Информационный женский портал

Ртуть сообщение. Температура плавления ртути. Элемент ртуть

Ртуть – это единственный из известных человеку металлов, который остается жидким при комнатной температуре. Внешне ртуть напоминает жидкое серебро; при попадании на плоскую поверхность капля ртути моментально рассыпается на сотни мельчайших шариков, которые словно отталкиваются друг от друга и разбегаются в разные стороны.


Ртуть – очень редкий элемент. В целом в природе ртуть образуется в процессе окисления киновари и разложения образующегося сульфата; во время ; путем выделения из водных растворов. В земной коре ртуть рассеяна, а в результате осаждения из горячих подземных вод она образует ртутные руды.

На сегодняшний день известно 35 ртутьсодержащих минералов. Некоторое количество ртути содержится в морской воде, в сланцах и глинах.

Из истории вопроса

Уже за две тысячи лет до нашей эры в Древней Индии и Древнем Китае умели добывать самородную ртуть. Ртуть, содержащую киноварь уже тогда использовали в лечении и косметологии. В ходе экспериментов древних ученых нагретая киноварь оседала на металле в виде «жидкого серебра».


Алхимики уделяли ртути огромное значение – считалось, что после того, как ртуть затвердевает, она может превращаться в золото. Впервые твердую ртуть удалось получить Ломоносову – он использовал для этого смесь снега и концентрированной азотной кислоты.

Где используют ртуть?

Ртуть незаменима при изготовлении различных метрологических приборов – , термометров, полярографов, вакуумных насосов. Ртуть является важным элементом при производстве ртутных ламп, выпрямителей. Кроме того, этот металл активно применяют в химической промышленности и металлургии.

Ртуть – катализатор при различных реакциях, важный элемент при амальгамации других металлов. Ее применяют в медицине, промышленности и сельском хозяйстве. Именно ртутное покрытие позволяет выпускать зеркала, без которых нам не обойтись.

Основные свойства ртути

Это серебристый, тяжелый, жидкий металл, который при комнатной температуре испаряется. Чем выше температура воздуха, тем быстрее происходит испарение. Ртуть (химическая формула Hg) взаимодействует с серебром, золотом, цинком, смачивая их и образуя амальгамы. Ртуть кипит при температуре +357.25 С.


По степени опасности относится к первому классу и является чрезвычайно мощным загрязнителем окружающей среды – воздуха, почвы, воды. Ртуть и ее соединения крайне токсичны и опасны для организма человека.

Опасность ртути

Попадая в организм через легкие, пары ртути вызывают острые и хронические отравления. Ртуть поражает органы дыхания, печень, центральную нервную систему, желудочно-кишечный тракт, сердечно-сосудистую систему, прочие внутренние органы. Симптомы токсичного поражения проявляются через 8-24 часа.

У пострадавшего наблюдается слабость, апатия, эмоциональная неустойчивость, головокружение, головная боль. Ослабляется внимание и память, появляется потливость, боли при глотании, повышается температура, начинаются боли в желудке, тошнота, рвота, повышается температура, появляется тремор рук.

При серьезном отравлении не исключен летальный исход. В организм ртуть проникает чаще всего через легкие – человек вдыхает опасные пары, которые не имеют запаха.

Меры предосторожности и способы хранения

При работе с ртутью нужно использовать противогазы или фильтрующие респираторы. Если произошло ртутное загрязнение, проводятся меры по демеркуризации. Видимые количества металлической ртути устраняют с загрязненных поверхностей, после этого осуществляют химическую обработку при помощи химических реагентов.


Ртуть, которую используют в промышленности, хранят в стальных баллонах емкостью не более 35 кг, в керамических или стеклянных баллонах емкостью 500 мл с толстыми стенами, металлической гофрированной пробкой с прокладкой из пластмассы. В каждом баллоне помещается 5 кг ртути.

В лабораториях ртуть хранят в запаянных стеклянных ампулах по 30-40 мл в каждой, которые, опускают в сварные стальные коробки. Ртуть нельзя хранить в открытой посуде, а также в бюксах, колбах и прочей химической посуде с тонкими стенками.

Ртуть, благодаря своим удивительным свойствам, занимает особое место среди других металлов и широко используется в науке и технике.

Свойство ртути оставаться в жидком состоянии в интервале температур от 357,25 до -38,87° С является уникальным. При невысо­ких температурах ртуть инертна по отношению ко многим агрессив­ным жидкостям и газам, в том числе и к кислороду воздуха. Она практически не взаимодействует с концентрированной серной и соляной кислотами; ее используют при работе, например, с такими ядови­тыми и агрессивными веществами, как бороводороды.

Ртуть применяется в электротехнике, металлургии, в медицине, химии, в строительном деле, сельском хозяйстве и многих других областях; особенно значительна ее роль в лабораторной практике.

Общеизвестно применение ртути в манометрах, вакуумметрах, термометрах, в многочисленных конструкциях затворов, прерывате­лей, высоко вакуумных насосах, всевозможных реле, терморегулиру­ющих устройствах и пр.

Металлическую ртуть используют в качестве балластной, термостатирующей и уплотняющей жидкости, а пары ртути - как защитную атмосферу при нагревании металлов.

