Информационный женский портал

Современные технологии в медицине. Современные технологии в медицине и косметологии Современные безопасные технологии в медицине

Сегодняшний мир стал очень технологичным. И медицина старается держать марку. Новые достижения все плотнее связаны с генной инженерией, клиники и врачи уже во всю применяют «облачные технологии», а пересадка 3D-органов в скором времени обещает стать обычной практикой.

Борьба с онкологией на генетическом уровне

На первом месте рейтинга – медицинский проект от компании Google . Дочерний фонд компании под названием Google Ventures инвестировал $130 млн в «облачный» проект «Flatiron», направленный на борьбу с онкологией в медицине. Проект ежедневно собирает и анализирует сотни тысяч данных о случаях раковых заболеваний, передавая выводы врачам.

По словам директора Google Ventures Билла Мариса в скором времени лечение раковых заболеваний будет проходить на генетическом уровне, а химиотерапия через 20 лет станет примитивной , как сегодня дискета или телеграф.

Беспроводные технологии в медицине

Браслеты здоровья или «умные часы» хороший пример того, как современные технологии в медицине помогают людям быть здоровыми. Посредством привычных устройств каждый из нас может контролировать сердечные ритмы, артериальное давление, измерять шаги и количество сброшенных калорий.

В некоторых моделях браслетов предусмотрена передача данных «в облако» для дальнейшего анализа врачами. В сети интернет можно загрузить десятки программ для контроля здоровья, например, Google Fit или HealthKit.

Компания AliveCor пошла еще дальше и предложила устройство, которое синхронизируется со смартфоном и позволяет делать снимок ЭКГ в домашних условиях . Прибор представляет собой чехол со специальными датчиками. Данные снимка через интернет поступают к лечащему врачу.

Восстановление слуха и зрения

Кохлеарный имплант для восстановления слуха

В 2014 году австралийские ученые предложили способ лечения слуха на генетическом уровне. Медицинский метод основан на том, чтобы безболезненно внедрить в организм человека ДНК-содержащий препарат , внутри которого «вшит» кохлеарный имплант. Имплант взаимодействует с клетками слухового нерва и к пациенту постепенно возвращается слух.

Бионический глаз для восстановления зрения

С помощью импланта «бионический глаз» ученые научились восстанавливать зрение. Первая медицинская операция прошла в США еще в 2008 году. Помимо пересаженной искусственной сетчатки, пациентам выдаются специальные очки со встроенной камерой. Система позволяет воспринимать полноценную картинку, различать цвета и очертания предметов. Сегодня в очереди на проведение подобной операции стоит свыше 8 000 человек

Медицина шагнула ближе к лечению СПИДа

Ученые из Рокфеллеровского университета (Нью Йорк, США) совместно с фармацевтической компании GlaxoSmithKline провели клинические испытания медицинского препарат а GSK744 , который способен снизить вероятность заражения ВИЧ более чем на 90% . Вещество способно подавлять работу фермента, с помощью которого ВИЧ модифицирует ДНК клетки и затем размножается в организме. Работа значительно приблизила ученых к созданию нового лекарства против ВИЧ.

Органы и ткани с помощью 3D-принтеров

3D-биопринтинг: органы и ткани печатают с помощью принтера

За последние 2 года ученые на практике смогли добиться создания органов и тканей с помощью 3D-принтеров и успешно вживлять их в организм пациента.

Современные медицинские технологии позволяют создавать протезы рук и ног, части позвоночника, уши, нос, внутренние органы и даже клетки тканей.

Весной 2014 года врачи Университетского медицинского центра Утрехта (Голландия) успешно провели первую в истории медицины пересадку черепной кости, созданную с помощью 3D-принтера.


