Информационный женский портал

Химический состав клетки. Роль воды и неорганических веществ в жизнедеятельности клетки. Какие химические элементы входят в состав клетки? Роль и функции химических элементов, входящих в состав клетки

В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.

Их делят на три группы:

  1. основные элементы - кислород, углерод, водород и азот (98% состава клетки);
  2. элементы, составляющие десятые и сотые доли процента,- калий, фосфор, сера, магний, железо, хлор, кальций, натрий (в сумме 1,9%);
  3. все остальные элементы, присутствующие в еще более малых количествах,- микроэлементы.

Молекулярный состав клетки сложный и разнородный. Отдельные соединения - вода и минеральные соли - встречаются также в неживой природе; другие - органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.- характерны только для живых организмов.

НЕОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Вода составляет около 80% массы клетки; в молодых быстрорастущих клетках - до 95%, в старых - 60%.

Роль воды в клетке велика.

Она является основной средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объем и упругость клетки. Большинство веществ поступает в организм и выводится из него в водном растворе. Биологическая роль воды определяется специфичностью строения: полярностью ее молекул и способностью образовывать водородные связи, за счет которых возникают комплексы из нескольких молекул воды. Если энергия притяжения между молекулами воды меньше, чем между молекулами воды и вещества, оно растворяется в воде. Такие вещества называют гидрофильными (от греч. «гидро» - вода, «филее» - люблю). Это многие минеральные соли, белки, углеводы и др. Если энергия притяжения между молекулами воды больше, чем энергия притяжения между молекулами воды и вещества, такие вещества нерастворимы (или слаборастворимы), их называют гидрофобными (от греч. «фобос» - страх) - жиры, липиды и др.

Минеральные соли в водных растворах клетки диссоциируют на катионы и анионы, обеспечивая устойчивое количество необходимых химических элементов и осмотическое давление. Из катионов наиболее важны К + , Na + , Са 2+ , Mg + . Концентрация отдельных катионов в клетке и во внеклеточной среде неодинакова. В живой клетке концентрация К высокая, Na + - низкая, а в плазме крови, наоборот, высокая концентрация Na + и низкая К + . Это обусловлено избирательной проницаемостью мембран. Разность в концентрации ионов в клетке и среде обеспечивает поступление воды из окружающей среды в клетку и всасывание воды корнями растений. Недостаток отдельных элементов - Fe, Р, Mg, Со, Zn - блокирует образование нуклеиновых кислот, гемоглобина, белков и других жизненно важных веществ и ведет к серьезным заболеваниям. Анионы определяют постоянство рН-клеточной среды (нейтральной и слабощелочной). Из анионов наиболее важны НРО 4 2- , Н 2 РO 4 — , Cl — , HCO 3 —

ОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Органические вещества в комплексе образуют около 20-30% состава клетки.

Углеводы - органические соединения, состоящие из углерода, водорода и кислорода. Их делят на простые - моносахариды (от греч. «монос» - один) и сложные - полисахариды (от греч. «поли» - много).

Моносахариды (их общая формула С n Н 2n О n) - бесцветные вещества с приятным сладким вкусом, хорошо растворимы в воде. Они различаются по количеству атомов углерода. Из моносахаридов наиболее распространены гексозы (с 6 атомами С): глюкоза, фруктоза (содержащиеся в фруктах, меде, крови) и галактоза (содержащаяся в молоке). Из пентоз (с 5 атомами С) наиболее распространены рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот и АТФ.

Полисахариды относятся к полимерам - соединениям, у которых многократно повторяется один и тот же мономер. Мономерами полисахаридов являются моносахариды. Полисахариды растворимы в воде, многие обладают сладким вкусом. Из них наиболее просты дисахариды, состоящие из двух моносахаридов. Например, сахароза состоит из глюкозы и фруктозы; молочный сахар - из глюкозы и галактозы. С увеличением числа мономеров растворимость полисахаридов падает. Из высокомолекулярных полисахаридов наиболее распространены у животных гликоген, у растений - крахмал и клетчатка (целлюлоза). Последняя состоит из 150-200 молекул глюкозы.

Углеводы - основной источник энергии для всех форм клеточной активности (движение, биосинтез, секреция и т. д.). Расщепляясь до простейших продуктов СO 2 и Н 2 O, 1 г углевода освобождает 17,6 кДж энергии. Углеводы выполняют строительную функцию у растений (их оболочки состоят из целлюлозы) и роль запасных веществ (у растений - крахмал, у животных - гликоген).

Липиды - это нерастворимые в воде жироподобные вещества и жиры, состоящие из глицерина и высокомолекулярных жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке. При комнатной температуре это твердые вещества. У растений жиры находятся в семенах, плодах и других органах. При комнатной температуре это жидкости. С жирами по химической структуре сходны жироподобные вещества. Их много в желтке яиц, клетках мозга и других тканях.

Роль липидов определяется их структурной функцией. Из них состоят клеточные мембраны, которые вследствие своей гидрофобности препятствуют смешению содержимого клетки с окружающей средой. Липиды выполняют энергетическую функцию. Расщепляясь до СO 2 и Н 2 O, 1 г жира выделяет 38,9 кДж энергии. Они плохо проводят тепло, накапливаясь в подкожной клетчатке (и других органах и тканях), выполняют защитную функцию и роль запасных веществ.

Белки - наиболее специфичны и важны для организма. Они относятся к непериодическим полимерам. В отличие от других полимеров их молекулы состоят из сходных, но нетождественных мономеров - 20 различных аминокислот.

Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде

Молекула аминокислоты состоит из специфической части (радикала R) и части, одинаковой для всех аминокислот, включающей аминогруппу (- NH 2) с основными свойствами, и карбоксильную группу (СООН) с кислотными свойствами. Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность. Через эти группы происходит соединение аминокислот при образовании полимера - белка. При этом из аминогруппы одной аминокислоты и карбоксила другой выделяется молекула воды, а освободившиеся электроны соединяются, образуя пептидную связь. Поэтому белки называют полипептидами.

Молекула белка представляет собой цепь из нескольких десятков или сотен аминокислот.

Молекулы белков имеют огромные размеры, поэтому их называют макромолекулами. Белки, как и аминокислоты, обладают высокой реактивностью и способны реагировать с кислотами и щелочами. Они различаются по составу, количеству и последовательности расположения аминокислот (число таких сочетаний из 20 аминокислот практически бесконечно). Этим объясняется многообразие белков.