Ртуть широко применяют при электрохимических исследованиях и нормальных элементах Кларка и Вестона, обладающих стабильными значениями ЭДС, в электрометрах Липпмана, которые исполь­зуются для изучения строения двойного электрического слоя, зави­симости коэффициента трения от потенциала, межфазного поверх­ностного натяжения, смачиваемости и других явлений, в ртутно-сульфатных, ртутно-фосфатных, ртутно-окисных и ртутно-иодистых электродах сравнения, применяемых для измерения элект­родных потенциалов.

В 1922 г. Я. Гейровский разработал полярографический метод анализа с применением ртутного капельного электрода. Этим методом можно определять малые концентрации веществ (10 -3 - 10 -4 моль/л), причем замена в полярографическом анализе ртути амальгамами, использование метода «амальгамной полярографии с накоплением», позволяют расширить возможности полярографии и повысить точность измерения на 3-4 порядка.

Ртуть и амальгамы успешно используют при амперометрическом и. потенцпометрическом титровании кулонометрическом ана­лизе, а также при электролизе на ртутном катоде.

Ртуть часто применяют в качестве вспомогательного вещества при изучении металлических систем. Например, с ее помощью были уточнены диаграммы состояния бинарных сплавов никель - цинк, никель - олово, железо - марганец, хром - цинк и др.Она при­меняется в качестве растворителя для получения полупроводнико­вых материалов, в частности, для выращивания при низких темпера­турах из насыщенных ртутных растворов a-олова монокристаллов серого олова. Пластинки, изготовленные из серого олова, обладают большой чувствительностью к инфракрасному излучению - позволяют обнаруживать электромагнитные волны длиною до 15 мкм.

Ртутные контакты используют для прецизионного определения удельного сопротивления кремния.

С помощью ртути изучают явления смачивания, пластификации и охрупчивания цинка, олова, меди, свинца, золота, латуни, алюминия, стали и титановых сплавов металловедении ртуть применяют для травления, для изучения диффузии.

Ее широко применяют для определения пористости активированных углей, силикагелей, керамических изделий и металлических покрытий. Известны поромегры, работающие при давлениях до 3500 aт и позволяющие определять поры диаметром до несколь­ких А.

Ртуть используют также для точной калибровки мерной посуды, бюреток, пипеток и пикнометров, для определения диаметра капиллярных трубок, в качестве компрессионной жидкости при опре­делении газов в биологических жидкостях, в газоанализаторах различных систем, волюмометрах и т. д.

Сравнительно низкое давление пара при температурах, превыша­ющих 500° С, дает возможность применять ртуть в качестве рабочего тела в энергетических установках, использующих для нагревания тепло, выделяющееся при радиоактивном распаде, а также в мощ­ных бинарных установках промышленного типа, в которых для генерации электрической энергии на первой ступени используют ртутно-паровые турбины, а на второй - турбины, работающие на водяном паре 46-Б2 . Коэффициент полезного действия бинарных установок превосходит КПД любых тепловых двигателей и даже таких совершенных конструкций, на двигатели внутреннего сгорания.

В ядерных реакторах, наряду с водою все шире начинают при­менять для отвода тепла жидкометаллические теплоносители, вклю­чая и ртуть. При этом значительно повышается КПД атомных установок и устраняются трудности, связанные с применением воды и водяного пара под высоким давлением.

Ртуть в качестве теплоносителя часто используют в химической промышленности, например, в процессе сульфирования нафталина, для дистилляции 2-нафтола, для разгонки смазочных масел, при получении ангидрида фталевой кислоты, при проведении крекинг-процесса и пр. В этом случае создается возможность про­водить процессы при температурах до 800° С и одновременно обеспе­чивать равномерный нагрев всей реакционной массы. Ртуть также может служить катализатором, например, при получении уксусной кислоты.

В металлургии известен способ литья по расправляемым ртутным моделям. Отдельные части модели, изготовленные из заморо­женной ртути, легко свариваются в результате соприкосновения и небольшого сдавливания, что облегчает изготовление составных и сложных моделей; при последующем плавлении моделей из твердой ртути ее объем меняется очень незначительно, что позволяет вводить весьма небольшие допуски на размеры отливок. Таким спо­собом можно получать прецизионные отливки исключительно слож­ных конфигураций и, в частности, детали для газовых турбин самолетов.

Небольшое давление паров ртути при обычных температурах было использовано также при создании различных ртутных ламп, среди которых первое место принадлежит лампам дневного света (ЛД, ЛДЦ, ЛБ, ЛХБ, ЛТБ и пр.).

Ртутные лампы низкого давления (-10 -3 мм рт. ст. при 20- 40° С), изготовленные из кварцевого или увиолевого стекла, явля­ются источниками резонансного излучения с длиною волны, равной 2537 и 1849 А. Они применяются в качестве бактерицидных и люми­несцентных ламп. Бактерицидные ртутные лампы (БУВ-15, БУВ-30 и др.) работают в коротковолновой области ультрафиолетового излу­чения и применяются для стерилизации пищевых продуктов, воды, воздуха помещений и др. Люминесцентные ртутные лампы (ЭУВ-15, ЭУВ-30) работают в средневолновой части спектра ультрафиолето­вых излучений и предназначены для лечебных целей.