Не пропустите интересные новости в фотографиях:




  • Дизайн кухни в стиле «кафе»

  • Романтические спальни: Как украсить на День Святого Валентина

  • Дизайн ванной комнаты в синих и голубых тонах

  • 12 лучших приспособлений для тех, кто любит готовить

Информационные технологии – это обязательный современный атрибут любой сферы жизни и деятельности. Под ИТ подразумеваются любые методы сбора информации, её обработки и передачи.

Самые широко применяемые средства ИТ в наше время - это сотовая связь и интернет, мобильные телефоны и компьютеры. Тем не менее, каждая узкая отрасль науки и производства имеет своё специфическое оборудование, специально разработанное программное обеспечение, обеспечивающее работу устройств и так далее. Внедрение современных информационных технологий в медицине является не просто закономерным, это выводит здравоохранение на новый уровень, так как оперативный доступ к информации и обмен ею существенно сокращает временные затраты на поиск решений проблемы, а время часто является решающим фактором в спасении жизни человека.

Зачем нужно внедрять информационные технологии в медицине

Текущий способ ведения учёта больных и контроля за их состоянием объективно можно назвать устаревшим и несостоятельным. В поликлиниках выделяется всего 10-15 минут на осмотр пациента, изучение его анамнеза, назначение исследований или лечения. Разумеется, этого времени недостаточно, учитывая, что врач обязательно должен делать записи в карточке больного и в своих журналах учёта, отчётной документации.

Использование информационных технологий в медицине позволяет существенно сократить время на «бумажную» работу. Составление электронных карточек болезни позволит каждому работнику системы здравоохранения моментально получать полную информацию обо всех болезнях и травмах пациента, отслеживать изменения таких показателей как ЧСС, АД, уровень гемоглобина или сахара в крови, иметь представления, какие препараты принимает больной и насколько они эффективны в конкретном случае. Это особенно удобно, если человеку срочно требуется медицинская помощь в другом городе (например, его сбила машина и он находится в коме), и нет никакой возможности узнать вышеперечисленную информацию.

Помимо решения исключительно медицинских задач, применение информационных технологий в медицине способствует оптимизации управления учреждением здравоохранения, дистанционному обучению медработников и обмену опытом, связи с пациентами и экстренное оказание помощи в онлайн режиме, контролю за наличием лекарственных препаратов и других материалов на складах аптек и так далее.

Возможности применения ИТ в системе здравоохранения

Исходя из вышеперечисленных проблем, которые стоят перед современной медициной, информационные технологии в медицине и здравоохранении позволяют:

  • вести оптимизированный и рационализированный учёт пациентов;
  • дистанционно контролировать их состояние (особенно это удобно при наличии имплантов сердца или других органов, которые даже могут передавать информацию о состоянии всего организма и устройства в частности);
  • оказывать срочную помощь пациенту по телефону или с помощью видеосвязи (этот пункт тем более актуален, если больной находится в отдалённом районе, состояние критично и требует срочного решения до приезда скорой помощи, нет возможности добраться к человеку, например, при обвалах зданий и т.д.);
  • сохранять полную историю болезни, результатов диагностики и назначаемых препаратов;
  • контролировать правильность назначенного лечения, что существенно снизит риски ошибочной постановки диагноза и назначения неподходящего лечения;
  • проводить дискуссии по поводу наиболее оптимального лечения и устраивать видеоконференции и дистанционные врачебные консилиумы;
  • обмениваться профессиональным опытом, курировать и обучать молодых специалистов;
  • получать информацию о новейших исследованиях, разработках и технологиях в медицине;
  • эффективно планировать работы и контролировать их реализацию, а также решение внеплановых задач, администрацией учреждения здравоохранения, планово-экономического отдела и отдела кадров;
  • вести учёт медицинских товаров на аптечных складах, регистрировать приходно-расходные операции, анализировать и прогнозировать необходимость в определённых препаратах;
  • передавать отчётную документацию контролирующим органам.

