Информационный женский портал

Лазеры в хирургии, включая эндоскопию, лапароскопию и торакоскопию. Клиническое использование лазеров в детской хирургии. Медицинская фирма "Лазеротерапия. ЛиК" Применение лазера в хирургии

Уникальные свойства лазерного излучения сделали лазеры незаменимыми в самых разных областях науки, в том числе и медицине. Лазеры в медицине открыли новые возможности в лечении многих заболеваний. Лазерную медицину можно условно разделить на основные разделы: лазерная диагностика, лазерная терапия и лазерная хирургия.

История пришествия лазеров в медицину — какие свойства лазера послужили причиной развития лазерной хирургии

Исследования в использовании лазеров в медицине начались в шестидесятых годах прошлого века. Тогда же и появились первые лазерные медицинские аппараты: устройства для облучения крови. Первые работы по применению лазеров в хирургии в СССР были проведены в 1965 году в МНИОИ им. Герцена совместно с НПП «Исток».

В лазерной хирургии используются достаточно мощные лазеры, способные сильно нагревать биологическую ткань, что приводит к ее испарению или разрезанию. Применение лазеров в медицине позволило выполнять ранее сложные или вовсе невозможные операции эффективно и с минимальной инвазивностью.

Особенности взаимодействия лазерного скальпеля с биологическими тканями:

  1. Отсутствие прямого контакта инструмента с тканью, минимальная опасность инфицирования.
  2. Коагулирующее действие излучения позволяет получить практически бескровные разрезы, останавливать кровотечение из кровоточащих ран.
  3. Стерилизующее действие излучения является профилактическим средством инфицирования операционного поля и развития послеоперационных осложнений.
  4. Возможность управления параметрами лазерного излучения позволяет получать необходимые эффекты при взаимодействии излучения с биологическими тканями.
  5. Минимальное воздействие на близлежащие ткани.

Применение лазера в хирургии дает возможность эффективно выполнять самые разнообразные оперативные вмешательства в стоматологии, урологии, оториноларингологии, гинекологии, нейрохирургии и т.д.

Плюсы и минусы применения лазеров в современной хирургии

Основные преимущества лазерной хирургии:

  • Значительное сокращение времени проведения операции.
  • Отсутствие непосредственного контакта инструмента с тканями и, как следствие, минимальное повреждение тканей в области проведения операции.
  • Сокращение послеоперационного периода.
  • Отсутствие кровотечения или минимальная кровоточивость при операции.
  • Уменьшение риска образования послеоперационных шрамов и рубцов.
  • Стерилизующее действие лазерного излучения позволяет соблюдать правила асептики.
  • Минимальный риск развития осложнений в ходе операции и в послеоперационный период.

Недостатки лазерных технологий в хирургии:

  • Незначительное число медицинских работников прошли специальную подготовку для работы с лазерами.
  • Приобретение лазерного оборудования требует значительных материальных затрат и увеличивает стоимость лечения.
  • Использование лазеров представляет определенную опасность для медицинских работников, поэтому они должны строго выполнять все меры предосторожности при работе с лазерным оборудованием.
  • Эффект от применения лазеров в некоторых клинических случаях может быть временным, и в дальнейшем может потребоваться проведение повторной операции.

Что может лазерная хирургия сегодня – все аспекты применения лазера в хирургии

В настоящее время лечение лазерами используется во всех разделах медицины. Наиболее широкое применение лазерные технологии нашли в офтальмологии, стоматологии, общей, сосудистой и пластической хирургии, урологии, гинекологии.

Лазеры в стоматологической хирургии применяются при проведении следующих операций: френэктомии, гингивэктомии, удалении капюшонов при перикоронарите, выполнении разрезов при установке имплантатов и других. Применение лазерных технологий в стоматологии позволяет уменьшить количество используемых анестетиков, избежать послеоперационных отеков и осложнений, ускорить время заживления послеоперационных ран.

Появление лазера кардинально изменило развитие офтальмологии. При помощи лазерного можно делать сверхточные разрезы вплоть до микрона, что не способна сделать рука даже очень опытного хирурга. В настоящее время при помощи лазера можно , глаукому, заболевания сетчатки глаза, проводить кератопластику и многие другие.

Лазерные технологии позволяют успешно устранять различные сосудистые патологии: венозные и артерио-венозные дисплазии, лимфангиомы, кавернозные гемангиомы и другие. Благодаря лазерам, лечение сосудистых заболеваний стало практически безболезненным с минимальным риском развития осложнений и хорошим косметическим эффектом.