В строении молекул белков различают четыре уровня организации (59)

  • Первичная структура - полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.
  • Вторичная структура - полипептидная цепь, закрученная в тугую спираль. В ней между пептидными связями соседних витков (и другими атомами) возникают малопрочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.
  • Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию - глобулу. Она удерживается малопрочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность. Третичная структура белков поддерживается также за счет ковалентных S - S (эс - эс) связей, возникающих между удаленными друг от друга радикалами серосодержащей аминокислоты - цистеина.
  • Четвертичная структура типична не для всех белков. Она возникает при соединении нескольких белковых макромолекул, образующих комплексы. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул этого белка.

Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам. Однако строение белковых молекул зависит от свойств окружающей среды.

Нарушение природной структуры белка называют денатурацией . Она может возникать под воздействием высокой температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном - третичная, а затем - вторичная, и белок остается в виде первичной структуры - полипептидной цепи, Этот процесс частично обратим, и денатурированный белок способен восстанавливать свою структуру.

Роль белка в жизни клетки огромна.

Белки - это строительный материал организма. Они участвуют в построении оболочки, органоидов и мембран клетки и отдельных тканей (волос, сосудов и др.). Многие белки выполняют в клетке роль катализаторов - ферментов, ускоряющих клеточные реакции в десятки, сотни миллионов раз. Известно около тысячи ферментов. В их состав, кроме белка, входят металлы Mg, Fe, Мn, витамины и т. д.

Каждая реакция катализируется своим особым ферментом. При этом действует не весь фермент, а определенный участок - активный центр. Он подходит к субстрату, как ключ к замку. Действуют ферменты при определенной температуре и рН среды. Особые сократительные белки обеспечивают двигательные функции клеток (движение жгутиковых, инфузорий, сокращение мышц и т. д.). Отдельные белки (гемоглобин крови) выполняют транспортную функцию, доставляя кислород ко всем органам и тканям тела. Специфические белки - антитела - выполняют защитную функцию, обезвреживая чужеродные вещества. Некоторые белки выполняют энергетическую функцию. Распадаясь до аминокислот, а затем до еще более простых веществ, 1 г белка освобождает 17,6 кДж энергии.

Нуклеиновые кислоты (от лат. «нуклеус» - ядро) впервые обнаружены в ядре. Они бывают двух типов - дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Биологическая роль их велика, они определяют синтез белков и передачу наследственной информации от одного поколения к другому.

Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей. Ширина двойной спирали 2 нм 1 , длина несколько десятков и даже сотен микромикрон (в сотни или тысячи раз больше самой крупной белковой молекулы). ДНК - полимер, мономерами которой являются нуклеотиды - соединения, состоящие из молекулы фосфорной кислоты, углевода - дезоксирибозы и азотистого основания. Их общая формула имеет следующий вид:

Фосфорная кислота и углевод одинаковы у всех нуклеотидов, а азотистые основания бывают четырех типов: аденин, гуанин, цитозин и тимин. Они и определяют название соответствующих нуклеотидов:

  • адениловый (А),
  • гуаниловый (Г),
  • цитозиловый (Ц),
  • тимидиловый (Т).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. В ней соседние нуклеотиды соединены прочной ковалентной связью между фосфорной кислотой и дезоксирибозой.

При огромных размерах молекул ДНК сочетание в них из четырех нуклеотидов может быть бесконечно большим.

При образовании двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. При этом против А всегда оказывается Т, а против Г - только Ц. Это объясняется тем, что А и Т, а также Г и Ц строго соответствуют друг другу, как две половинки разбитого стекла, и являются дополнительными или комплементарными (от греч. «комплемент» - дополнение) друг другу. Если известна последовательность расположения нуклеотидов в одной цепи ДНК, то по принципу комплементарности можно установить нуклеотиды другой цепи (см. приложение, задача 1). Соединяются комплементарные нуклеотиды при помощи водородных связей.

Между А и Т возникают две связи, между Г и Ц - три.

Удвоение молекулы ДНК - ее уникальная особенность, обеспечивающая передачу наследственной информации от материнской клетки дочерним. Процесс удвоения ДНК называется редупликацией ДНК. Он осуществляется следующим образом. Незадолго перед делением клетки молекула ДНК раскручивается и ее двойная цепочка под действием фермента с одного конца расщепляется на две самостоятельные цепи. На каждой половине из свободных нуклеотидов клетки, по принципу комплементарности, выстраивается вторая цепь. В результате вместо одной молекулы ДНК возникают две совершенно одинаковые молекулы.

РНК - полимер, по структуре сходный с одной цепочкой ДНК, но значительно меньших размеров. Мономерами РНК являются нуклеотиды, состоящие из фосфорной кислоты, углевода (рибозы) и азотистого основания. Три азотистых основания РНК - аденин, гуанин и цитозин - соответствуют таковым ДНК, а четвертое - иное. Вместо тимина в РНК присутствует урацил. Образование полимера РНК происходит через ковалентные связи между рибозой и фосфорной кислотой соседних нуклеотидов. Известны три вида РНК: информационная РНК (и-РНК) передает информацию о структуре белка с молекулы ДНК; транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка; рибосомная РНК (р-РНК) содержится в рибосомах, участвует в синтезе белка.

АТФ - аденозинтрифосфорная кислота - важное органическое соединение. По структуре это нуклеотид. В его состав входит азотистое основание аденин, углевод - рибоза и три молекулы фосфорной кислоты. АТФ - неустойчивая структура, под влиянием фермента разрывается связь между «Р» и «О», отщепляется молекула фосфорной кислоты и АТФ переходит в

Впервые химические вещества классифицировал в конце IX столетия арабский ученый Абу Бакр ар-Рази. Он, опираясь на происхождение веществ, распределили их по трем группам. В первой группе он отвел место минеральным, во второй - растительным и в третьей - животным веществам.

Этой классификации было суждено просуществовать почти целое тысячелетие. Лишь в XIX веке из тех групп сформировали две - органические и неорганические вещества. Химические вещества обоих типов строятся благодаря девяноста элементам, внесенным в таблицу Д. И. Менделеева.

Группа неорганических веществ

Среди неорганических соединений различают простые и сложные вещества. Группа простых веществ объединяет металлы, неметаллы и благородные газы. Сложные вещества представлены оксидами, гидроксидами, кислотами и солями. Все неорганические вещества могут строиться из любых химических элементов.