Виды информационных технологий, применяемых в медицине


Как видно из вышеперечисленных способов применения информационных технологий, они охватывают абсолютно все сферы медицины, начиная от диагностики и заканчивая организацией работы ГБУЗ, частных клиник и аптек. В зависимости от задач, которые решают ИТ, выделяют следующую классификацию информационных технологий в медицине:

  • системы медадминистрирования,
  • больничные медицинские инфосистемы;
  • поисковые системы;
  • системы учёта диагностических исследований;
  • телемедийные системы и так далее.

Очень важную роль играют различные электронные базы, в которых хранится информация о пациентах (истории болезни, результаты обследований), материальных ресурсах, трудовых ресурсах (специализация, квалификация), данные о лекарственных препаратах, стандарты диагностики и лечения, а также экспертные системы.

Роль информационных технологий в медицине

Несомненно, внедрение ИТ в сферу здравоохранения позволит решить сразу несколько крупных проблем отечественной медицины:

  • снизит затраты времени на «бумажную» работу и отчётность,
  • соответственно, увеличит время на основную работу врача: диагностику и лечение,
  • предоставит доступ к полной и всесторонней истории болезни пациента,
  • откроет быстрый доступ к специализированным знаниям,
  • позволит консультироваться с коллегами относительно неоднозначных случаев,
  • обеспечит международный обмен опытом, что является отличным способом повышения качества медобслуживания.

Необходимость использования ИТ отмечается не только медработниками, но и поддерживается правительствами всех стран, в том числе и Российской Федерации. Для внедрения новейших технологий в медицину регулярно разрабатываются постановления и нормативно-правовые акты, нацеленные на эффективное решение этой задачи. Повсеместное применение информационных технологий в системе здравоохранения положительно скажется на показателях успешного лечения населения и продолжительности и качества жизни больных.

А вы согласны с тем, что внедрение информационных технологий в здравоохранении сможет оказать влияние на повышение качества медицинской помощи? Появились ли какие-то заметные изменения в вашем медучреждении с введением информационных технологий?

Приглашаем вас принять участие в Международной конференции для частных клиник , где вы получите инструменты для создания положительного имиджа вашей клиники, что повысит спрос на медицинские услуги и увеличит прибыль. Сделайте первый шаг на пути развития вашей клиники.

Новая технология из Университета Стэнфорда позволяет сделать внутренние органы прозрачными

Команда исследователей Стенфордского университета разработала способ, который позволяет делать органы млекопитающих, например лабораторных мышей или человеческих тел, завещанных науке, прозрачными. После того, как они сделаны прозрачными, учёные могут вводить в них химические соединения, которые прикрепляются и подсвечивают определённые структуры - например, различные типы клеток. Результатом этого становится целостный орган, который учёные могут видеть изнутри и снаружи.

Поскольку такая визуализация очень перспективна для изучения органов, это уже не первая попытка, когда учёные пытаются сделать мозг прозрачным. Новая техника, названная CLARITY, лучше работает с химическими агентами и более быстра по сравнению с предшественницами.

Чтобы продемонстрировать её возможности, её разработчики из Стэнфорда сделали несколько снимков мышиного мозга:

Изображение мозга мыши, полученное с помощью технологии CLARITY


Часть гиппокампа мыши с различными типами нейронов, окрашенными в разные цвета
Или взгляните на это видео от «Nature», чтобы увидеть ещё больше снимков, плюс несколько моделей:

Изготовление этих снимков занимает восемь дней. Сперва в мозг мыши впрыскивается раствор гидрогеля. Затем мозг и гель помещаются в особый инкубатор. В нём гель присоединяется к различным составляющим мозга, за исключением липидов. Эти липиды прозрачны и окружают собой каждую клетку. Когда учёные извлекают этот неприсоединившийся жир, они получают в своё распоряжение ясное изображение всего остального мозга.

После этого исследователи могут добавить в него различные молекулы для окраски тех частей мозга, которые они хотят исследовать, и изучают их под световым микроскопом.