Лазерный скальпель используется при проведении большого количества операций :

  • В брюшной полости (аппендэктомия, холецистэктомия, иссечение спаек, грыжесечение, резекция паренхиматозных органов и мн.др.).
  • На трахеобронхиальном дереве (удаление трахеальных и бронхиальных свищей, реканализация обтюрирующих опухолей бронхов и трахеи).
  • В оториноларингологии (исправление носовой перегородки, аденэктомия, удаление рубцовых стенозов наружного слухового прохода, тимпанотомия, удаление полипов и др.).
  • В урологии (удаление карцином, полипов, атеромы кожи мошонки).
  • В гинекологии (удаление кист, полипов, опухолей).

Применяются лазеры и в . Практически все клиники, занимающиеся проведением таких операций, имеют в своем арсенале лазерную аппаратуру. Проведение разрезов с помощью лазерного скальпеля позволяет избежать отеков, синяков, уменьшить риск инфицирования и развития осложнений.

Сложно назвать область медицины, где свойства лазерного излучения не нашли эффективного применения. Продолжающееся совершенствование лазерных технологий, обучение все большего количества медицинских работников работе с лазерами, возможно, приведут в ближайшее время к преобладанию лазерной хирургии над традиционными методами оперативного вмешательства.

Оперативная хирургия: конспект лекций И. Б. Гетьман

5. Лазеры в хирургии

5. Лазеры в хирургии

Механизм действия лазерного скальпеля основан на том, что энергия монохроматичного, когерентного светового пучка резко повышает температуру на соответствующем ограниченном участке тела и приводит к его мгновенному сгоранию и испарению. Тепловое воздействие на окружающие ткани при этом распространяется на очень небольшое расстояние, так как ширина сфокусированного пучка составляет 0,01 мм. Под влиянием лазерного излучения также происходит «взрывное» разрушение ткани от воздействия своеобразной ударной волны, образующейся при мгновенном переходе тканевой жидкости в газообразное состояние. Особенности биологического действия лазерного излучения зависят от ряда его характеристик: длины волны, длительности импульсов, структуры ткани, физических свойств ткани. Рассмотрим характеристики основных применяемых в хирургии лазеров.

Лазер с длиной волны 1064 нм. Излучение проникает относительно глубоко, до 5–7 мм. При температуре свыше 43 °C белковые молекулы необратимо повреждаются (денатурируют), ткань погибает, подвергаясь термической коагуляции; при температуре выше 100 °C начинается испарение воды; при температуре свыше 300 °C происходит горение с выделением продуктов сгорания и осаждением их на поверхности кратера.

Разрушение ткани путем формирования в ходе лазерной операции кратера, отверстия или разреза называется абляцией, а условия, при которых она происходит, – абляционным режимом работы лазера. При низкой мощности излучения и кратковременной экспозиции нагревание ткани относительно невелико и происходит лишь ее коагуляция или плавление (субабляционный режим).

Лазер с длиной волны от 3 до 10 нм действует на мягкие ткани схожим образом. Эти лазеры, как правило, работают в импульсном режиме. Они наиболее часто применяются при выполнении косметических операций на коже.

Эксимерные лазеры с длиной волны 300 нм обладают наибольшей, по сравнению с другими группами лазеров, мощностью. Энергия интенсивно поглощается не водными компонентами мягких и твердых тканей, включая белки ДНК. Зона термических поражений при его воздействии составляет несколько микрометров. Гемостатический эффект выражен слабо.

Интересными свойствами обладает лазер на парах меди с длинами волн 578 и 585 мкм. Кожные покровы для него «прозрачны», субстанцией, воспринимающей излучение, являются меланин и гемоглобин, что предоставляет уникальные возможности в лечении гемангиом и т. п. с отличными косметическими результатами.

Благодаря высоким коагулирующим и гемостатическим свойствам лазер нашел широкое применение в оперативной эндоскопии. Использование лазерного скальпеля удобно при вскрытии просвета полых органов живота, резекции кишки, формировании межкишечного или желудочно-кишечного анастомоза, при этом наиболее ответственный момент операции выполняется на «сухом» поле.

У онкологических больных уменьшается опасность распространения клеток злокачественной опухоли за пределы операционного поля вследствие коагулирующего и абластического действия лазерного луча. Заживление лазерных ран сопровождается минимальной воспалительной реакцией, что резко улучшает косметические результаты.