Ртутные лампы низкого давления используют также для изучения спектров комбинационного рассеяния, для облучения ультрафиолетовыми лучами шкал различных приборов, ручек указа­телей н других приспособлений, покрытых светосоставом.

В ртутных лампах высокого давления (давление паров ртути 0,3-12 aт) интенсивное излучение происходит в ультрафиолетовой и синефиолетовой части спектра. Они используются для светокопиро­вальных работ (ИГАР-2), для освещения производственных поме­щений, улиц и автомагистралей (ДРЛ); для физиотерапии, спектроскопии и люминесцентного анализа, в фотохимии; для ко­пировальных работ используют также ртутно-кварцевые лампы РКС-2,5.

Ртутные лампы сверхвысокого давления (давление паров ртути в них достигает десятков и даже сотен атмосфер) работают при температурах до 1000° С.

Сочетание, в таких лампах светящейся дуги с огромной световой отдачей и яркостью позволяет использовать ртутные лампы сверхвысокого давления в прожекторах, спектральных приборах и в проекционной аппаратуре. Интенсивное излучение в фиолетовой и синей части спектра таких ламп используют для фотосинтеза, в люминес­центной микроскопии, для декоративных целей (светящиеся краски) и т. д.

Для повышения интенсивности излучения в желаемой области спектра в ртутных лампах часто вместо металлической ртути исполь­зуют амальгамы цинка, кадмия и других металлов или добавляют в ртутные лампы галлоидные соединения таких металлов, как тал­лий, .натрий, индий и др.

Наряду с ртутными лампами не утратили своего значения также ртутные выпрямители электрического тока, которые не имеют себе равных по долговечности и простоте эксплуатации. Лишь в последнее время в технологии получения некоторых химических веществ, например, при производстве хлора и каустической соды, ртутные вентили начинают постепенно вытесняться кремниевыми выпрямителями, позволяющими использовать для электролиза вы­прямленный ток до 25 000 а.

Ртуть находит также применение в электронной промышленности. Пары ртути используют в газотронах (ГР1-0.25/1.5; ВГ-236, ВГ-129), применяемых в передатчиках большой и средней мощности, в газо­наполненных тиратронах и триодах. Ртуть применяют в ультразву­ковых генераторах с пьезокварцевыми датчиками, в генераторах для высокочастотного нагрева и в других электронных прибо­рах.

Ртуть широко применяют в вакуумной технике. Со времени изо­бретения Геде ртутных диффузионных насосов, усовершен­ствованных Лэнгмюром, прошло немногим более 50 лет. Эти насосы оказались незаменимыми при получении сверхвысокого вакуума (10 -13 мм рт. ст.). Ртутные диффузионные насосы успешно применяют для создания вакуума в линейных ускорителях элементарных частиц, в устройствах, имитирующих условия космического пространства; в установках термоядерного син­теза, для откачки некоторых приборов, использующих фото­эмиссию.

Ртутным насосам отдают предпочтение при создании вакуума в чувствительных масспектрографах, в течеискателях, использу­ющих водород, и других приборах.

Эти многочисленные применения ртутных насосов объясняются тем, что ртуть обладает важными преимуществами по сравнению с органическим или силиконовыми маслами, используемыми в паро-масляных диффузионных насосах. Одно из этих преимуществ заклю­чается в том, что ртуть, являясь простым веществом, не разлагается на составные части и не загрязняет в такой мере стенки откачиваемых приборов, как ингредиенты жидкостей, используемых в паромасляных насосах.

Способность ртути давать амальгамы (истинные или коллоидные растворы металлов в ртути), даже несмотря на незначительную рас­творимость в ней большинства металлов, имеет исключительное значение. Б последние годы в связи с широким использованием амальгам была создана новая отрасль промышленности, названная амальгамной металлургией. С помощью амальгам осущест­вляется комплексная переработка полиметаллического сырья, полу­чают тонкоднеперсные металлические порошки, многокомпонентные сплавы заданных составов, чистые и сверхчистые металлы, содержа­ние примесей в которых не превышает 10 -6 -10 -8 вес. %. В некото­рых случаях степень рафинирования металла оказывается настолько значительной, что существующие методы анализа не в состоянии обнаружить примесей в конечном продукте. Методом амальгамной металлургии можно получать металлы любой чистоты, в зависимости от чистоты исходных материалов - химических реактивов, воды, аппаратуры и т. д.

При нагревании амальгам до высокой температуры происходит отгонка ртути, и в результате получают металл в виде мелкодисперс­ных пирофорных порошков или компактной массы, содержащей ничтожные следы ртути. Эта особенность амальгам используется в порошковой металлургии; с помощью технологических приемов удается получать многокомпонентные сплавы любых концентраций из тугоплавких металлов или металлов, один из которых имеет низкую температуру плавления, а другой - превышающую 1500- 2000° С.

Многие металлы и сплавы, включая и такие практически нерас­творимые в ртути, как сталь, платина, титан, пермаллой и другие, при удалении с их поверхности окисной или адсорбированной пленки покрываются тонким слоем ртути. Это свойство также нашло при­менение в лабораторной практике и в промышленности. Например, его используют при получении каустической соды и хлора методом электролиза водных растворов хлоридов щелочных металлов на ртутном катоде, предварительно амальгамируя днища стальных электролизеров. Амальгамирование до настоящего времени исполь­зуют в золотодобывающей промышленности для отделения золота от породы с последующей отгонкой ртути, хотя в последнее время этот способ, имеющий многовековую историю, заменяется более прогрессивным способом цианирования.