Новые светящиеся антибиотики помогают выявить бактериальные инфекции

Несмотря на достижения в области технологии и на все усилия, прилагаемые врачами, бактериям часто удается проникнуть в живые ткани на медицинских имплантатах, таких как костные винты, где они вызывают тяжёлые, даже угрожающие жизни, инфекции. Согласно новому исследованию, опубликованному в Nature Communications, предлагается использовать люминесцентные антибиотики для выявления такого рода инфекций, прежде чем они станут слишком опасными.

В качестве главного автора исследования Марлен ван Остен (Marleen van Oosten) объяснила, что очень трудно отличить нормальные послеоперационные отёки от инфекции — единственный способ — биопсия, которая сама по себе является инвазивной процедурой. Микробиолог из Университета Гронингена в Нидерландах подчеркнула, что такая инфекция может стать огромной проблемой, так как последняя распространяется и развивается в течение многих лет, прежде чем окончательно обнаруживается. Для лучшей локализации бактерий в организме, ван Oosten и ее коллеги окрасили антибиотик ванкомицин флуоресцентным красителем, чтобы помочь определить поражённые ткани. Если бактерий нет, то ничего не происходит, но если это бактериальная инфекция, то препарат специфически связывается с пептидами клеточной мембраны бактерий, и, из-за добавления флуоресцентного красителя, заставляет мембраны светиться. Тем самым по сути дела ванкомицин становится маркером инфекции.

Исследователи инфицировали мышей бактериями золотистого стафилококка, а затем дали им очень небольшую дозу антибиотика — достаточную, чтобы бактерии заметно светились, если рассматривать их флуоресценцию под микроскопом, но не достаточную, чтобы убить эти бактерии. А затем учёные имплантировали металлические пластины, покрытые флуоресцентным антибиотиком, в берцовую кость от трупа человека, на 8 миллиметров ниже кожи. Некоторые из пластин были покрыты эпидермальным стафилококком — бактерией, которая живёт на коже человека. При этом камерой, которая обнаруживает флуоресценцию, легко определялись светящиеся пластины с инфекцией.

Биоинженер Нирен Мёрти (Niren Murthy) из Калифорнийского университета, Беркли, являясь сторонником этого метода, считает, что подобный способ обнаружения бактериальных инфекций крайне необходим. Но он также указывает на возможную проблему - будет ли флуоресценция достаточно сильной для наблюдения при только зарождающемся очаге заражения в организме человека?

Ван Остен, как оптимистка, считает, что в ближайшем будущем эта технология будет легкодоступна для широкого круга людей.

Новая надежда для лысых
Новый метод дает надежду, но до панацеи ему далеко.
Готам Нэйк (Gautam Naik)