Из книги Избранное автора Абу Али ибн Сина

Хирургическая практика три раздела хирургии Таков леченья общего порядок. Скажу о хирургии. Буду краток. Средь операций, – первыми назвал их,- Есть на сосудах и больших, и малых. Второе – что мы делаем на тканях, И третье – на костях, при их

автора Е. В. Бачило

39. Развитие хирургии в России В конце XIX в. начала широко развиваться полостная хирургия, было произведено большое количество операций на брюшной полости. Например: гастроэнтерос-томия (Г. Матвеев, Т. Бильрот), пилоротомия (Ж. Пеан), иссечение слепой кишки (Т. Бильрот),

Из книги Оперативная хирургия автора И. Б. Гетьман

52. Понятие эндоскопической хирургии Эндоскопическая хирургия – область хирургии, позволяющая выполнять радикальные операции или диагностические процедуры через точечные проколы тканей, либо через естественные физиологические отверстия. Идея выполнения визуального

Из книги Оперативная хирургия: конспект лекций автора И. Б. Гетьман

5. Лазеры в хирургии Механизм действия лазерного скальпеля основан на том, что энергия монохроматичного, когерентного светового пучка резко повышает температуру на соответствующем ограниченном участке тела и приводит к его мгновенному сгоранию и испарению. Тепловое

Из книги Здоровье человека. Философия, физиология, профилактика автора Галина Сергеевна Шаталова

Противостояние: природа против… хирургии Не был исключением и организатор военного строительства, которого мне довелось лечить незадолго до описанного выше случая. Его состояние было еще более тревожным: он перенес три инфаркта и с угрозой четвертого лежал в

Из книги Новейшие победы медицины автора Гуго Глязер

Успехи мозговой хирургии Человечеству много тысяч лет назад была известна операция трепанации черепа. При раскопках древнейших могил и захоронений в глубоких пластах земли находили и теперь находят черепа с хорошо зажившими трепанационными отверстиями. Древние и

Из книги Сестринское дело: справочник автора Алла Константиновна Мышкина

Глава 2 Сестринское дело в хирургии Понятие о хирургических операцияхЛюбое оперативное вмешательство состоит из трех периодов: предоперационного, операционного и послеоперационного.Предоперационный периодК этому периоду относится время от момента поступления

Из книги 36 и 6 правил женского здоровья автора Борис Вилорович Мостовский

Правило № 30 Чудо пластической хирургии Реконструктивная хирургия позволяет исправить практически любой дефект, дать человеку «новое лицо». Однако это сложно и травматично. Если твоя внешность - необходимый/неотъемлемый инструмент карьерного роста, то тебе необходим

Из книги Закодируй себя на стройность автора Михаил Борисович Ингерлейб

Побочные эффекты хирургии

Из книги История медицины автора Павел Ефимович Заблудовский

Проблемы хирургии Советская хирургия добилась значительных успехов в разрешении проблем хирургии сердца и сосудов, хирургии органов дыхания, пищевода, желудка, нефрохирургии, трансплантологии. Для развития научных проблем в хирургии за годы Советской власти создана

Из книги Избранные лекции по факультетской хирургии: учебное пособие автора Коллектив авторов

Избранные лекции по факультетской хирургии Авторы: Доктора медицинских наук, профессора: Коханенко Н. Ю., Кабанов М. Ю., Ульянов Ю. Н., Павелец К. В.; кандидаты мед. наук, доц.: Ананьев Н. В., Латария Э. Д., Иванов А. Л., Луговой А. Л., Ширяев Ю. Н.; кандидаты мед. наук: Моргошия Т. Ш.,

Из книги Победа разума над медициной. Революционная методика оздоровления без лекарств автора Лисса Рэнкин

Целебная сила имитации хирургии Вскоре после услышанной истории мне на глаза попалась статья в журнале New England Journal of Medicine, в которой говорилось об известном хирурге-ортопеде докторе Брюсе Мосли, знаменитом своими операциями на колене с инвалидизирующей болью. Чтобы

Из книги Медики, изменившие мир автора Кирилл Сухомлинов

Из книги Философия здоровья автора Коллектив авторов -- Медицина

Из книги Лазерная коррекция зрения автора Амир Ринатович Габбасов

Из книги автора

Глава 5 Новинки рефракционной хирургии

За последние полвека лазеры нашли применение в офтальмологии, онкологии, пластической хирургии и многих других областях медицины и медико-биологических исследованиях.

О возможности использования света для лечения болезней было известно тысячи лет назад. Древние греки и египтяне применяли солнечное излучение в терапии, и эти две идеи даже были связаны друг с другом в мифологии - греческий бог Аполлон был богом солнца и исцеления.

И только после изобретения источника когерентного излучения более 50 лет назад действительно был выявлен потенциал использования света в медицине.

Благодаря особым свойствам, лазеры гораздо эффективнее, чем радиация солнца или других источников. Каждый квантовый генератор работает в очень узком диапазоне длин волн и излучает когерентный свет. Также лазеры в медицине позволяют создавать большие мощности. Пучок энергии может быть сосредоточен в очень маленькой точке, благодаря чему достигается ее высокая плотность. Эти свойства привели к тому, что сегодня лазеры используются во многих областях медицинской диагностики, терапии и хирургии.

Лечение кожи и глаз

Применение лазеров в медицине началось с офтальмологии и дерматологии. Квантовый генератор был открыт в 1960 году. И уже через год после этого Леон Голдман продемонстрировал, как рубиновый красный лазер в медицине может быть использован для удаления капиллярной дисплазии, разновидности родимых пятен, и меланомы.