В электрохимии и аналитической химии, при полярографиче­ском анализе часто применяют амальгамированные платиновые электроды и т. д.

Амальгамы щелочных и щелочноземельных металлов, цинка, алюминия и других элементов используют в препаративной химии для восстановительных реакций. Например, амальгамы щелочных металлов служат для получения водорода и каустической соды при взаимодействии с водою, для восстановления кислорода до перекиси водорода, двуокиси углерода до формиатов и оксалатов. Окислы азота, при взаимодействии с амальгамами щелочных металлов, восстанавливаются до соответствующих нитритов, окис­лы хлора - до хлоритов соответствующих щелочных металлов, двуокись серы - до гидросульфита. Известны также способы получения гидридов щелочных металлов, мышьяка и герма­ния, а также других элементов. С помощью амальгам можно восстанавливать в различных средах ноны металлов до свободных металлов, производить разделение редкоземельных элементов, а также их выделение.

Амальгамы используют также для восстановления органических соединений: для гидрирования кратных углерод-углеродных связей, для восстановления гидроксильных, карбонильных и карбок­сильных групп, для восстановления галогено- и азотсодержа­щих групп, для получения ртутноорганических соединений.

В промышленности эти амальгамы применяют для получения алкоголятов щелочных металлов, которые затем используют при изготовлении различных красителей и лечебных препара­тов - сульфамидов, барбитуратов и витаминов; для восстановления ароматических ннтросоединений до аминов, которые в свою очередь используют при изготовлении всевозможных азокрасителей; для получения шестиатомных спиртов (d-сорбита и d-маннита) путем восстановлении d-глюкозы и d-маннозы. Полученные спирты применяют при производстве специальных сортов бумаги, витамина С, эфиров, искусственных смол; амальгаму натрия исполь­зуют для получения d-рибозы, которая служит исходным продуктом при синтезе витамина В 2 .С помощью амальгам щелочных металлов получают салициловый альдегидов, пинакон который является исходным продуктом при синтезе диметилбутадиенового каучука, глиоксиловую кислоту используемую при синтезе душистых веществ, например, ванилина, при получении галогенсодержащих олефинов и многих других веществ.

Не менее широко применяют амальгамы для получения перекиси натрия, хлорида и гидросульфата натрия и т. д.

Ртуть (Hg) Жидкий металл, использующийся в быту и технике в качестве рабочей жидкости различных измерительных приборов и электрических реле пространственного положения.

Ртуть — единственный металл, находящийся в жидком состоянии при комнатной температуре. Ртуть замерзает при минус 39° С и закипает при 357° С. Она в 13,6 раза тяжелее воды. Она имеет свойство распадаться на мельчайшие капельки и растекаться. В природе ртуть содержится в красноватом минерале киноварь. Киноварь входит в состав многих скальных пород, но в основном пород вулканического происхождения.

Ртуть имеет свойство легко испаряется. Для получения чистого металла из руды необходимо разогреть эту руду до температуры порядка 482° С. Пары собираются и конденсируются, и получается ртуть.

Ртуть - вещество I класса опасности (по ГОСТ 17.4.1.02-83), тиоловый яд (чрезвычайно опасное химическое вещество).

Предельно допустимая концентрация ртути в атмосферном воздухе составляет 0,0003 мг/м3 (в соответствии с «Санитарно-эпидемиологическими требованиями к атмосферному воздуху»).

Ядовиты только пары и растворимые соединения ртути. При температуре 18°С начинается интенсивное испарение ртути в атмосферу, вдыхание такого воздуха способствует её накоплению в организме, откуда она уже не выводится (как и другие тяжелые металлы). Однако чтобы накопить серьезную долю ртути в организме, необходимо в течение нескольких месяцев или лет регулярно пребывать в помещении с серьезным превышением ПДК этого металла в воздухе.

Величина концентраций паров ртути, способных привести к тяжелым хроническим заболеваниям, колеблется от 0,001 до 0,005 мг/м3. В случае более высоких концентраций ртуть всасывается неповрежденной кожей. Острое отравление может возникнуть при 0,13 - 0,80 мг/м3. Интоксикация со смертельным исходом развивается при вдыхании 2,5 г паров ртути.

Вред

Симптомы отравления ртутью

Ртуть представляет опасность не только для человека, но и для растений, животных и рыб. Проникновение ртути в организм чаще всего происходит именно при вдыхании её паров, не имеющих запаха.

Отравление соединениями ртути

Ртуть и ее соединения, являются опасными высокотоксичными веществами, способными накапливаться в организме человека и долго не выводиться, нанося непоправимый вред здоровью. Вследствие этого, у человека поражаются:

  • Нервная система
  • Печень
  • Почки
  • Желудочно-кишечный тракт

Ртуть сохраняется в организме в течение года.

Отравление солями ртути

Острое отравление ртутью проявляется через несколько часов после начала отравления. Интоксикация происходит, главным образом, через дыхательные пути, порядка 80% вдыхаемых паров ртути задерживается в организме. Соли и кислород, содержащиеся в крови, способствуют поглощению ртути, ее окислению и образованию ртутных солей.