AFP 2013 Patrik Stollarz
Ученые изобрели способ выращивания новых человеческих волос, продолжая многолетние поиски медицинского средства от облысения. Имеющиеся на сегодня методы неудовлетворительны, потому что они не стимулируют рост новых волос. Благодаря средствам от облысения можно замедлить потерю волосяных фолликул или стимулировать рост имеющихся волос, но новые волосяные луковицы благодаря им не появятся. Не возникнут они и в результате пересадки волос, когда луковицы пересаживают с одной части головы на другую. В понедельник в журнале Proceedings of the National Academy of Sciences были опубликованы результаты одного исследования авторы которого показали, что на человеческой коже возможно выращивать новые волосы. «Мы пытаемся повторить то, что происходит в зародыше», когда спонтанно начинают расти новые волосы, говорит ведущий автор исследования профессор Колин Джахода (Colin Jahoda), занимающийся изучением стволовых клеток в Даремском университете в Англии. Этому открытию далеко до создания желанного лекарства, помогающего остановить выпадение волос и процесс облысения. Но ученые дали новую надежду тем, кто страдает от появляющихся с возрастом залысин, а также от облысения в результате болезни, ранения или ожога. Основу нового исследования составляют клетки дермального гребня. Это небольшая группа клеток, находящихся в нижней части фолликулы и дающих команду другим клеткам на создание волоса. Ученые сорок с лишним лет считали, что человеческие клетки дермального гребня можно размножать в лабораторной пробирке, а затем пересаживать их на кожу черепа, чтобы они создавали новые волосы. Но никаких результатов они не добились. После пересадки таких клеток в кожный покров они быстро прекращали вести себя как клетки дермального гребня и становились похожи на клетки кожи. А волосы из них так и не вырастали. В ходе последнего эксперимента исследователи нашли способ решения этой проблемы, изучая грызунов. Если волосяную луковицу грызуна пересадить ему на кожу, она сразу начинает формировать волос. Важным моментом, по словам профессора Джаходы, стало то, что в лабораторной пробирке клетки грызунов спонтанно объединяются и формируют трехмерные скопления. А человеческие клетки прилипают к дну тонким двухмерным слоем. Профессор Джахода и его коллеги из Колумбийского университета Нью-Йорка решили, что им нужно превратить плоский слой человеческих клеток в трехмерные гроздья. Ученые получили клетки дермального гребня от семи человеческих доноров и размножили их в лабораторных условиях. «А потом мы сделали очень простую вещь, — говорит профессор Джахода. — Мы капнули немного этой питательной среды, а потом перевернули ее вверх тормашками, что заставило клетки собраться в шар». В каждой такой сфере содержалось скопление примерно из 3000 клеток. Эти сферы пересадили в ткань крайней плоти, полученную от новорожденных, которая до этого была пересажена на спину мышам. По соображениям безопасности этот метод надо было сначала проверить на животных. (Поскольку ткань крайней плоти обычно безволосая, она наилучшим образом подходит для проверки данного способа выращивания волос.) Благодаря объемности питательной среды клетки частично восстановили свои свойства по выращиванию волос. Спустя шесть недель в пяти из семи трансплантатов появились новые волосяные луковицы, генетически похожие на луковицы доноров. Но ученым надо гораздо глубже изучить данный процесс, прежде чем переходить к экспериментам на человеке. Они пока не знают точно, как клетки дермального гребня будут взаимодействовать с клетками кожи. Им также надо понять механизмы управления, которые определяют различные свойства волос, такие как цвет, угол роста, расположение и текстура. Тем не менее, результаты исследований дали новый подход к стимулированию роста волос. Ученые могут теперь выделить главные гены, регулирующие процесс роста, и попытаться воздействовать на них. Либо же, проанализировав действие клеточных сфер, они могут найти препараты, также влияющие на функционирование волосяных луковиц.

Ученые изобрели лазерный глюкометр

Для поддержания хорошего здоровья, людям с сахарным диабетом необходимо постоянно отслеживать уровень сахара в крови. В настоящее время это можно сделать с помощью портативных глюкометров. Однако использование этих проборов сопряжено с рядом неприятных моментов: необходимо прокалывать палец, чтобы взять образец крови, кроме того, надо постоянно покупать тест-полоски.

Группа исследователей из Германии разработала новый, неинвазивный способ измерения уровня сахара в крови. На поверхность кожи воздействуют инфракрасным лазерным излучением, и с его помощью измеряют уровень сахара. По словам ученых, это открывает фантастические возможности для больных сахарным диабетом - теперь не надо прокалывать палец и использовать тест-полоски.

Измерение уровня сахара в крови стандартным глюкометром через несколько лет может уйти в прошлое. Немецкие ученые разрабатывают неинвазивное устройство для быстрого и безболезненного измерения

Новый неинвазивный глюкометр использует фотоакустическую спектроскопию для измерения глюкозы по уровню поглощения ею инфракрасного света. При попадании лазерного луча на кожу, молекулы глюкозы создают особый измеримый звук, который команда исследователей называет «сладкой мелодией глюкозы». Этот сигнал позволяет обнаружить сахар в крови за секунды.