Группа органических веществ

В состав всех органических соединений в обязательном порядке входит углерод и водород (в этом их принципиальное отличие от минеральных веществ). Вещества, образованные C и H называются углеводородами - простейшими органическими соединениями. В составе производных углеводородов находится азот и кислород. Они, в свою очередь, классифицированы на кислород- и азотсодержащие соединения.

Группа кислородсодержащих веществ представлена спиртами и эфирами, альдегидами и кетонами, карбоновыми кислотами, жирами, восками и углеводами. К азотсодержащим соединениям причислены амины, аминокислоты, нитросоединения и белки. У гетероциклических веществ положение двояко - они, в зависимости от строения, могут относиться и к тому и к другому виду углеводородов.

Химические вещества клетки

Существование клеток возможно, если в их состав входят органические и неорганические вещества. Они погибают, когда в них отсутствует вода, минеральные соли. Клетки умирают, если сильно обеднены нуклеиновыми кислотами, жирами, углеводами и белками.

Они способны к нормальной жизнедеятельности, если в них находится несколько тысяч соединений органической и неорганической природы, способных вступать во множество различных химических реакций. Биохимические процессы, текущие в клетке - основа ее жизнедеятельности, нормального развития и функционирования.

Химические элементы, насыщающие клетку

Клетки живых систем содержат группы химических элементов. Они обогащены макро-, микро- и ультрамикроэлементами.

  • Макроэлементы, прежде всего, представлены углеродом, водородом, кислородом и азотом. Эти неорганические вещества клетки образуют практически все ее органические соединения. А еще к ним причислены жизненно необходимые элементы. Клетка не способна жить и развиваться без кальция, фосфора, серы, калия, хлора, натрия, магния и железа.
  • Группа микроэлементов образована цинком, хромом, кобальтом и медью.
  • Ультрамикроэлементы - еще одна группа, представляющая важнейшие неорганические вещества клетки. Группа сформирована золотом и серебром, оказывающим бактерицидное действие, ртутью, препятствующей обратному всасыванию воды, заполняющей почечные канальцы, оказывающей влияние на ферменты. В нее же включена платина и цезий. Определенную роль в ней отводят селену, дефицит которого ведет к различным видам рака.

Вода в составе клетки

Важность воды, распространенного на земле вещества для жизни клетки, неоспорима. В ней растворяются многие органические и неорганические вещества. Вода - та благодатная среда, где протекает невероятное количество химических реакций. Она способна растворять продукты распада и обмена. Благодаря ей клетку покидают шлаки и токсины.

Эта жидкость наделена высокой теплопроводностью. Это позволяет теплу равномерно распространяться по тканям тела. У нее существенная теплоемкость (способность поглощать теплоту, когда собственная температура изменяется минимально). Такая способность не позволяет возникать в клетке резким перепадам температур.

Вода обладает исключительно высоким поверхностным натяжением. Благодаря ему растворенные неорганические вещества, как и органические, без труда передвигаются по тканям. Множество небольших организмов, используя особенность поверхностного натяжения, держатся на водной поверхности и свободно по ней скользят.

Тургор растительных клеток зависит от воды. С опорной функцией у определенных видов животных справляется именно вода, а не какие-нибудь другие неорганические вещества. Биология выявила и изучила животных с гидростатическими скелетами. К ним относятся представители иглокожих, круглых и кольчатых червей, медуз и актиний.

Насыщенность клеток водой

Работающие клетки заполнены водой на 80 % от их общего объема. Жидкость пребывает в них в свободной и связанной форме. Белковые молекулы прочно соединяются со связанной водой. Они, окруженные водной оболочкой, изолируются друг от дружки.

Молекулы воды полярны. Они образуют водородные связи. Благодаря водородным мостикам вода обладает высокой теплопроводностью. Связанная вода позволяет клеткам выдерживать пониженные температуры. На долю свободной воды приходится 95 %. Она способствует растворению веществ, вовлекаемых в клеточный обмен.

Высокоактивные клетки в тканях мозга содержат до 85 % воды. Мышечные клетки насыщены водой на 70 %. Менее активным клеткам, образующим жировую ткань, достаточно 40 % воды. Она в живых клетках не только растворяет неорганические химические вещества, она ключевой участник гидролиза органических соединений. Под ее воздействием органические вещества, расщепляясь, превращаются в промежуточные и конечные вещества.

Важность минеральных солей для клетки

Минеральные соли представлены в клетках катионами калия, натрия, кальция, магния и анионами HPO 4 2- , H 2 PO 4 - , Cl - , HCO 3 - . Правильные пропорции анионов и катионов создают необходимую для жизни клетки кислотность. Во многих клетках поддерживается слабощелочная среда, которая практически не меняется и обеспечивает их стабильное функционирование.

Концентрация катионов и анионов в клетках отлична от их соотношения в межклеточном пространстве. Причина тому - активная регуляция, направленная на транспортировку химических соединений. Такое течение процессов обуславливает постоянство химических составов в живых клетках. После гибели клеток концентрация химических соединений в межклеточном пространстве и цитоплазме обретает равновесие.

Неорганические вещества в химической организации клетки

В химическом составе живых клеток нет каких-либо особых элементов, характерных только для них. Это определяет единство химических составов живых и неживых объектов. Неорганические вещества в составе клетки играют огромную роль.

Сера и азот помогают формироваться белкам. Фосфор участвует в синтезе ДНК и РНК. Магний - важная составляющая ферментов и молекул хлорофилла. Медь необходима окислительным ферментам. Железо - центр молекулы гемоглобина, цинк входит в состав гормонов, вырабатываемых поджелудочной железой.

Важность неорганических соединений для клеток

Соединения азота преобразуют белки, аминокислоты, ДНК, РНК и АТФ. В растительных клетках ионы аммония и нитраты в процессе окислительно-восстановительных реакций превращаются в NH 2 , становятся участниками синтеза аминокислот. Живые организмы используют аминокислоты для формирования собственных белков, необходимых для строительства тел. После гибели организмов белки вливаются в круговорот веществ, при их распаде азот выделяется в свободной форме.

Неорганические вещества, в составе которых есть калий, играют роль «насоса». Благодаря «калиевому насосу» в клетки сквозь мембрану проникают вещества, в которых они остро нуждаются. Калиевые соединения приводят к активизации жизнедеятельности клеток, благодаря им проводятся возбуждения и импульсы. Концентрация ионов калия в клетках весьма высока в отличие от окружающей среды. Ионы калия после гибели живых организмов легко переходят в природное окружение.