Такое применение основано на способности источников когерентного излучения работать на определенной длине волны. Источники когерентного излучения в настоящее время широко используются для удаления опухолей, татуировок, волос и родинок.

В дерматологии применяются лазеры различных типов и длин волн, что обусловлено разными видами излечиваемых поражений и основного поглощающего вещества внутри них. также зависит от типа кожи пациента.

Сегодня нельзя практиковать дерматологию или офтальмологию, не имея лазеров, так как они стали основными инструментами лечения пациентов. Применение квантовых генераторов для коррекции зрения и широкого спектра офтальмологических приложений выросло после того, как Чарльз Кэмпбелл в 1961 году стал первым врачом, использовавшим красный лазер в медицине для исцеления пациента с отслоением сетчатки.

Позже для этой цели офтальмологи стали применять аргоновые источники когерентного излучения в зеленой части спектра. Здесь были задействованы свойства самого глаза, особенно его линзы, фокусировать луч в области отслоения сетчатки. Высококонцентрированная мощность аппарата ее буквально приваривает.

Больным с некоторыми формами макулодистрофии может помочь лазерная хирургия - лазерная коагуляция и фотодинамическая терапия. В первой процедуре луч когерентного излучения используется для герметизации кровеносных сосудов и замедления их патологического роста под макулой.

Подобные исследования были проведены в 1940 годах с солнечным светом, но для их успешного завершения врачам были необходимы уникальные свойства квантовых генераторов. Следующим применением аргонового лазера стала остановка внутренних кровотечений. Селективное поглощение зеленого света гемоглобином - пигментом красных кровяных клеток - использовалось для блокирования кровоточащих кровеносных сосудов. Для лечения рака разрушают кровеносные сосуды, входящих в опухоль и снабжающие ее питательными веществами.

Этого невозможно добиться, используя солнечный свет. Медицина очень консервативна, как это и должно быть, но источники когерентного излучения получили признание в разных ее областях. Лазеры в медицине заменили многие традиционные инструменты.

Офтальмология и дерматология также извлекли выгоду из эксимерных источников когерентного излучения в ультрафиолетовом диапазоне. Они стали широко использоваться для изменения формы роговицы (LASIK) для коррекции зрения. Лазеры в эстетической медицине применяются для удаления пятен и морщин.

Прибыльная косметическая хирургия

Такие технологические разработки неизбежно популярны среди коммерческих инвесторов, так как обладают огромным потенциалом получения прибыли. Аналитическая компания Medtech Insight в 2011 г. оценила объем рынка лазерного косметического оборудования на сумму более 1 млрд долларов США. Действительно, несмотря на снижение общего спроса на медицинские системы во время глобального спада, косметические операции, основанные на использовании квантовых генераторов, продолжают пользоваться постоянным спросом в Соединенных Штатах - доминирующем рынке лазерных систем.

Визуализация и диагностика

Лазеры в медицине играют важную роль в раннем выявлении рака, а также многих других заболеваний. Например, в Тель-Авиве группа ученых заинтересовалась ИК-спектроскопией с использованием инфракрасных источников когерентного излучения. Причиной этого является то, что рак и здоровая ткань могут иметь различную проходимость в инфракрасном диапазоне. Одним из перспективных применений этого метода является выявление меланом. При раке кожи ранняя диагностика очень важна для выживаемости пациентов. В настоящее время обнаружение меланомы делается на глаз, поэтому остается полагаться на мастерство врача.

В Израиле раз в год каждый человек может пойти на бесплатный скрининг меланомы. Несколько лет назад в одном из крупных медицинских центров проводились исследования, в результате которых появилась возможность наглядно наблюдать разницу в ИК-диапазоне разницу между потенциальными, но неопасными признаками, и настоящей меланомой.

Кацир, организатор первой конференции SPIE по биомедицинской оптике в 1984 году, и его группа в Тель-Авиве также разработали оптические волокна, прозрачные для инфракрасных длин волн, что позволило распространить этот метод на внутреннюю диагностику. Кроме того, это может стать быстрой и безболезненной альтернативой цервикальному мазку в гинекологии.

Голубой в медицине нашел применение в флюоресцентной диагностике.

Системы на основе квантовых генераторов также начинают заменять рентген, который традиционно использовался в маммографии. Рентгеновские лучи ставят врачей перед сложной дилеммой: для достоверного обнаружения раковых образований необходима их высокая интенсивность, но рост радиации сам по себе увеличивает риск заболевания раком. В качестве альтернативы изучается возможность использования очень быстрых лазерных импульсов для снимка груди и других частей тела, например, мозга.