Симптомы острого отравления солями ртути:

  • общая слабость
  • отсутствие аппетита
  • головная боль
  • боль при глотании
  • металлический вкус во рту
  • слюнотечение
  • набухание и кровоточивость десен
  • тошнота и рвота
  • сильнейшие боли в животе
  • слизистый понос (иногда с кровью)

Кроме того при отравлении ртутью характерен упадок сердечной деятельности, пульс становится редким и слабым, возможны обмороки. Нередко наблюдается воспаление легких, боли в груди, кашель и одышка, часто сильный озноб. Температура тела поднимается до 38-40 °C. В моче пострадавшего находят значительное количество ртути. В тяжелейших случаях через несколько дней наступает смерть пострадавшего.


Симптомы отравления парами ртути

При длительном воздействии даже относительно малых концентраций ртути - порядка сотых и тысячных мг/м3 происходит поражение нервной системы. Основные симптомы отравления:

  • Головная боль
  • Повышенная возбудимость
  • Раздражительность
  • Снижение работоспособности
  • Быстрая утомляемость
  • Расстройство сна
  • Ухудшение памяти
  • Апатия

Симптомы хронического отравления ртутью

При хроническом отравлении ртутью и ее соединениями появляются следующие симптомы:

  • Металлический привкус во рту
  • Рыхлость десен
  • Сильное слюнотечение
  • Легкая возбудимость
  • Ослабление памяти

Так как ртуть относится к АХОВ (аварийно химически-опасные отравляющие вещества), быту же, чтобы её забрали на утилизацию, придется еще и заплатить соответствующим организациям.

Ртуть - опасный загрязнитель окружающей среды, особенно опасны выбросы в воду.

Польза

Область применения ртути

Ртуть и её соединения применяются в технике, химической промышленности, медицине.

Ее добавляют при изготовлении лекарств и дезинфицирующих средств.

Ртуть быстро и равномерно реагирует на изменения температуры, поэтому она применяется в градусниках и термометрах.


Ртуть также используется в красках, стоматологии, при производстве хлора, каустической соды и электрооборудования.

Органические соединения ртути используются в качестве пестицидов и средств обработки семян.

Разбился градусник — как собрать ртуть

Симптомы отравления ртутью (при попадании её через пищевод) видны сразу - синюшность лица, одышка и др. Первое, что необходимо сделать в такой ситуации, это набрать номер «скорой помощи» и вызвать у больного рвоту.

Чтобы провести очистку помещений и предметов от загрязнений металлической ртутью и источников ртутных паров нужно провести демеркуризацию. В настоящее время несколько фирм выпускают комплекты (с инструкцией) для обезвреживания бытовых ртутных загрязнений.

В быту демеркуризация широко применяется с помощью серы. Например, если разбился ртутьсодержащий градусник, следует открыть окна для доступа свежего воздуха и понижения температуры в помещении (чем теплее в квартире, тем активнее происходит испарение металла). Затем осторожно и тщательно собрать все осколки градусника и шарики ртути (не голыми руками, при возможности в респираторе). Все загрязненные вещи следует сложить в стеклянную банку с герметичной крышкой, или в полиэтиленовые пакеты и вынести из помещения.


Следы от ртути засыпать порошком серы (S). При комнатной температуре сера легко вступает в химическую реакцию с ртутью, образуя ядовитое, но не летучее соединение HgS, которое опасно только при попадании в пищевод.

Обработать пол и предметы, на которые попала ртуть раствором марганцовокислого калия, либо хлорсодержащим препаратом. Следует промыть марганцовкой и мыльно-содовым раствором перчатки, обувь, прополоскать рот и горло слабо-розовым раствором марганцовки, тщательно почистить зубы, принять 2-3 таблетки активированного угля. В дальнейшем желательно регулярное мытье пола хлорсодержащим препаратом и интенсивное проветривание.


Если в квартире был разбит градусник и видимые шарики ртути убраны, то концентрация паров обычно не превышает ПДК, и в условиях хорошей вентиляции, остатки ртути испарятся за несколько месяцев, не причинив существенного вреда здоровью жильцов.

Ртуть нельзя выливать в канализацию, выбрасывать вместе с бытовым мусором. По вопросам утилизации ртути нужно обращаться в районную СЭС, где её обязаны принять. Если такой возможности нет, тогда нужно собрать ртуть в полиэтиленовый пакет, засыпать хлоркой (или хлорсодержащими препаратами), завернуть в несколько полиэтиленовых пакетов и поглубже закопать. Тогда ртуть будет надежно изолирована.

Ртуть – один из редких элементов Земной коры, выглядит как блестящий серебристо-белый тяжёлый металл. В обычных условиях он остаётся жидким и необычайно подвижным. Твёрдым металлом ртуть может стать при -39° С. При комнатной температуре легко испаряется, не имея запаха и вкуса, чем представляет угрозу отравления. В быту источником отравления может служить разбитый градусник.

Чистый металл ртути получают из минеральной руды, называемой киноварь, которую разогревают до высоких температур, ртуть выпаривается и конденсируется.