Вещества, содержащие фосфор, способствуют формированию мембранных структур и тканей. В их присутствии образуются ферменты и нуклеиновые кислоты. Солями фосфора в той или иной степени насыщены различные слои почвы. Корневые выделения растений, растворяя фосфаты, усваивают их. Вслед за отмиранием организмов остатки фосфатов, подвергаются минерализации, превращаясь в соли.

Неорганические вещества, содержащие кальций, способствуют формированию межклеточного вещества и кристаллов в растительных клетках. Кальций из них проникает в кровь, регулируя процесс ее свертывания. Благодаря ему формируются кости, раковины, известковые скелеты, коралловые полипы у живых организмов. Клетки содержат ионы кальция и кристаллы его солей.

Клетки растений и животных содержат неорганические и органические вещества. К неорганическим относят воду и минеральные вещества. К органическим веществам относят белки, жиры, углеводы, нуклеиновые кислоты.

Неорганические вещества

Вода - это соединение, которое живая клетка содержит в наибольшем количестве. Вода составляет около 70% массы клетки. Большинство внутриклеточных реакций протекает в водной среде. Вода в клетке находится в свободном и связанном состоянии.

Значение воды для жизнедеятельности клетки определено ее строением и свойствами. Содержание воды в клетках может быть различным. 95% воды находится в клетке в свободном состоянии. Она необходима как растворитель для органических и неорганических веществ. Все биохимические реакции в клетке идут при участии воды. Вода используется для выведения различных веществ из клетки. Вода обладает высокой теплопроводностью и предотвращает резкие колебания температуры. 5% воды находится в связанном состоянии, образуя непрочные соединения с белками.

Минеральные вещества в клетке могут быть в диссоциированном состоянии или в соединении с органическими веществами.

Химические элементы, которые участвуют в процессах обмена веществ и обладают биологической активностью, называют биогенными.

Цитоплазма содержит около 70% кислорода, 18% углерода, 10% водорода, кальций, азот, калий, фосфор, магний, серу, хлор, натрий, алюминий, железо. Эти элементы составляют 99,99% от состава клетки и их называют макроэлементами. Например, кальций и фосфор входят в состав костей. Железо - составная часть гемоглобина.

Марганец, бор, медь, цинк, йод, кобальт - микроэлементы. Они составляют тысячные доли процента от массы клетки. Микроэлементы нужны для образования гормонов, ферментов, витаминов. Они влияют на обменные процессы в организме. Например, йод входит в состав гормона щитовидной железы, кобальт - в состав витамина В 12 .

Золото, ртуть, радий и др. - ультрамикроэлементы - составляют миллионные доли процента от состава клетки.

Недостаток или избыток минеральных солей нарушает жизнедеятельность организма.

Органические вещества

Кислород, водород, углерод, азот входят в состав органических веществ. Органические соединения представляют собой круп- ные молекулы, называемые полимерами. Полимеры состоят из многих повторяющихся единиц (мономеров). К органическим полимерным соединениям относят углеводы, жиры, белки, нуклеиновые кислоты, АТФ.

Углеводы

Углеводы состоят из углерода, водорода, кислорода.

Мономерами углеводов являются моносахариды. Углеводы раз- деляют на моносахариды, дисахариды и полисахариды.

Моносахариды - простые сахара с формулой (СН 2 О) n , где n - любое целое число от трех до семи. В зависимости от числа угле- родных атомов в молекуле различают триозы (3С), тетрозы (4С), пентозы (5С), гексозы (6С), гептозы (7С).

Триозы С 3 Н 6 О 3 - например глицеральдегид и дигидроксиацетон - играют роль промежуточных продуктов в процессе дыхания, уча- ствуют в фотосинтезе. Тетрозы С 4 Н 8 О 4 встречаются у бактерий. Пентозы С 5 Н 10 О 5 - например рибоза - входит в состав РНК, дезоксирибоза входит в состав ДНК. Гексозы - С 6 Н 12 О 6 - например глюкоза, фруктоза, галактоза. Глюкоза - источник энергии для клетки. Вместе с фруктозой и галактозой глюкоза может участвовать в образовании дисахаридов.

Дисахариды образуются в результате реакции конденсации между двумя моносахаридами (гексозами) с потерей молекулы воды.

Формула дисахаридов С 12 Н 22 О 11 Среди дисахаридов наиболее широко распространены мальтоза, лактоза и сахароза.

Сахароза, или тростниковый сахар, синтезируется у растений. Мальтоза образуется из крахмала в процессе его переваривания в организме животных. Лактоза, или молочный сахар содержится только в молоке.

Полисахариды (простые) образуются в результате реакции конденсации большого числа моносахаридов. К простым полисахаридам относят крахмал (синтезируется у растений), гликоген (содержится в клетках печени и мышцах животных и человека), целлюлозу (образует клеточную стенку у растений).

Сложные полисахариды образуются в результате взаимодействия углеводов с липидами. Например, гликолипиды входят в состав мембран. К сложным полисахаридам относят также соединения углеводов с белками (гликопротеиды). Например, гликопротеиды входят в состав слизи, выделяемой железами желудоч- но-кишечного тракта.

Функции углеводов:

1. Энергетическая: 60% энергии организм получает при распаде углеводов. При расщеплении 1 г углеводов выделяется 17,6 кДж энергии.

2. Структурная и опорная: углеводы входят в состав плазматической мембраны, оболочки растительных и бактериальных клеток.

3. Запасающая: питательные вещества (гликоген, крахмал) откладываются в запас в клетках.

4. Защитная: секреты (слизь), выделяемые различными железами, предохраняют стенки полых органов, бронхов, желудка, кишечника от механических повреждений, вредных бактерий и вирусов.

5. Участвуют в фотосинтезе.

Жиры и жироподобные вещества

Жиры состоят из углерода, водорода, кислорода. Мономерами жиров являются жирные кислоты и глицерин. Свойства жиров определяются качественным составом жирных кислот и их количественным соотношением. Растительные жиры жидкие (масла), животные - твердые (например сало). Жиры нерастворимы в воде - это гидрофобные соединения. Жиры, соединяясь с белками, образуют липопротеиды, соединяясь с углеводами - гликолипиды. Гликолипиды и липопротеиды - это жироподобные вещества.