ОКТ для глаз и не только

Лазеры в биологии и медицине нашли применение в оптической когерентной томографии (ОКТ), что вызвало волну энтузиазма. Этот метод визуализации использует свойства квантового генератора и может дать очень четкие (порядка микрона), поперечные и трехмерные изображения биологической ткани в режиме реального времени. ОКТ уже применяется в офтальмологии, и может, например, позволить офтальмологу увидеть поперечное сечение роговицы для диагностики заболеваний сетчатки и глаукомы. Сегодня техника начинает использоваться также и в других областях медицины.

Одна из крупнейших областей, формирующихся благодаря ОКТ, занимается получением волоконно-оптических изображений артерий. может быть применена для оценки состояния склонной к разрыву нестабильной бляшки.

Микроскопия живых организмов

Лазеры в науке, технике, медицине также играют ключевую роль во многих видах микроскопии. В этой области было сделано большое число разработок, целью которых является визуализация того, что происходит внутри тела пациента без использования скальпеля.

Самым сложным в удалении рака является необходимость постоянно прибегать к услугам микроскопа, чтобы хирург мог убедиться, что все сделано правильно. Возможность делать микроскопию «вживую» и в реальном времени является значительным достижением.

Новое применение лазеров в технике и медицине - сканирование в ближней зоне оптической микроскопии, которая может производить изображения с разрешением гораздо большим, чем у стандартных микроскопов. Этот метод основан на оптических волокнах с насечками на торцах, размеры которых меньше длины волны света. Это позволило субволновую визуализацию и заложило основу для получения изображения биологических клеток. Использование данной технологии в ИК-лазерах позволит лучше понять болезнь Альцгеймера, рак и другие изменения в клетках.

ФДТ и другие методы лечения

Разработки в области оптических волокон помогают расширить возможности применения лазеров и в других сферах. Кроме того, что они позволяют проводить диагностику внутри организма, энергия когерентного излучения может быть передана туда, где в этом есть необходимость. Это может быть использовано в лечении. Волоконные лазеры становятся гораздо более продвинутыми. Они кардинально изменят медицину будущего.

Область фотомедицины, использующая светочувствительные химические вещества, которые взаимодействуют с телом особым образом, может прибегнуть к помощи квантовых генераторов как для диагностики, так и для лечения пациентов. В фотодинамической терапии (ФДТ), например, лазер и фоточувствительное лекарственное средство может восстановить зрение у больных с «влажной» формой возрастной макулярной дегенерации, основной причиной слепоты у людей в возрасте старше 50 лет.

В онкологии некоторые порфирины накапливаются в раковых клетках и флуоресцируют при освещении определенной длиной волны, указывая на место расположения опухоли. Если эти же самые соединения затем осветить другой длиной волны, они становятся токсичными и убивают поврежденные клетки.

Красный газовый гелий-неоновый лазер в медицине применяется в лечении остеопороза, псориаза, трофических язв и др., так как данная частота хорошо поглощается гемоглобином и ферментами. Излучение замедляет воспалительные процессы, предотвращает гиперемию и отеки, улучшает кровоснабжение.

Персонализированное лечение

Еще две области, в которых найдется применение для лазеров - генетика и эпигенетика.

В будущем все будет происходить на наноуровне, что позволит заниматься медициной в масштабах клетки. Лазеры, которые могут генерировать фемтосекундные импульсы и настраиваться на определенную длину волны, являются идеальными партнерами для медиков.

Это откроет дверь для персонализированного лечения, основанного на индивидуальном геноме пациента.

Леон Голдман - родоначальник лазерной медицины

Говоря об использовании квантовых генераторов в лечении людей, нельзя не упомянуть Леона Голдмана. Он известен как «отец» лазерной медицины.

Уже через год после изобретения источника когерентного излучения Голдман стал первым исследователем, применившим его для лечения заболевания кожи. Техника, которую применил ученый, проложила путь последующему развитию лазерной дерматологии.

Его исследования в середине 1960 годов привели к использованию рубинового квантового генератора в хирургии сетчатки глаза и к таким открытиям, как возможность когерентного излучения одновременно разрезать кожу и запечатывать кровеносные сосуды, ограничивая кровотечение.

Голдман, работавший на протяжении большей части своей карьеры дерматологом в университете Цинциннати, основал Американское общество лазеров в медицине и хирургии и помог заложить основы безопасности лазеров. Умер в 1997 г.

Миниатюризация

Первые 2-микронные квантовые генераторы были размером с двуспальную кровать и охлаждались жидким азотом. Сегодня появились диодные, умещающиеся в ладони, и еще более миниатюрные Такого рода изменения прокладывают путь для новых сфер применения и разработок. Медицина будущего будет располагать крошечными лазерами для хирургии головного мозга.

Благодаря технологическому прогрессу происходит постоянное снижение затрат. Подобно тому как лазеры стали привычными в бытовой технике, они начали играть ключевую роль в больничном оборудовании.

