защитные антитела).

Каковы задачи современной вакцинации?

Главная задача современной вакцинации - добиться выработки специфических антител в количестве, достаточном для профилактики конкретной болезни. Однократного введения в организм иммуногена (как при вакцинации, например, от кори или краснухи) далеко не всегда бывает достаточно для того, чтобы обеспечить должный уровень иммунной защиты. Иногда таких введений требуется два, а то и три (если говорить про дифтерию, коклюш и столбняк).

Стартовый (защитный, созданный посредством вакцинации) уровень антител постепенно снижается, и необходимы повторные введения вакцинного препарата для поддержания их (антител) нужного количества. Вот эти повторные введения вакцины и есть ревакцинация. Тем не менее многие мамы и папы заблуждаются и ошибочно считают, что первое введение вакцины - это вакцинация, а все последующие - ревакцинация. Поэтому еще раз повторим:

  • вакцинация - введение вакцины для создания иммунной защиты;
  • ревакцинация - введение вакцины для поддержания иммунной защиты.

К сожалению, возможны ситуации, когда введение вакцины не позволяет решить описанную выше главную задачу вакцинации. Говоря другими словами, прививки делаются «как положено», но часть привитых не в состоянии выработать достаточное для профилактики конкретной болезни количество антител.

Какова эффективность вакцинации?

Эффективность вакцинации - это фактически процент привитых, отреагировавших на вакцинацию формированием специфического иммунитета. Таким образом, если эффективность определенной вакцины составляет 95%, то это означает, что из 100 привитых 95 надежно защищены, а 5 все-таки подвержены риску заболевания. Эффективность вакцинации определяется тремя группами факторов.

Факторы, зависящие от вакцинного препарата:

  • свойства самой вакцины, определяющие ее иммуногенность (живая, инактивированная, корпускулярная, субъединичная, количество иммуногена и адъювантов и т.д.);
  • качество вакцинного препарата, т. е. иммуногенность не утрачена в связи с истечением срока годности вакцины или в связи с тем, что ее неправильно хранили или транспортировали.

Факторы, зависящие от вакцинируемого:

  • генетические факторы, определяющие принципиальную возможность (или невозможность) выработки специфического иммунитета;
  • возраст, ибо иммунный ответ самым тесным образом определяется степенью зрелости системы иммунитета;
  • состояние здоровья «вообще» (рост, развитие и пороки развития, питание, острые или хронические болезни и др.);
  • фоновое состояние иммунной системы - прежде всего наличие врожденных или приобретенных иммунодефицитов.

Соблюдение правил и техники вакцинации

Для каждого вакцинного препарата определены правила применения, предусматривающие оптимальный возраст на момент вакцинации и ревакцинации, выбор дозы и интервал между дозами, кратность и способ введения вакцины в организм. Нарушение правил снижает эффективность вакцинации; в процессе вакцинации возможны технические ошибки, когда препарат неправильно дозируется, не туда, куда надо, вводится, не полностью растворяется, недостаточно размешивается, не тем разводится и т.д.

Понятие «эффективность вакцинации» мы рассмотрели довольно-таки узко, анализируя факторы, способные влиять на формирование специфического иммунитета у конкретного ребенка. В то же время эффективность вакцинации имеет и другой смысл, поскольку относится к иммунной защите всех детей, всего населения. Суть этой защиты - коллективный иммунитет.

Любая инфекционная болезнь как явление, как свершившийся факт предусматривает существование трех обязательных условий, трех звеньев инфекционного процесса:

  • источника инфекции;
  • путей передачи инфекции;
  • людей, чувствительных к данной инфекции.

Если устранить хотя бы одно звено (а вакцинация именно этим и занимается, ликвидируя звено номер три), инфекционный процесс прекратится. Чем больше людей вакцинировано, тем менее интенсивно протекает инфекционный процесс. Если же количество вакцинированных превышает 90-95%, инфекционный процесс, как правило, прекращается.

В этом и состоит суть коллективного иммунитета: 90-95% вакцинированных обеспечивают 100% эффективность вакцинации, поскольку 5-10% не имеющих специфических антител надежно защищены коллективным иммунитетом. Коллективный иммунитет не возникает раз и навсегда. За ним надо следить, его надо поддерживать. Снижение числа вакцинированных неминуемо приводит к утрате коллективной защиты и, как следствие, к возникновению заболеваний.