Жироподобные вещества входят в состав мембран клеток, мембранных органелл, нервной ткани. Жиры могут соединяться с глюко- зой и образовывать гликозиды. Например, гликозид дигитоксина - вещество, используемое при лечении болезней сердца.

Функции жиров:

1. Энергетическая: при полном распаде 1 г жира до углекислого газа и воды выделяется 38,9 кДж энергии.

2. Структурная: входят в состав клеточной мембраны.

3. Защитная: слой жира защищает организм от переохлаждения, механических ударов и сотрясений.

4. Регуляторная: стероидные гормоны регулируют процессы обмена веществ и размножение.

5. Жир - источник эндогенной воды. При окислении 100 г жира выделяется 107 мл воды.

Белки

В состав белков входят углерод, кислород, водород, азот. Мономерами белка являются аминокислоты. Белки построены из двадцати различных аминокислот. Формула аминокислоты:

В состав аминокислот входят: NH 2 - аминогруппа, обладающая основными свойствами; СООН - карбоксильная группа, имеет кислотные свойства. Аминокислоты отличаются друг от друга своими радикалами - R. Аминокислоты - амфотерные соединения. Они соединяются друг с другом в молекуле белка с помощью пептидных связей.

Схема конденсации аминокислот (образование пептидной связи)

Есть первичная, вторичная, третичная и четвертичная структуры белка. Порядок, количество и качество аминокислот, входящих в состав молекулы белка, определяют его первичную структуру. Белки первичной структуры могут с помощью водородных связей соединяться в спираль и образовывать вторичную структуру. Полипептидные цепи скручиваются определенным образом в компактную структуру, образуя глобулу (шар) - это тре- тичная структура белка. Большинство белков имеют третичную структуру. Аминокислоты активны только на поверхности глобулы. Белки, имеющие глобулярную структуру, объединяются вместе и образуют четвертичную структуру. Замена одной аминокислоты приводит к изменению свойств белка (рис. 30).

При воздействии высокой температуры, кислот и других факторов может происходить разрушение белковой молекулы. Это явление называется денатурацией (рис. 31). Иногда денатуриро-

Рис. 30. Различные структуры молекул белка.

1 - первичная; 2 - вторичная; 3 - третичная; 4 - четвертичная (на примере гемоглобина крови).

Рис. 31. Денатурация белка.

1 - молекула белка до денатурации;

2 - денатурированный белок;

3 - восстановление исходной молекулы белка.

ванный белок при изменении условий вновь может восстановить свою структуру. Этот процесс называется ренатурацией и возможен лишь тогда, когда не разрушена первичная структура белка.

Белки бывают простые и сложные. Простые белки состоят только из аминокислот: например, альбумины, глобулины, фибриноген, миозин.

Сложные белки состоят из аминокислот и других органических соединений: например, липопротеины, гликопротеины, нук- леопротеины.

Функции белков:

1. Энергетическая. При распаде 1 г белка выделяется 17,6 кДж энергии.

2. Каталитическая. Служат катализаторами биохимических реакций. Катализаторы - ферменты. Ферменты ускоряют биохимические реакции, но не входят в состав конечных продуктов. Ферменты строго специфичны. Каждому субстрату соответствует свой фермент. Название фермента включает название субстрата и окончание «аза»: мальтаза, рибонуклеаза. Ферменты активны при определенной температуре (35 - 45 О С).

3. Структурная. Белки входят в состав мембран.

4. Транспортная. Например, гемоглобин переносит кислород и СО 2 в крови позвоночных.

5. Защитная. Защита организма от вредных воздействий: выработка антител.

6. Сократительная. Благодаря наличию белков актина и миозина в мышечных волокнах происходит сокращение мышц.

Нуклеиновые кислоты

Существует два типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Мономе- рами нуклеиновых кислот являются нуклеотиды.

ДНК (дезоксирибонуклеиновая кислота). В состав нуклеотида ДНК входит одно из азотистых оснований: аденин (А), гуанин (Г), тимин (Т) или цитозин (Ц) (рис. 32), углевод дезоксирибоза и остаток фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, построенную по принципу комплементарности. В молекуле ДНК комплементарны следующие азотистые основания: А = Т; Г = Ц. Две спирали ДНК соединены водородными связями (рис. 33).

Рис. 32. Строение нуклеотида.

Рис. 33. Участок молекулы ДНК. Комплементарное соединение нуклеотидов разных цепей.

ДНК способна к самоудвоению (репликации) (рис. 34). Репликация начинается с разделения двух комплементарных цепей. Каждая цепь используется в качестве матрицы для образования новой молекулы ДНК. В процессе синтеза ДНК участвуют ферменты. Каждая из двух дочерних молекул обязательно включает одну старую спираль и одну новую. Новая молекула ДНК абсо- лютно идентична старой по последовательности нуклеотидов. Такой способ репликации обеспечивает точное воспроизведение в дочерних молекулах той информации, которая была записана в материнской молекуле ДНК.

Рис. 34. Удвоение молекулы ДНК.

1 - матричная ДНК;

2 - образование двух новых цепей на основе матрицы;

3 - дочерние молекулы ДНК.

Функции ДНК:

1. Хранение наследственной информации.

2. Обеспечение передачи генетической информации.

3. Присутствие в хромосоме в качестве структурного компонента.

ДНК находится в ядре клетки, а также в таких органеллах клетки, как митохондрии, хлоропласты.

РНК (рибонуклеиновая кислота). Рибонуклеиновые кислоты бывают 3 видов: рибосомная, транспортная и информационная РНК. Нуклеотид РНК состоит из одного из азотистых оснований: аденина (А), гуанина (Г), цитозина (Ц), урацила (У), углевода - рибозы и остатка фосфорной кислоты.

Рибосомная РНК (рРНК) в соединении с белком входит в состав рибосом. рРНК составляет 80% от всей РНК в клетке. На рибосомах идет синтез белка.

Информационная РНК (иРНК) составляет от 1 до 10% от всей РНК в клетке. По строению иРНК комплементарна участку молекулы ДНК, несущему информацию о синтезе определенного белка. Длина иРНК зависит от длины участка ДНК, с которого считывали информацию. иРНК переносит информацию о синтезе белка из ядра в цитоплазму к рибосоме.