Если раньше лазеры в медицине были очень большими и сложными, то сегодняшнее их производство из оптического волокна значительно снизило стоимость, а переход на наноуровень позволит еще больше сократить затраты.

Другие применения

С помощью лазеров урологи могут лечить стриктуру уретры, доброкачественные бородавки, мочевые камни, контрактуру мочевого пузыря и увеличение простаты.

Использование лазера в медицине позволило нейрохирургам делать точные разрезы и производить эндоскопический контроль головного и спинного мозга.

Ветеринары применяют лазеры для эндоскопических процедур, коагуляции опухолей, выполнения разрезов и фотодинамической терапии.

Стоматологи используют когерентное излучение для проделывания отверстий, в хирургии десен, для проведения антибактериальных процедур, зубной десенсибилизации и рото-лицевой диагностики.

Лазерный пинцет

Биомедицинские исследователи во всем мире применяют оптические пинцеты, клеточные сортировщики, а также множество других инструментов. Лазерные пинцеты обещают лучшую и более быструю диагностику рака и использовались для захвата вирусов, бактерий, мелких металлических частиц и нитей ДНК.

В оптическом пинцете пучок когерентного излучения применяется для удержания и вращения микроскопических объектов, аналогично тому, как металлический или пластиковый пинцет способен подобрать маленькие и хрупкие предметы. Отдельными молекулами можно манипулировать, прикрепляя их к стеклышкам микронного размера или шарикам из полистирола. Когда луч попадает в шарик, он искривляется и оказывает небольшое воздействие, подталкивая шарик прямо в центр луча.

Это создает «оптическую ловушку», которая способна удерживать небольшую частицу в пучке света.

Лазер в медицине: плюсы и минусы

Энергия когерентного излучения, интенсивность которой можно модулировать, используется для рассечения, уничтожения или изменения клеточной или внеклеточной структуры биологических тканей. Кроме того, применение лазеров в медицине, кратко говоря, уменьшает риск инфицирования и стимулирует заживление. Применение квантовых генераторов в хирургии увеличивает точность рассечения, однако, они представляют опасность для беременных и есть противопоказания по употреблению фотосенсибилизирующих лекарств.

Сложная структура тканей не позволяет сделать однозначную интерпретацию результатов классических биологических анализов. Лазеры в медицине (фото) являются эффективным инструментом для уничтожения раковых клеток. Однако мощные источники когерентного излучения действуют без разбора и разрушают не только пораженные, но и окружающие ткани. Это свойство - важный инструмент метода микродиссекции, используемый для проведения молекулярного анализа в интересующем месте с возможностью выборочного разрушения лишних клеток. Цель данной технологии заключается в преодолении гетерогенности, присутствующей во всех биологических тканях, для облегчения их исследования по четко определенной популяции. В этом смысле, лазерная микродиссекция внесла значительный вклад в развитие исследований, в понимание физиологических механизмов, которые сегодня можно четко продемонстрировать на уровне популяции и даже одной клетки.

Функционал тканевой инженерии сегодня стал основным фактором в развитии биологии. Что произойдет, если разрезать актиновые волокна во время деления? Будет ли эмбрион дрозофилы стабильным, если разрушить клетку при фолдинге? Каковы параметры, участвующие в меристемной зоне растения? Все эти вопросы можно решить с помощью лазеров.

Наномедицина

В последнее время появилось множество наноструктур, обладающих свойствами, пригодными для целого ряда биологических применений. Важнейшими из них являются:

  • квантовые точки - крошечные светоизлучающие частицы нанометровых размеров, используемые в высокочувствительной клеточной визуализации;
  • магнитные наночастицы, которые нашли применение в медицинской практике;
  • полимерные частицы для инкапсулированных терапевтических молекул;
  • металлические наночастицы.

Развитие нанотехнологий и применение лазеров в медицине, кратко говоря, революционизировало способ введения лекарственных средств. Суспензии из наночастиц, содержащие лекарственные препараты, могут повысить терапевтический индекс многих соединений (увеличить растворимость и эффективность, снизить токсичность) путем селективного воздействия на пораженные ткани и клетки. Они доставляют действующее вещество, а также регулируют высвобождение активного ингредиента в ответ на внешнюю стимуляцию. Нанотераностика является дальнейшим экспериментальным подходом, обеспечивающим двойное использование наночастиц, соединения лекарственное средство, терапию и средства диагностической обработки изображений, что открывает путь к персонализированному лечению.

Применение лазеров в медицине и биологии для микродиссекции и фотоаблации позволило на разных уровнях понять физиологические механизмы развития болезни. Результаты помогут определить лучшие методы диагностики и лечения каждого пациента. Развитие нанотехнологий в тесной связи с достижениями в области визуализации также будут незаменимы. Наномедицина является перспективной новой формой лечения некоторых видов рака, инфекционных заболеваний или диагностики.