Где находит применение ртуть

Уникальные свойства сделали ртуть в современных отраслях промышленности важным элементом. Нет такой отрасли, где бы не использовался этот необычный металл:

Ртуть – вещество, при утечке которого человек должен действовать молниеносно. При правильном устранении последствий появляется возможность оперативно оградить себя от вредных паров ртути. А вовремя оказанная помощь способна спасти жизнь человеку.

В сравнении с лампами накаливания современные энергосберегающие лампы обладают очевидными достоинствами. Но из-за особенностей конструкции пользоваться ими нужно осторожно и принять меры, если разбилась энергосберегающая лампочка.

Сегодня хорошо известно какое негативное воздействие на здоровье оказывает ртуть, поэтому важно уметь правильно утилизовать разбившийся ртутный градусник

В целях экономии энергетических ресурсов, все чаще применяются лампы дневного света, но в конструкции этих световых приборов используется ртуть, опасный металл, который должен подлежать обязательной утилизации

Как ртуть действует в приборах

Электрический аккумулятор

Содержит диоксисульфатно-ртутный элемент. Который является химическим источником тока. Электролитом выступает водный раствор сульфата цинка, анодом – цинк, катодом – смесь графита с окисью ртути и сульфатом ртути.

Типы таких аккумуляторов используются в мобильных телефонах, ноутбуках, цифровых фотоаппаратах.

Устройство, позволяющее проводить электрохимический анализ веществ и химических процессов. В исследуемый раствор погружают один поляризующийся капельно-ртутный электрод, другой – неполяризующийся электрод с большой поверхностью, покрытой слоем ртути. Затем на электроды поступает возрастающее напряжению. Величина тока, проходимого через раствор, измеряется гальванометром. На основании полученных замеров строят полярограмму.

Методом полярографии проводят исследования состава вредных веществ в промышленных выбросах, определяют степень насыщенности крови кислородом, диагностируют такие заболевания как злокачественные опухоли, лучевую болезнь полярограммой сыворотки крови.

Люминесцентные и кварцевые лампы

Конструкция состоит из герметической колбы (стеклянной либо кварцевой), наполненной смесью газов и паров ртути, и прикреплённых с двух сторон электродов. Через контакты подаётся электрический разряд и в колбе возникают невидимые ультрафиолетовые лучи, для трансформации которых в видимый свет поверхность колбы изнутри покрыта слоем люминофора. Различный состав покрытия можно получить разнообразную цветовую гамму. Ультрафиолетовое излучение имеет бактерицидное действие, медицина использует это свойство в профилактических и противоэпидемиологических целях.

Барометр

Внутри прибора размещена запаянная с одной стороны колба с ртутью, реагирующая на малейшие перепады атмосферного давления. В зависимости от происходящих изменений столбик ртути, поднимаясь или опускаясь по шкале барометра, показывает предполагаемую погоду.

Используется для измерения кровяного давления человека.

По принципу сообщающихся сосудов ртуть, находящаяся в стеклянной трубке, поднимается в результате подачи сдавленного с помощью резиновой груши воздуха.

По шкале трубки производится отсчёт давления.

Отличается высокой точностью по сравнению с новоявленными приборами на , но промышленностью уже не выпускается.

Термометры

Основаны на свойстве ртути менять свой объём под воздействием температуры. Состоит из стеклянного резервуара, наполненного ртутью, и шкалы, цена деления которой имеет широкий диапазон в зависимости от назначения термометра (от -39°С до +357°С).

Ртутный диффузионный насос

Входит в сборку вакуумных установок и с его помощью достигается глубокий вакуум. Служит для откачки газа или пара из рабочей камеры насоса. Процесс происходит в результате периодического изменения давления внутри камеры посредством нагрева и последующего охлаждения ртути. Газ стремится в область с пониженным давлением, создавая вакуум.

Ртуть опасна для здоровья

Восьмидесятый элемент таблицы Менделеева признан глобальным загрязнителем окружающей среды. По нанесению вреда жизни и здоровью людей он относится к первому классу опасности. Поставщиками ртути в атмосферу являются предприятия и заводы , использующие её в своём производстве.

При попадании ртути в воздух, водоёмы и почву происходят процессы образования органических соединений, отличающихся высокой токсичностью.

Накопление в организме ртути и ртутных соединений приводит к поражению кожных покровов, дыхательных путей, внутренних органов, нервной и кроветворной систем.

Из природного компонента ртуть превратилась в угрозу для здоровья человека.

Температура кипения Теплота плавления

2,295 кДж/моль

Теплота испарения

58,5 кДж/моль

Молярная теплоёмкость Кристаллическая решётка простого вещества Структура решётки

ромбоэдрическая

Параметры решётки Отношение c/a Температура Дебая Прочие характеристики Теплопроводность

(300 K) 8,3 Вт/(м·К)

80
4f 14 5d 10 6s 2

Ртуть известна с древних времен. Нередко ее находили в самородном виде (жидкие капли на горных породах), но чаще получали обжигом природной киновари . Древние греки и римляне использовали ртуть для очистки золота (амальгамирование), знали о токсичности самой ртути и ее соединений, в частности сулемы . Много веков алхимики считали ртуть главной составной частью всех металлов и полагали, что если жидкой ртути возвратить твердость при помощи серы или мышьяка , то получится золото . Выделение ртути в чистом виде было описано шведским химиком Георгом Брандтом в 1735 г. Для представления элемента как у алхимиков , так и в нынешнее время используется символ планеты Меркурий .