Транспортная РНК (тРНК) составляет около 10% всей РНК. Она имеет короткую цепь нуклеотидов в форме трилистника и находится в цитоплазме. На одном конце трилистника находится триплет нуклеотидов (антикодон), кодирующий определенную аминокислоту. На другом конце триплет нуклеотидов, к которому при- соединяется аминокислота. Для каждой аминокислоты имеется своя тРНК. тРНК переносит аминокислоты к месту синтеза белка, т.е. к рибосомам (рис. 35).

РНК находится в ядрышке, цитоплазме, рибосомах, митохондриях и пластидах.

АТФ - Аденазинтрифосфорная кислота. Аденазинтрифосфорная кислота (АТФ) состоит из азотистого основания - аденина, сахара - рибозы, и трех остатков фосфорной кислоты (рис. 36). В молекуле АТФ накапливается большое количество энергии, необходимой для биохимических процессов, идущих в клетке. Синтез АТФ происходит в митохондриях. Молекула АТФ очень неустой-

чива и способна отщеплять одну или две молекулы фосфата с выделением большого количества энергии. Связи в молекуле АТФ называют макроэргическими.

АТФ → АДФ + Ф + 40 кДж АДФ→ АМФ + Ф + 40 кДж

Рис. 35. Строение тРНК.

А, Б, В и Г - участки комплементарного соединения внутри одной цепочки РНК; Д - участок (активный центр) соединения с аминокислотой; Е - участок комплементарного соединения с молекулой.

Рис. 36. Строение АТФ и ее превращение в АДФ.

Вопросы для самоконтроля

1. Какие вещества в клетке относят к неорганическим?

2. Какие вещества в клетке относят к органическим?

3. Что является мономером углеводов?

4. Какое строение имеют углеводы?

5. Какие функции выполняют углеводы?

6. Что является мономером жиров?

7. Какое строение имеют жиры?

8. Какие функции выполняют жиры?

9. Что является мономером белка? 10.Какое строение имеют белки? 11.Какие структуры имеют белки?

12.Что происходит при денатурации белковой молекулы?

13.Какие функции выполняют белки?

14.Какие нуклеиновые кислоты известны?

15.Что является мономером нуклеиновых кислот?

16.Что входит в состав нуклеотида ДНК?

17.Какое строение имеет нуклеотид РНК?

18.Какое строение имеет молекула ДНК?

19.Какие функции выполняет молекула ДНК?

20. Какое строение имеет рРНК?

21.Какое строение имеет иРНК?

22.Какое строение имеет тРНК?

23.Какие функции выполняют рибонуклеиновые кислоты?

24.Какое строение имеет АТФ?

25.Какие функции выполняет АТФ в клетке?

Ключевые слова темы «Химический состав клеток»

азотистое основание альбумины

аминокислотная группа аминокислоты

амфотерные соединения

антикодон

бактерии

белки

биологическая активность биологический катализатор

биохимические реакции

болезнь

вещества

видовая специфичность

витамины

вода

водородные связи вторичная структура выработка антител высокая температура галактоза гексозы гемоглобин гепарин

гидрофобные соединения

гликоген

гликозиды

гликопротеиды

глицерин

глобула

глобулины

глюкоза

гормоны

гуанин

двойная спираль дезоксирибоза денатурация дисахарид

диссоциированное состояние

ДНК

единица информации живой организм животное жизнедеятельность жирные кислоты жировая ткань жироподобные вещества жиры

запас питательных веществ избыток

индивидуальная специфичность

источник энергии

капли

карбоксильная группа

качество кислота

клеточная стенка кодон

колебание температуры

количество

комплементарность

конечные продукты

кости

крахмал

лактоза

лечение

липопротеиды

макроэлементы

макроэргические связи

мальтоза

масса

мембрана клетки

микроэлементы

минеральные соли

миозин

митохондрии

молекула

молочный сахар

мономер

моносахарид

мукополисахариды

мукопротеиды

наследственная информация недостаток

неорганические вещества нервная ткань нуклеиновые кислоты нуклеопротеиды нуклеотид обмен веществ обменные процессы органические вещества пентозы

пептидные связи первичная структура перенос кислорода плоды

подкожная клетчатка

полимер полисахарид

полупроницаемая мембрана

порядок

потеря

проникновение воды

процент

радикал

разрушение

распад

растворитель

растение

расщепление

реакция конденсации

ренатурация

рибоза

рибонуклеаза

рибосома

РНК

сахар

свертывание крови

свободное состояние

связанное состояние

семена

сердце

синтез белка

слой

слюна

сократимые белки

строение

субстрат

теплопроводность

тетрозы тимин

тканевая специфичность

третичная структура

трилистник

триозы

триплет

тростниковый сахар углеводы

ультрамикроэлементы

урацил

участок

ферменты

фибриноген

формула

фосфорная кислота фотосинтез фруктоза функция

химические элементы

хлоропласты

хромосома

целлюлоза

цепь

цитозин

цитоплазма

четвертичная структура шар

щитовидная железа

элементы

ядро

К ним относятся вода и минеральные соли.

Вода необходима для осуществления жизненных процессов в клетке. Ее содержание составляет 70-80% от массы клетки. Основные функции воды:

    представляет собой универсальный растворитель;

    является средой, в которой протекают биохимические реакции;

    определяет физиологические свойства клетки (упругость, объем);

    участвует в химических реакциях;

    поддерживает тепловое равновесие организма благодаря высокой теплоемкости и теплопроводности;

    является основным средством для транспорта веществ.

Минеральные соли присутствуют в клетке в виде ионов: катионы К + , Na + , Ca 2+ , Mg 2+ ; анионы – Cl - , HCO 3 - , H 2 РО 4 - .

3. Органические вещества клетки.

Органические соединения клетки состоят из многих повторяющихся элементов (мономеров) и представляют собой крупные молекулы - полимеры. К ним относят белки, жиры, углеводы и нуклеиновые кислоты. Их содержание в клетке: белки -10-20%; жиры - 1-5%; углеводы - 0,2-2,0%; нуклеиновые кислоты - 1-2%; низкомолекулярные органические вещества – 0,1-0,5%.

Белки – высокомолекулярные (с большой молекулярной массой) органические вещества. Структурной единицей их молекулы является аминокислота. В образовании белков принимают участие 20 аминокислот. В состав молекулы каждого белка входят только определенные аминокислоты в свойственном этому белку порядке расположения. Аминокислота имеет следующую формулу:

H 2 N – CH – COOH

В состав аминокислот входят NH 2 – аминогруппа, обладающая основными свойствами; СООН – карбоксильная группа с кислотными свойствами; радикалы, отличающие аминокислоты друг от друга.