Для коагуляции или некроза обширных участков ткани используют лазеры, излучение которых слабо поглощается (м мало). При этом из-за рассеяния возможно действие на участки, расположенные вне действия пучка.

Для резания и испарения должен использоваться лазер, излучение которого сильно поглощается (м велико).

Применяемые лазеры:

газовый СО2-лазер;

твердотельный YAG:Nd-лазер (в том числе высшие гармоники основной длины волны излучения);

ионные лазеры (аргоновый, криптоновый); жидкостные лазеры; эрбиевый лазер; лазер на парах меди;

эксимерные лазеры.

Для неодимового, аргонового и жидкостных лазеров разработаны оптоволоконные светопроводы для локального воздействия в труднодоступных участках. Для СО2-лазера и эрбиевого лазера световолокна еще не разработаны.

Лазер на углекислом газе (СО2-лазер, л0 = 10600 нм). Ткани, со-стоящие на 80 % из воды сильно поглощают излучение СО2-лазера, поэтому СО2-лазер применяется исключительно как скальпель для резания и иссечения тканей. Режущее действие основано на взрывном испарении внутри и внеклеточной воды в области фокусировки. После испарения воды температура растет выше 100 °С, что приводит к обугливанию и испарению. Некротическое уширение реза имеет толщину 30…40 мкм. На расстоянии 300…600 мкм ткань не повреждается. Сосуды диаметром 0,5…1 мм спонтанно закрываются. Кровопотери очень малы, особенно это заметно при операциях на печени, легких, сердце. При рассечении стенок желудка кровотечение отсутствует. Легко иссекаются ожоги и удаляются некротические ткани. В гнойной хирургии лазер незаменим, поскольку полностью очищает рану от инфекции (обычным путем не удается). Удаление струпа при гнойно-воспалительных заболеваниях и ожогах идет методом иссечения (испарения). При этом скорость обработки СО2-лазером мощностью 60 Вт сравнима со скоростью обработки обычным скальпелем.

Основные преимущества:

стерильность и локальность действия; спонтанная коагуляция разрезанных тканей и сосудов (уменьшение

во много раз потери крови); отсутствие раздражения при операциях на мозге и сердце;

возможность разрезания мягких тканей без фиксирования; минимальная травматизация тканей.

Недостатки:

более низкая скорость резания по сравнению с обычным скальпелем; глубина реза плохо контролируется.

Поэтому СО2-лазер в основном применяется в случаях:

оперативного вмешательства при кровотечениях и плохой свертываемости крови;

хирургии и микрохирургии в полости тела и на внутренних органах.

В микрохирургии луч СО2-лазера наводится в поле зрения операционного микроскопа. Для этого используется «пилотный» луч. Для общей хирургии мощность СО2-лазера составляет 50…100 Вт, для микрохирургии 10…20 Вт.

YAG:Nd-лазер (л0 = 1064 нм). Под действием интенсивного излучения неодимового лазера образуется достаточно глубокий коагуляционный очаг. Режущее действие по сравнению с СО2-лазером незначительно. Поэтому неодимовый лазер применяется преимущественно для коагуляции кровотечения и для некротирования патологически измененных областей ткани (опухолей) почти во всех областях хирургии. Применение моножильного кварцполимерного волокна для передачи пучка дает большие возможности для хирургии в полостях тела.

Наиболее важные области применения Nd-лазера.

Эндоскопическая фотокоагуляция желудочно-кишечных кровотечений. Для остановки острого кровотечения в верхнем желудочно-кишечном тракте можно использовать аргоновый лазер, но глубина проникновения излучения неодимового лазера в 4-5 раз больше. С помощью Nd-лазера лучше закрываются крупные сосуды и останавливаются большие кровотечения (например, при варикозном расширении вен пищевода). Кварцполимерное волокно (или полимер-полимерное) устанавливается в эндоскоп, торец световода обдувается потоком газа. Оптимальная для коагуляции доза облучения составляет 600…2000 Дж/см2 при фi = 1…2 с.

Эндоскопохирургия. С помощью волокна и эндоскопа некротируются опухоли в желудочно-кишечном тракте, трахеобронхиальной и мочеполовой системах.

Офтальмология. Относится к нетепловой микрохирургии и будет изложена позднее.

Преобразование гармоник позволяет значительно расширить области применения лазеров данных типов.

Ионный (аргоновый) лазер (л0 = 480 нм). Большая поглощательная способность гемоглобина в сине-зеленой области излучения аргонового лазера позволяет осуществить остановку кровотечения или закрыть обильно кровоснабжаемую ткань. Излучение аргонового лазера слабо поглощается водой, поэтому коагуляция возможна за слоем воды (например, на глазном дне).