Происхождение названия

В природе известно около 20 минералов ртути, но главное промышленное значение имеет киноварь HgS (86,2 % Hg). В редких случаях предметом добычи является самородная ртуть, метациннабарит HgS и блёклая руда - шватцит (до 17 % Hg). На единственном месторождении Гуитцуко (Мексика) главным рудным минералом является ливингстонит HgSb 4 S 7 . В зоне окисления ртутных месторождений образуются вторичные минералы ртути. К ним относятся прежде всего самородная ртуть, реже метациннабарит, отличающиеся от таких же первичных минералов большей чистотой состава. Относительно распространена каломель Hg 2 Cl 2 . На месторождении Терлингуа (Техас) распространены и другие гипергенные галоидные соединения - терлингуаит Hg 2 ClO, эглестонит Hg 4 Cl.

Месторождения

Ртуть считается редким металлом.

Известны месторождения ртути в Закавказье (Дагестан , Армения), Таджикистане, Словении, Киргизии, Украине (Горловка , Никитовский ртутный комбинат).

В окружающей среде

Изотопы ртути

В России известны 23 месторождения ртути, промышленные запасы составляют 15,6 тыс. тонн (на 2002 год).

Физические свойства

Ртуть - единственный металл, который находится в жидком состоянии при комнатной температуре. Обладает свойствами диамагнетика . Образует со многими металлами жидкие и твёрдые сплавы - амальгамы . Стойкие к амальгамированию металлы: V, Fe, Mo, Cs, Nb, Ta, W .

Плотность ртути при нормальных условиях - 13500кг/м 3 .

Температура в °С ρ, 10 3 кг/м 3 Температура в °С ρ, 10 3 кг/м 3
0 13,5951 50 13,4723
5 13,5827 55 13,4601
10 13,5704 60 13,4480
15 13,5580 65 13,4358
20 13,5457 70 13,4237
25 13,5335 75 13,4116
30 13,5212 80 13,3995
35 13,5090 90 13,3753
40 13,4967 100 13,3514
45 13,4845 300 12,875

Химические свойства

Характерные степени окисления

"*Гидроксид не получен, существуют только соответствующие соли
"**Гидроксид существует только в очень разбавленных (<10 −4 моль/л) растворах.

Для ртути характерны две степени окисления: +1 и +2. В степени окисления +1 ртуть представляет собой двухъядерный катион Hg 2 2+ со связью металл-металл. Ртуть - один из немногих металлов, способных формировать такие катионы, и у ртути они - самые устойчивые.
В степени окисления +1 ртуть склонна к диспропорционированию. Оно протекает при нагревании:

подщелачивании:

добавлении лигандов, стабилизирующих степень окисления ртути +2.

Из-за диспропорционирования ни оксид, ни гидроксид ртути (I) получить не удаётся.

На холоду ртуть +2 и металлическая ртуть, наоборот, конпропорционируют. Поэтому, в частности, при реакции со ртутью получается нитрат ртути (I):

В степени окисления +2 ртуть образует катионы Hg 2+ , которые очень легко гидролизуются. При этом гидроксид ртути Hg(OH) 2 существует только в очень разбавленных (<10 −4 моль/л) растворах. В более концентрированных растворах он дегидратируется:

В очень концентрированной щелочи оксид ртути частично растворяется с образованием гидроксокомплекса:

Ртуть в степени окисления +2 образует уникально прочные комплексы со многими лигандами, причём как жесткими, так и мягкими по теории ЖМКО. С иодом (-1), серой (-2) и углеродом она образует очень прочные ковалентные связи. По устойчивости связей металл-углерод ртути нет равных среди других металлов, поэтому получено огромное количество .

Из элементов IIБ группы именно у ртути появляется возможность разрушения очень устойчивой 6d 10 - электронной оболочки , что приводит к возможности существования соединений ртути (+4) но они крайне малоустойчивы, поэтому эту степень окисления, скорее, можно отнести к курьёзной, чем к характерной. В частности, при взаимодействии атомов ртути и смеси неона и фтора при температуре 4 получен HgF 4 .

Свойства простого вещества

Также с трудом растворяется в серной кислоте при нагревании, с образованием сульфата ртути:

При растворении избытка ртути в азотной кислоте на холоде образуется нитрат Hg 2 (NO 3) 2 .

При нагревании до 300 °C ртуть вступает в реакцию с кислородом :

Ртуть также реагирует с галогенами (причём на холоду - медленно).

и различными хлорсодержащими отбеливателями. Эти реакции используют для удаления металлической ртути.

Применение

Применение ртути и её соединений

Медицина

В связи с высокой токсичностью ртуть почти полностью вытеснена из медицинских препаратов. Её соединения (в частности, мертиолят) используется как консервант для вакцин . . Сама ртуть сохраняется в медицинских термометрах (один медицинский термометр содержит до 2 г ртути).
Однако вплоть до 1970-х годов соединения ртути использовались в медицине очень активно :

  • (каломель) - слабительное;
  • меркузал и промеран - сильные мочегонные;
  • , цианид ртути (II), и жёлтый - антисептики (в том числе в составе мазей).

Амальгаму серебра применяют в стоматологии в качестве материала зубных пломб.
Ртуть-203 (T 1/2 = 53 сек) используется в радиофармакологии.