Существуют первичная, вторичная, третичная и четвертичная структуры белка. Аминокислоты, соединенные между собой пептидными связями, определяют его первичную структуру. Белки первичной структуры с помощью водородных связей соединяются в спираль и образуют вторичную структуру. Полипептидные цепи, скручиваясь определенным образом в компактную структуру, образуют глобулу (шар) - третичная структура белка. Большинство белков имеет третичную структуру. Следует отметить, что аминокислоты активны только на поверхности глобулы. Белки с глобулярной структурой объединяются и формируют четвертичную структуру (например, гемоглобин). При воздействии высокой температуры, кислот и других факторов сложные белковые молекулы разрушаются – денатурация белка . При улучшении условий денатурированный белок способен восстанавливать свою структуру, если не разрушается его первичная структура. Этот процесс называется ренатурацией.

Белки отличаются видовой специфичностью: для каждого вида животных характерен набор определенных белков.

Различают белки простые и сложные. Простые состоят только из аминокислот (например, альбумины, глобулины, фибриноген, миозин и др.). В состав сложных белков, кроме аминокислот, входят и другие органические соединения, например, жиры и углеводы (липопротеиды, гликопротеиды и др.).

Белки выполняют следующие функции:

    ферментативную (например, фермент амилаза расщепляет углеводы);

    структурную (например, входят в состав мембран и др. органоидов клетки);

    рецепторную (например, белок родопсин способствует лучшему зрению);

    транспортную (например, гемоглобин переносит кислород или углекислый газ);

    защитную (например, белки иммуноглобулины участвуют в формировании иммунитета);

    двигательную (например, актин и миозин участвуют в сокращении мышечных волокон);

    гормональную (например, инсулин превращает глюкозу в гликоген);

    энергетическую (при расщеплении 1 г белка выделяется 4,2 ккал энергии).

Жиры (липиды) - соединения трёхатомного спирта глицерина и высокомолекулярных жирных кислот. Химическая формула жиров:

CH 2 -O-C(O)-R¹

CH 2 -O-C(O)-R³, где радикалы могут быть разными.

Функции липидов в клетке:

    структурная (принимают участие в построении клеточной мембраны);

    энергетическая (при распаде в организме 1 г жира выделяется 9,2 ккал энергии);

    защитная (сохраняют от потери тепла, механических повреждений);

    жир – источник эндогенной воды (при окислении 10 г жира выделяется 11 г воды);

    регуляция обмена веществ.

Углеводы – их молекулу можно представить общей формулой С n (Н 2 О) n – углерод и вода.

Углеводы делят на три группы: моносахариды (включают одну молекулу сахара - глюкоза, фруктоза и др.), олигосахариды (включают от 2 до 10 остатков моносахаридов: сахароза, лактоза) и полисахариды (высокомолекулярные соединения – гликоген, крахмал и др.).

Функции углеводов:

    служат исходными элементами для построения разнообразных органических веществ, например, при фотосинтезе - глюкоза;

    основной источник энергии для организма, при их разложении с использованием кислорода выделяется больше энергии, чем при окислении жира;

    защитная (например, слизь, выделяемая различными железами, содержит много углеводов; она предохраняет стенки полых органов (бронхи, желудок, кишечник) от механических повреждений; обладая антисептическими свойствами);

    структурная и опорная функции: входят в состав плазматической мембраны.

Нуклеиновые кислоты – это фосфорсодержащие биополимеры. К ним относятся дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) кислоты .

ДНК - самые крупные биополимеры, их мономером является нуклеотид . Он состоит из остатков трех веществ: азотистого основания, углевода дезоксирибозы и фосфорной кислоты. Известны 4 нуклеотида, участвующие в образовании молекулы ДНК. Два азотистых основания являются производными пиримидина – тимин и цитозин. Аденин и гуанин относят к производным пурина.

Согласно модели ДНК, предложенной Дж. Уотсоном и Ф. Криком (1953), молекула ДНК представляет собой две спирально обвивающие друг друга нити.

Две нити молекулы удерживаются вместе водородными связями, которые возникают между их комплементарными азотистыми основаниями. Аденин комплементарен тимину, а гуанин – цитозину. ДНК в клетках находится в ядре, где она вместе с белками образует хромосомы . ДНК имеется также в митохондриях и пластидах, где их молекулы располагаются в виде кольца. Основная функция ДНК – хранение наследственной информации, заключенной в последовательности нуклеотидов, образующих ее молекулу, и передача этой информации дочерним клеткам.

Рибонуклеиновая кислота одноцепочечная. Нуклеотид РНК состоит из одного из азотистых оснований (аденина, гуанина, цитозина или урацила), углевода рибозы и остатка фосфорной кислоты.

Различают несколько видов РНК.

Рибосомальная РНК (р-РНК) в соединении с белком входит в состав рибосом. На рибосомах осуществляется синтез белка. Информационная РНК (и-РНК) переносит информацию о синтезе белка из ядра в цитоплазму. Транспортная РНК (т-РНК) находится в цитоплазме; присоединяет к себе определенные аминокислоты и доставляет их к рибосомам – месту синтеза белка.

РНК находится в ядрышке, цитоплазме, рибосомах, митохондриях и пластидах. В природе есть еще один вид РНК – вирусная. У одних вирусов она выполняет функцию хранения и передачи наследственной информации. У других вирусов данную функцию выполняет вирусная ДНК.

Аденозинтрифосфорная кислота (АТФ) - является особым нуклеотидом, образованным азотистым основанием аденином, углеводом рибозой и тремя остатками фосфорной кислоты.

АТФ – универсальный источник энергии, необходимой для биологических процессов, протекающих в клетке. Молекула АТФ очень неустойчива и способна отщеплять одну или две молекулы фосфата с выделением большого количества энергии. Эта энергия расходуется на обеспечение всех жизненных функций клетки – биосинтеза, движения, генерации электрического импульса и др. Связи в молекуле АТФ называются макроэргическими. Отщепление фосфата от молекулы АТФ сопровождается выделением 40 кДж энергии. Синтез АТФ происходит в митохондриях.

Урок № 2.

Тема урока : Неорганические вещества клетки.

Цель урока: углубить знания о неорганических веществах клетки.