Основные области применения.

Фотокоагуляция в офтальмологии. Ранее здесь использовались ксеноновые коагуляторы (ксеноновые дуговые лампы). Затем появились рубиновые лазеры - для приварки сетчатки (в режиме свободной генерации), для лечения глаукомы (режим модулированной добротности). В первом случае осуществляется термическое действие, во втором - ударное. Но красный свет рубинового лазера плохо поглощается кровью, и они малоэффективны при сосудистых поражениях органа зрения. Позднее появился аргоновый лазер. В большинстве случаев достаточно ксенонового коагулятора, но аргоновый лазер незаменим при локальных операциях. Мощность излучения аргонового лазера - несколько Вт. Воздействие происходит на задний полюс глаза для коагуляции малых очагов (размер ~50 мкм за время 50…100 мс). С его помощью осуществляется лечение диабетической ретинопатии, тромбозов вен, сетчатки и др.

Эндоскопическая фотокоагуляция кровотечения желудочно-кишечного тракта. Действие аналогично действию неодимового лазера, только глубина проникновения меньше (~0,2 мм). Оптимальная коагуляционная доза составляет 150…500 Дж/см2 при фi несколько секунд. При обильном кровотечении лучше использовать Nd-лазер. Аргоновым лазером можно не только разрушать, но и стимулировать зрительные функции сетчатки низкоэнергетичным потоком.

Лечение поражений кожи. Лечение происходит путем целенаправленного запустения кровеносных сосудов. Применяется оптический кабель. Типичная доза составляет 12 Дж/см2 при фi = 0,5 с, db = 3 мм. Хорошо лечится гемангиома.

Лазер на парах меди (л0 = 512; 570 нм). Лазер излучает в зеленой области спектра. Мощность до 10 Вт. Используется в качестве скальпеля при резекции внутренних органов. При резе печени показывает преимущество по сравнению с СО2-лазерами.

Эксимерные лазеры (л0 = 308 нм, л0 = 193 нм и т. д.). Основное применение - офтальмология. Используются для коррекции дефектов зрения - дальнозоркости, близорукости, астигматизма и пр.

В основе лазерной хирургии лежит использование усовершенствованных технологий. Они представляют собой устройства, содержащие газовую среду (углекислый газ, ксенон или аргон), и восстанавливающие мощные световые лучи.

Существует два вида лазеров. Низкочастотные лазеры применяются в терапии и служат для лечения многих заболеваний, начиная и заканчивая устранением раковых клеток. Свое наибольшее распространение высокочастотные лазеры нашли в операциях по и удаления рубцов.

Лазерная является практически бескровной (лазер прижигает поверхность сосудов) и не оставляет после себя рубцов и . Заживление ран после нее происходит за счет регенерации нормальной структуры кожного покрова. Сами раны продолжительное время остаются стерильными, а развитие воспалительного процесса сводится к минимуму.

Самыми первыми «клиентами» лазерной хирургии были по лечению аномалий глаз (дальнозоркости, близорукости, астигматизма и других патологий). Ткани глаза являются идеальными поверхностями, на которых можно сфокусировать лучи лазера.

Сами операции не считаются сложными. Последние модели лазеров обеспечивают безболезненность работы, возможность ее проведения на обоих глазах за один день и кратковременный реабилитационный период.

При помощи лазерной хирургии также можно устранить и многие другие заболевания, среди которых хочется отметить: злокачественные образования кожи, некоторые злокачественные болезни красной каймы губ или слизистой оболочки полости рта, ЛОР-заболевания, сосудистые, гнойно-воспалительные болезни кожи и подкожно-жировой клетчатки, а также нарушения женской половой сферы.

Лазерная хирургия активно применяется в косметологии и пластической хирургии. Она дает возможности устранить множество проблем, еще недавно казавшихся неразрешимыми, корректировать почти любые недостатки своего тела. К таким процедурам относят лазерную эпиляцию, удаление татуировок, пигментных пятен, бородавок, подкожных сосудов, родинок, послеоперационных рубцов, папиллом, растяжек, хирургию вросшего ногтя и лазерную шлифовку кожи.

В зависимости от вида операции применяются один или более видов лазерных лучей. Подбирается индивидуальная программа, которая может составлять один или несколько сеансов. Обычно при проведении лазерной хирургии необходимости в анестезии нет.

На протяжении некоторого времени после завершения работы на коже остается ровный розовый участок. Его следует защищать от воздействия ультрафиолетовых лучей. В противном случае может возникнуть процесс пигментации кожи.

Лазерная хирургия стала настоящим прорывом в лечении варикозного расширения век и настоящим помощником флебологам. Для этого используется эндовазальный метод с применением высокоэнергетических лазеров. Такие операции характеризуются безболезненностью, высокой эффективностью и легким течением послеоперационного периода.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!