Техника

Металлургия

  • Металлическая ртуть применяется для получения целого ряда важнейших сплавов.
  • Ранее различные амальгамы металлов, особенно амальгамы золота и серебра , широко использовались в ювелирном деле, в производстве зеркал .
  • Металлическая ртуть служит катодом для электролитического получения ряда активных металлов, хлора и щелочей . Сейчас вместо ртутных катодов используют электролиз с диафрагмой.
  • Ртуть используется для переработки вторичного алюминия (см. амальгамация)
  • Ртуть хорошо смачивает золото, поэтому ей обрабатывают золотоносные глины для выделения из них этого металла. Эта технология распространена, в частности, в Амазонии .

Химическая промышленность

  • Соли ртути использовали в качестве катализатора промышленного получения ацетальдегида из ацетилена (реакция Кучерова), однако в настоящее время ацетальдегид получают прямым каталитическим окислением этана или этен.
  • Реактив Несслера используется для количественного определения аммиака.

Сельское хозяйство

Высокотоксичные соединения ртути, такие как (каломель), (сулема), мертиолят и другие используют для протравливания семенного зерна и в качестве пестицидов.

Токсикология ртути

Ядовиты только пары́ и растворимые соединения ртути. Металлическая ртуть не оказывает существенного воздействия на организм. Пары могут вызвать тяжёлое отравление . Ртуть и её соединения (сулема , каломель , цианид ртути) поражают нервную систему, печень, почки, желудочно-кишечный тракт, при вдыхании - дыхательные пути (а проникновение ртути в организм чаще происходит именно при вдыхании её паров, не имеющих запаха). По классу опасности ртуть относится к первому классу (чрезвычайно опасное химическое вещество). Опасный загрязнитель окружающей среды, особенно опасны выбросы в воду, поскольку в результате деятельности населяющих дно микроорганизмов происходит образование растворимой в воде и токсичной . Ртуть - типичный представитель кумулятивных ядов.

  • Органические соединения ртути ( и др.) в целом намного более токсичны, чем неорганические, прежде всего из-за их липофильности и способности более эффективно взаимодействовать с элементами ферментативных систем организма.

Гигиеническое нормирование концентраций ртути

  • ПДК в населённых пунктах (среднесуточная) - 0,0003 мг /м³
  • ПДК в жилых помещениях (среднесуточная) - 0,0003 мг/м³
  • ПДК воздуха в рабочей зоне (макс. разовая) - 0,01 мг/м³
  • ПДК воздуха в рабочей зоне (среднесменная) - 0,005 мг/м³
  • ПДК сточных вод (для неорганических соединений в пересчёте на двухвалентную ртуть) - 0,005 мг/мл
  • ПДК водных объектов хозяйственно-питьевого и культурного водопользования, в воде водоёмов - 0,0005 мг /
  • ПДК рыбохозяйственных водоёмов - 0,00001 мг /
  • ПДК морских водоёмов - 0,0001 мг /

Демеркуризация

Очистка помещений и предметов от загрязнений металлической ртутью и источников ртутных паров называется демеркуризацией. В быту широко применяется демеркуризация с помощью серы. Так, например, если разбился градусник, раньше предлагали тщательно собрать все шарики ртути медицинской клизмой в стеклянную банку с герметичной крышкой, а щели и неровности засыпать порошком серы (S). Сера вступает в химическую реакцию со ртутью при комнатной температуре, образуя нерастворимое и потому не ядовитое твердое вещество - сульфид ртути. Однако этот метод исключительно малоэффективен. Сера со ртутью легко реагирует только при тщательном растирании в ступке. Если насыпать на тяжелую ртуть легкий порошок серы, реакция практически не будет идти. Или пойдет чрезвычайно медленно. На самом деле следует тщательнейшим образом собрать все видимые (при ярком свете лампы!) капельки ртути в герметично закрывающуюся емкость. Для сбора крупных капель можно использовать пипетку с тонким носиком, а более мелкие капли нужно собрать амальгамированной (покрытой тончайшим слоем ртути) медной проволокой, которую нужно перед этим тщательно зачистить, чтобы ртуть смочила медь (лучше всего для этой цели подходит азотная кислота, в которую нужно на одну - две секунды опустить конец проволоки). Подойдет и оловянный припой. Налипшую ртуть следует стряхивать в ту же емкость, которую потом нужно сдать на утилизацию - туда же, куда сдают перегоревшие люминесцентные и энергосберегающие лампы, которые тоже содержат ртуть. Невидимые глазом, а также попавшие в щели капельки следует залить раствором хлорного железа FeCl 3 , который превратит ртуть в неиспаряющуюся и малоядовитую каломель Hg 2 Cl 2 . В крайнем случае следует залить это место раствором «марганцовки» или йодной настойкой. Пол на следующий день нужно тщательно вымыть. Ни в коем случае нельзя убирать частицы ртути при помощи пылесоса, так как это вызывает рассеивание на более мелкие частицы через выход воздуха из пылесоса, а это повлечет за собой увеличение концентрации паров ртути и усложнит процесс очистки помещений.

См. также

Примечания

Ссылки

  • , физико-химические свойства и области применения на сайте «Горной энциклопедии »
  • в открытой Геоэнциклопедии.


Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!