Задачи урока:

Образовательные : Рассмотреть особенности строения молекул воды в связи с ее важнейшей ролью в жизнедеятельности клетки, раскрыть роль воды и минеральных солей в жизни живых организмов;

Развивающие : Продолжить развитие логического мышления учащихся, продолжить формирование умений работать с различными источниками информации;

Воспитательные : Продолжить формирование научного мировоззрения, воспитание биологически грамотной личности; становление и развитие нравственных и мировоззренческих устоев личности; продолжить формирование экологического сознания, воспитание любви к природе;

Оборудование : мультимедийное приложение к учебнику, проектор, компьютер, карточки с заданиями, схема "Элементы. Вещества клетки". Пробирки, химический стакан, лед, спиртовка, поваренную соль, этиловый спирт, сахарозу, растительное масло.

Основные понятия : диполь, гидрофильность, гидрофобность, катионы, анионы.

Тип урока : комбинированный

Методы обучения : репродуктивные, частично-поисковые, экспериментальные.

Обучающиеся должны:

Знать основные химические элементы и соединения входящие в состав клетки;

Уметь объяснять значение неорганических веществ в процессах жизнедеятельности.

Структура урока

1.Организационный момент

Приветствие, подготовка к работе.

В начале и в конце урока проводится психологическая разминка. Ее цель–определить эмоциональное состояние учащихся. Каждому учащемуся выдаётся табличка с шестью лицами – шкала для определения эмоционального состояния (рис. 1). Каждый ученик ставит галочку под той рожицей, чье выражение отражает его настроение.

2. Проверка знаний учащихся

Тест «Химический состав клетки» (Приложение)

3. Целеполагание и мотивация

«Вода! Ты не имеешь ни вкуса, ни цвета, ни запаха, тебя невозможно описать. Тобой наслаждается человек, не понимая, что ты есть на самом деле. Нельзя сказать, что ты необходима для жизни, ты - сама жизнь. Ты везде и всюду даешь ощущение блаженства, которое нельзя понять ни одним из наших органов чувств. Ты возвращаешь нам силу. Твое милосердие заставляет ожить высохшие источники нашего сердца. Ты - самое большое богатство в мире. Ты богатство, которое легко можно спугнуть, но ты даешь нам такое простое и драгоценное счастье», - этот восторженный гимн воде написал французский писатель и летчик Антуан де Сент-Экзюпери, которому пришлось испытать на себе муки жажды в раскаленной пустыне.

Этими замечательными словами мы начинаем урок, целью которого является расширить представление о воде - веществе, которое создало нашу планету.

  1. Актуализация

Каково значение воды в жизни человека?

(Ответы учащихся о значение воды в жизни человека0

  1. Изложение нового материала.

Вода - самое распространенное в живых организмах неорганическое вещество, обязательный ее компонент, среда обитания для многих организмов, главный растворитель клетки.

Строки стихотворения М.Дудника:

Говорят, что из восьмидесяти процентов воды состоит человек,

Из воды, добавлю, родных его рек,

Из воды, добавлю, дождей, что его напоили,

Из воды, добавлю, из древней воды родников,

Из которых деды и прадеды пили.

Примеры содержания воды в различных клетках организма:

В молодом организме человека или животного – 80% от массы клетки;

В клетках старого организма – 60%

В головном мозге – 85%;

В клетках эмали зубов – 10-15%.

При потере 20% воды у человека наступает смерть.

Рассмотрим строение молекулы воды:

Н2О – молекулярная формула,

Н–О–Н – структурная формула,

Молекула воды имеет угловое строение: представляет собой равнобедренный треугольник с углом при вершине 104,5°.

Молекулярная масса воды в парообразном состоянии равна 18 г/моль. Однако молекулярная масса жидкой воды оказывается более высокой. Это свидетельствует о том, что в жидкой воде происходит ассоциация молекул, вызванная водородными связями.

Какова же роль воды в клетке?

Из-за высокой полярности молекул вода является растворителем других полярных соединений, не имея себе равных. В воде растворяется больше веществ, чем в любой другой жидкости. Именно поэтому в водной среде клетки осуществляется множество химических реакций. Вода растворяет продукты обмена веществ и выводит их из клетки и организма в целом.

Вода обладает большой теплоемкостью, т.е. способностью поглощать теплоту. При минимальном изменении ее собственной температуры выделяется или поглощается значительное количество теплоты. Благодаря этому она предохраняет клетку от резких изменений температуры. Поскольку на испарение воды расходуется много теплоты, то, испаряя воду, организмы могут защищать себя от перегрева (например, при потоотделении).

Вода обладает высокой теплопроводностью. Такое свойство создает возможность равномерно распределять теплоту между тканями тела.

Вода является одним из основных веществ природы, без которого невозможно развитие органического мира растений, животных, человека. Там, где она есть, – есть жизнь.

Демонстрация опытов. Составление таблицы вместе с учащимися.

а) Растворить в воде следующие вещества: поваренную соль, этиловый спирт, сахарозу, растительное масло.

Почему одни вещества в воде растворяются, а другие – нет?

Даётся понятие гидрофильных и гидрофобных веществ.

Гидрофильные вещества - хорошо растворимые в воде вещества.

Гидрофобные вещества - плохо растворимые в воде вещества.

Б) Опустить кусочек льда в стакан с водой.

Что вы можете сказать о плотности воды и льда?

С помощью учебника в группах нужно заполнить таблицу "Минеральные соли". По окончании работы идет обсуждение занесенных в таблицу данных.

Буферность - способность клетки поддерживать относительное постоянство слабощелочной среды.

  1. Закрепление изученного материала.

Решение биологических задач в группах.

Задача 1.

При некоторых заболеваниях в кровь вводят 0,85-процентный раствор поваренной соли, называемый физиологическим раствором. Вычислите: а) сколько граммов воды и соли нужно взять для получения 5 кг физиологического раствора; б) сколько граммов соли вводится в организм при вливании 400 г физиологического раствора.

Задача 2.

В медицинской практике для промывания ран и полоскания горла применяется 0,5-процентный раствор перманганата калия. Какой объем насыщенного раствора (содержащего 6,4 г этой соли в 100 г воды) и чистой воды необходимо взять для приготовления 1 л 0,5-процентного раствора (ρ = 1 г/см 3 ).

Задание.

Написать синквейн тема: вода

  1. Домашнее задание: п. 2.3

Найти в литературных произведениях примеры описания свойств и качеств воды, ее биологического значения.

Схема "Элементы. Вещества клетки"

Опорный конспект к уроку




Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!