Каждое государство формирует собственную политику вакцинации. Эта политика предусматривает перечень болезней, в отношении которых вакцинопрофилактика признана целесообразной или обязательной, а также свод правил, регламентирующих сам процесс вакцинации: выбор препаратов, показания, противопоказания, условия, дозы, способы, сроки и интервалы вакцинаций и ревакцинаций.

Сегодняшняя статья открывает рубрику «Вакцинация» и речь в ней пойдет о том, какие бывают виды вакцин и чем они отличаются, как их получают и какими способами вводят в организм.

А начать было бы логично с определения того, что такое вакцина. Итак, вакцина – это биологический препарат, предназначенный для создания специфической невосприимчивости организма к конкретному возбудителю инфекционного заболевания путем выработки активного иммунитета.

Под вакцинацией (иммунизацией) , в свою очередь подразумевается процесс, в ходе которого организм приобретает активный иммунитет к инфекционному заболеванию путем введения вакцины.

Виды вакцин

Вакцина может содержать живые или убитые микроорганизмы, части микроорганизмов, ответственные за выработку иммунитета (антигены) или их обезвреженные токсины.

Если вакцина содержит только отдельные компоненты микроорганизма (антигены), то она называется компонентной (субъединичной, бесклеточной, ацеллюлярной) .

По количеству возбудителей, против которых они задуманы, вакцины делятся на:

  • моновалентные (простые) — против одного возбудителя
  • поливалентные – против нескольких штаммов одного возбудителя (например, полиомиелитная вакцина является трехвалентной, а вакцина Пневмо-23 содержит 23 серотипа пневмококков)
  • ассоциированные (комбинированные) – против нескольких возбудителей (АКДС, корь – паротит — краснуха).

Рассмотрим виды вакцин более подробно.

Живые ослабленные вакцины

Живые ослабленные (аттенуированные) вакцины получают из модифицированных искусственным путем патогенных микроорганизмов. Такие ослабленные микроорганизмы сохраняют способность размножаться в организме человека и стимулировать выработку иммунитета, но не вызывают заболевание (то есть являются авирулентными).

Ослабленные вирусы и бактерии обычно получают путем многократного культивирования на куриных эмбрионах или клеточных культурах. Это длительный процесс, на который может потребоваться около 10 лет.

Разновидностью живых вакцин являются дивергентные вакцины , при изготовлении которых используют микроорганизмы, находящиеся в близком родстве с возбудителями инфекционных заболеваний человека, но не способные вызвать у него заболевание. Пример такой вакцины — БЦЖ, которую получают из микобактерий бычьего туберкулеза.

Все живые вакцины содержат цельные бактерии и вирусы, поэтому относятся к корпускулярным.

Основным достоинством живых вакцин является способность вызывать стойкий и длительный (часто пожизненный) иммунитет уже после однократного введения (кроме тех вакцин, которые вводятся через рот). Это связано с тем, что формирование иммунитета к живым вакцинам наиболее приближено к таковому при естественном течении заболевания.

При использовании живых вакцин существует вероятность, что размножаясь в организме, вакцинный штамм может вернуться к своей первоначальной патогенной форме и вызвать заболевание со всеми клиническими проявлениями и осложнениями.

Такие случаи известны для живой полиомиелитной вакцины (ОПВ), поэтому в некоторых странах (США) она не применяется.

Живые вакцины нельзя вводить людям с иммунодефицитными заболеваниями (лейкемия, ВИЧ, лечение препаратами, вызывающими подавление иммунной системы).

Другими недостатками живых вакцин являются их неустойчивость даже при незначительных нарушениях условий хранения (тепло и свет действуют на них губительно), а так же инактивация, которая происходит при наличии в организме антител к данному заболеванию (например, когда у ребенка в крови еще циркулируют антитела, полученные через плаценту от матери).

Примеры живых вакцин: БЦЖ, вакцины против кори, краснухи, ветрянки, паротита, полиомиелита, гриппа.

Инактивированные вакцины

Инактивированные (убитые, неживые) вакцины , как следует из названия, не содержат живых микроорганизмов, поэтому не могут вызвать заболевания даже теоретически, в том числе и у людей с иммунодефицитом.

Эффективность инактивированных вакцин, в отличие от живых, не зависит от наличия в крови циркулирующих антител к данному возбудителю.

Инактивированные вакцины всегда требуют нескольких вакцинаций. Защитный иммунный ответ развивается обычно только после второй или третьей дозы. Количество антител постепенно снижается, поэтому спустя некоторое время для поддержания титра антител требуется повторная вакцинация (ревакцинация).