Предыдущие попытки использовать фотоакустическую спектроскопию были затруднены искажениями при изменении давления воздуха, температуры и влажности, вызванными контактом с живой кожей. Чтобы избавиться от этих недостатков, команде разработчиков пришлось применить новые методы конструирования прибора.

Прибор все еще является экспериментальным, и прежде чем он поступит в продажу, его должны проверить и одобрить регулирующие органы. А тем временем исследователи продолжают совершенствовать устройство. Предполагается, что через три года глюкометр будет размером примерно с небольшую коробку из-под обуви, а еще позже появятся и портативные версии измерительного прибора.

Ученые изготовили мышцы для людей и биороботов

Ученые из Токийского университета создали полнофункциональные трехмерные скелетные мышцы, которые можно использовать в медицине и робототехнике.
Большинство экспериментов по выращиванию мышц ограничивались экспериментами с двумерными тканями, которые неспособны функционировать без плоской подложки. Японские ученые впервые изготовили отельную трехмерную мышцу, причем способную сокращаться. Кроме того, японцы не только смогли вырастить мышцу, но и «засеять» ее нервными стволовыми клетками, которые позволяют управлять сокращением мышц с помощью химической активации нейронов. Искусственно выращенная мышца обладает большой силой и тем же механизмом сокращения, что и натуральная. Благодаря использованию живых нервов, подобную искусственную мышцу можно трансплантировать и «подключить» к нервной системе человека.
Более того, новая искусственная мышца, по мнению разработчиков, может найти применение в робототехнике. Современные промышленные роботы могут делать невероятные вещи, но их системы управления по-прежнему остаются очень сложными. Роботы опираются на электрические сервоприводы, а системы обратной связи требуют очень точных оптических датчиков. Роботы с искусственными живыми мышцами могли бы упростить дизайн роботов, увеличить точность их движения при достаточно большой силе.

Нервные клетки, проросшие в искусственно выращенную мышцу

Исследователи попытались построить устройство, основанное на реальных нервах и мышцах и способные работать в бионических системах. Для его изготовления ученые использовали полимер (PDMS) нанесенный на стекло. Полимер выполнял роль каркаса, необходимого для правильного развития мышцы. Затем на полимер нанесли мышечные стволовые клетки и мышиные стволовые клетки (mNSCs), способные превращаться в нейроны и проращивать аксоны в мышцу. В процессе развития мышц (миогенеза) молодые клетки сливаются в длинные многоядерные волокна, так называемые мышечные трубочки. В результате получается пучок длинных мышечных волокон, способных сокращаться в одном направлении. Связь между мышечными волокнами и нейронами обеспечивается с помощью ацетилхолиновых рецепторов. Новую технологию выращивания полнофункциональных мышц можно применять в медицине и на производстве. Конечно, живая ткань не столь прочна и надежна, как сталь, но в некоторых приложениях «живые манипуляторы» или гибридные конструкции живая ткань/синтетика могут оказаться очень полезны.

http://gearmix.ru/archives/1453
http://gearmix.ru/archives/6077
http://inosmi.ru/world/20131023/214137908.html
http://rnd.cnews.ru/tech/news/line/index_science.shtml?2013/10/28/547542
http://rnd.cnews.ru/tech/robotics/news/line/index_science.shtml?2013/09/26/544315

Медицина завтрашнего дня и ее новейшие технологии уверенно входят в день сегодняшний. Широко практикуется малоинвазивная микрохирургия и высокоточная компьютерная диагностика, давно никого не удивляют возможности томографии, УЗИ, допплерометрии и других инновационных методик. А ученый мир уже предлагает новые прогрессивные технологии в сфере медицины, многие из которых уже взяты ею на вооружение в борьбе здоровое человечество.

Трехмерные принтеры для производства имплантатов

Принтеры 3D совсем недавно вошли в нашу жизнь, безмерно расширив возможности человека по созданию объектов не только инженерной и дизайнерской мысли, но и моделей медицинского назначения. С их помощью уже создаются протезы и всевозможные имплантаты – как отдельные кости, так и целые ампутированные конечности.

Для лежачих больных разработано специальное белье Smart-E-Pants с электронной «начинкой», которая каждые 10 минут подает на мышцы электрический импульс, заставляющий их сокращаться. Система эффективна даже для давно парализованных частей тела и практически полностью обездвиженных пациентов.

Стентирование артерий

Развитие новых технологий в медицине и создание инновационных материалов позволило широко внедрить баллонную ангиопластику – установку тончайших металлических каркасов в суженный атеросклеротическими бляшками просвет жизненно важных артерий. Операция осуществляется через небольшой прокол, является малоинвазивной и малокровной и относится при этом к так называемой хирургии «одного дня».

Очки, позволяющие видеть болезнь

Новое сообщение на тему инновационных медицинских технологий пришло от исследовательской группы 2AI Labs. Разработанные ими очки «O2amp» позволяют определять насыщение крови кислородом, уровень гемоглобина, состояние подкожных вен. С их помощью можно обнаружить внутренние сосудистые травмы и зафиксировать патологии, которые пока еще не дают явной симптоматики.

Создатели утверждают, что очки позволяют увидеть не только скрытые болезни, но даже настроение человека.

Проникновение бактерий в костные винты медицинских имплантатов угрожает пациенту тяжелым послеоперационным инфицированием, опасным для жизни. При этом обнаружить их обычно удается лишь тогда, когда процесс становится необратимым.

Микробиологи Университета Гронингена (Нидерланды) нашли способ ранней диагностики зарождающегося очага инфицирования с помощью люминесцентных антибиотиков, придающих флуоресцентное свечение пораженным тканям. Увидеть его можно с помощью специально разработанной камеры. Ученые надеются, что недалеко то время, когда практическое использование данного маркера бактериальной инфекции имплантатов станет доступным широкому кругу населения планеты.

Отслеживание уровня глюкозы в крови для больных диабетом людей станет проще с приходом на рынок медицинских услуг лазерных глюкометров. Это неинвазивный метод без проколов и тест-полосок, разработанный группой ученых медиков в Германии. Достаточно направить лазерный пучок инфракрасных лучей на участок кожи, как прибор за секунды определит уровень глюкозы.

Единственным недостатком экспериментальных образцов является их объемность (с обувную коробку), однако, в дальнейшем ученые планируют усовершенствовать модель до удобных портативных размеров.

Чип для измерения глюкозы на основе пота

Еще один новый метод неинвазивного мониторинга уровня сахара в крови – разработка чипа, способного выдавать необходимую информацию при соприкосновении с кожей. Для этого ему понадобится всего лишь капелька пота. Недостатком датчика является невозможность измерения в состоянии покоя – для получения данных придется чуть-чуть попотеть.

Прозрачные органы

Сообщение о новых технологиях в медицине пришло из Университета Стэнфорда, где учеными была разработана методика, позволяющая увидеть внутренние органы так, словно они прозрачны. Введение в них определенных химических соединений подсвечивает их отдельные внутренние структуры (типы клеток) и позволяет врачу видеть целостную картину состояния органа.

Пока данная методика отрабатывается на грызунах и завещанных науке человеческих телах, но успешность данных исследований позволяет надеяться на скорое внедрение в повседневную клиническую практику.

Трехмерные полнофункциональные мышцы, предназначенные как для роботов, так и для людей – новое слово в медицинских технологиях данного направления. Авторами изобретения ожидаемо стала страна передовой робототехники Япония. Выращенная искусственным путем мышца умеет сокращаться, имеет большую силу при высокой точности, может трансплантироваться в человеческий организм и даже подключаться к его нервной системе. Механизм ее работы аналогичен естественному.