Для того, чтобы иммунитет сформировался лучше, в инактивированные вакцины часто добавляют специальные вещества — адсорбенты (адъюванты) . Адъюванты стимулируют развитие иммунного ответа, вызывая местную воспалительную реакцию и создавая депо препарата в месте его введения.

В качестве адъювантов обычно выступают нерастворимые соли алюминия (гидроксид или фосфат алюминия). В некоторых противогриппозных вакцинах российского производства с этой целью используют полиоксидоний.

Такие вакцины называются адсорбированными (адъювантными) .

Инактивированные вакцины, в зависимости от способа получения и состояния содержащихся в них микроорганизмов, могут быть:

  • Корпускулярные – содержат цельные микроорганизмы, убитые физическими (тепло, ультрафиолетовое облучение) и/или химическими (формалин, ацетон, спирт, фенол) методами.
    Такими вакцинами являются : коклюшный компонент АКДС, вакцины против гепатита А, полиомиелита, гриппа, брюшного тифа, холеры, чумы.
  • Субъединичные (компонентные, бесклеточные) вакцины содержат отдельные части микроорганизма — антигены, которые отвечают за выработку иммунитета к данному возбудителю. Антигены могут представлять собой белки или полисахариды, которые выделены из микробной клетки с помощью физико-химических методов. Поэтому такие вакцины еще называют химическими .
    Субъединичные вакцины менее реактогенные, чем корпускулярные, потому что из них убрано все лишнее.
    Примеры химических вакцин : полисахаридные пневмококковая, менингококковая, гемофильная, брюшнотифозная; коклюшная и гриппозная вакцины.
  • Генно-инженерные (рекомбинантные) вакцины являются разновидностью субъединичных вакцин, их получают путем встраивания генетического материала микроба – возбудителя болезни в геном других микроорганизмов (например, в дрожжевые клетки), которые затем культивируют и из полученной культуры выделяют нужный антиген.
    Пример — вакцины против гепатита В и вируса папилломы человека.
  • В стадии экспериментальных исследований находятся еще два вида вакцин – это ДНК-вакцины и рекомбинантные векторные вакцины . Предполагается, что оба типа вакцин будут обеспечивать защиту на уровне живых вакцин, являясь при этом наиболее безопасными.
    В настоящее время проводятся исследования ДНК-вакцин против гриппа и герпеса и векторных вакцин против бешенства, кори и ВИЧ-инфекции.

Анатоксиновые вакцины

В механизме развития некоторых заболеваний основную роль играет не сам микроб-возбудитель, а токсины, которые он вырабатывает. Одним из примеров такого заболевания является столбняк. Возбудитель столбняка продуцирует нейротоксин – тетаноспазмин, который и вызывает симптомы.

Для создания иммунитета к таким заболеваниям используются вакцины, которые содержат обезвреженные токсины микроорганизмов – анатоксины (токсоиды) .

Анатоксины получают с использованием вышеописанных физико-химических методов (формалин, тепло), затем их очищают, концентрируют и адсорбируют на адъюванте для усиления иммуногенных свойств.

Анатоксины можно условно отнести к инактивированным вакцинам.

Примеры анатоксиновых вакцин : столбнячный и дифтерийный анатоксины.

Конъюгированные вакцины

Это инактивированные вакцины, которые представляют собой комбинацию частей бактерий (очищенные полисахариды клеточной стенки) с белками-носителями, в качестве которых выступают бактериальные токсины (дифтерийный анатоксин, столбнячный анатоксин).

В такой комбинации значительно усиливается иммуногенность полисахаридной фракции вакцины, которая сама по себе не может вызвать полноценный иммунный ответ (в частности, у детей до 2-х лет).

В настоящее время созданы и применяются конъюгированные вакцины против гемофильной инфекции и пневмококка.

Способы введения вакцин

Вакцины можно вводить почти всеми известными способами – через рот (перорально), через нос (интраназально, аэрозольно), накожно и внутрикожно, подкожно и внутримышечно. Способ введения определяется свойствами конкретного препарата.

Накожно и внутрикожно вводятся в основном живые вакцины, распространение которых по всему организму крайне не желательно из-за возможных поствакцинальных реакций. Таким способом вводятся БЦЖ, вакцины против туляремии, бруцеллеза и натуральной оспы.

Перорально можно вводить только такие вакцины, возбудители которых в качестве входных ворот в организм используют желудочно-кишечный тракт. Классический пример — живая полиомиелитная вакцина (ОПВ), так же вводятся живые ротавирусная и брюшнотифозная вакцины. В течение часа после вакцинации ОВП российского производства нельзя пить и есть. На другие оральные вакцины это ограничение не распространяется.

Интраназально вводится живая вакцина против гриппа. Цель такого способа введения – создание иммунологической защиты в слизистых оболочках верхних дыхательных путей, которые являются входными воротами гриппозной инфекции. В то же время системный иммунитет при данном способе введения может оказаться недостаточным.

Подкожный способ подходит для введения как живых так и инактивированных вакцин, однако имеет ряд недостатков (в частности, относительно большое число местных осложнений). Его целесообразно использовать у людей с нарушением свертывания крови, так как в этом случае риск кровотечения минимален.

Внутримышечное введение вакцин является оптимальным, так как с одной стороны, благодаря хорошему кровоснабжению мышц, иммунитет вырабатывается быстро, с другой снижается вероятность возникновения местных побочных реакций.

У детей до двух лет предпочтительным местом для введения вакцины служит средняя треть передне-боковой поверхности бедра, а у детей после двух лет и взрослых – дельтовидная мышца (верхняя наружная треть плеча). Этот выбор объясняется значительной мышечной массой в данных местах и менее выраженным, чем в ягодичной области, подкожно-жировым слоем.

На этом все, надеюсь, что мне удалось изложить довольно не простой материал о том, какие бывают виды вакцин , в доступной для понимания форме.

Вакцины-имунобиологические препараты преднозначенные для создания активного специфического иммунитетета, применяют для профилактики инфекционных заболеваний. Ее действующим началом является специфические антигены. В качестве антигенов может использоваться: живые-убитые м\о, выделенные из м\о специфичские протективные антигены. Токсины, химически синтезированные антигены. Антигены полученные методом генной инженерии.
классификация: живые вакцины(аттенуированные. Дивергентные, векторные рекомбинантные)
неживые(молекулярные(полученные путем биосинтеза\химического синтеза\методом генной инженерии), корпускулярные(цельноклеточные\цельноверианные\субклеточные\субверионные\синтетические и полусинтетические), ассациируемые вакцины

Вакцины вводят внутримышечно, подкожно, надкожно, внутрикожно, через рот. Иммунизируют либо однократно либо двукратно и трехкратно с интервалами в 1-2 недели и больше.

Виды вакцин
1) Живые вакцины. Они содержат ослабленный живой микроорганизм. Примером могут служить вакцины против полиомиелита, кори, свинки, краснухи или туберкулеза. Могут быть получены путем селекции (БЦЖ, гриппозная). Они способны размножаться в организме и вызывать вакцинальный процесс, формируя невосприимчивость. Утрата вирулентности у таких штаммов закреплена генетически, однако у лиц с иммунодефицитами могут возникнуть серьезные проблемы.
2) Инактивированные (убитые) вакцины. Содержат убитый целый микроорганизм (например цельноклеточная вакцина против коклюша, инактивированная вакцина против бешенства, вакцина против вирусного гепатита А), их убивают физическими (температура, радиация, ультрафиолетовый свет) или химическими (спирт, формальдегид) методами. Такие вакцины реактогенны, применяются мало (коклюшная, против гепатита А)
3) Химические вакцины. Содержат компоненты клеточной стенки или других частей возбудителя, как например в ацеллюлярной вакцине против коклюша, коньюгированной вакцине против гемофильной инфекции или в вакцине против менингококковой инфекции.
4) Анатоксины. Вакцины, содержащие инактивированный токсин (яд) продуцируемый бактериями. В результате такой обработки токсические свойства утрачиваются, но остаются иммуногенные
5) Векторные (рекомбинантные) вакцины. Вакцины, полученные методами генной инженерии. Суть метода: гены вирулентного микроорганизма, отвечающий за синтез протективных антигенов, встраивают в геном какого - либо безвредного микроорганизма, который при культивировании продуцирует и накапливает соответствующий антиген. Примером может служить рекомбинантная вакцина против вирусного гепатита B, вакцина против ротавирусной инфекции.
6) Синтетические вакцины - представляют собой искусственно созданные антигенные детерминанты микроорганизмов.
7) Ассоциированные вакцины. Вакцины различных типов, содержащие несколько компонентов (АКДС).



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!