Торические линзы, корректирующие астигматизм

На смену корректирующим данную патологию очкам, требующим длительного ношения, и контактным линзам старого поколения, не гарантирующим точного положения на глазном яблоке, приходят торические линзы, практически лишенные всех имеющихся ранее недостатков. Стабильная фиксация этих линз обеспечивается их неравномерной толщиной, увеличивающейся книзу и обеспечивающей призматический балласт и отсутствие смещения при любых движениях.

Ношение торических линз позволяет максимально сократить период коррекции астигматизма.

Бормашины уйдут в прошлое

Новый прорыв в медицинских технологиях, который готов случиться в стоматологии, затронет самые широкие массы населения. Из стоматологических клиник исчезнет самый большой страх пациентов – бормашина. Исследователи от медицины предоставляют новые технологии лечения кариеса – восстановление пораженных тканей из стволовых клеток. При введении в зуб желевидного белкового гидрогеля, созданного на их основе, он начинает преобразовываться в пульпу. Ученые утверждают, что стволовые клетки способны формировать зубные ткани не только в пораженных кариесом местах, но и полностью выращивать новые зубы.

Ежегодно наука открывает и испытывает множество новых методов и технологий в области медицины, многие из которых уже стали частью общедоступного здравоохранения. Немало их находится и в стадии разработки и испытаний, чтобы уже завтра помогать мировой медицине спасать человеческие жизни и неуклонно повышать ее качество.

Современные технологии всё активнее входят в медицинскую практику, использование которых позволяет повысить качество оказания медицинских услуг, оптимизировать управление различными структурными медицинскими подразделениями и создать основу выхода на мировой уровень медицинского обслуживания населения.


От того, насколько эффективно будут использоваться новые технологии врачами и специалистами, зависит качество оказания медицинской помощи, уровень жизни населения, общий уровень развития страны в целом.


Поэтому существует сегодня крайняя необходимость использования современных технологий в медицине, при этом еще и постоянно совершенствующихся, используемых при решении различных диагностических, терапевтических, хирургических и других задач.


В данном разделе независимого научно-технического портала www.сайт Вы сможете ознакомится с подробными иллюстрированными описаниями современных методических и технических разработок, как отечественных, так и зарубежных, из различных областей медицины.

Сегодня экспериментально доказано, что субъекты цивилизации обмениваются энергиями в диапазоне радиочастот. Узел обмена энергиями по сведениям древних цивилизаций расположен в теле человека чуть ниже пупка и представляет собой приёмопередатчик (т. е. он как принимает так и передаёт энергию)...

Сегодня основным методом борьбы с данным заболеванием считается именно хирургическое вмешательство. Другим способам, которые относятся к области консервативного лечения (иммуно- и химиотерапия, эмболизация и др.) отводится скорее вспомогательная роль...

Пациенты с раком желудка, должны проходить тщательную предоперационную диагностику для того, чтобы выбрать наиболее эффективный вариант лечения рака желудка в Израиле . Обследование по программе MedicalTourIsrael.com может включать КТ сканирование грудной клетки и брюшной полости, чтобы определить наличие или отсутствие метастазов. Дополнительно может проводиться рентген грудной клетки, трансабдоминальное УЗИ, магнитно-резонансная томография, биопсия, гастроскопия.

Остеохондроз позвоночника - грозное заболевание, которое ведет к дегенеративно дистрофическим изменениям суставов позвоночника, вследствие старения организма. В результате этого заболевания происходит уменьшение толщины и эластичности межпозвоночных дисков, на позвонках образуются остеофиты (наросты), просвет отверстия для прохода нервных корешков сужается, возникает риск их травмирования.

Насколько полноценный образ жизни может вести человек очень часто зависит от состояния его опорно-двигательного аппарата. И это никакое не преувеличение. Тем, кто знаком с чувством боли и скованностью в суставах, позвоночнике знают не понаслышке, насколько нарушается привычный образ жизни - это мешает двигаться, выполнять ежедневную работу, полноценно отдыхать по ночам. По данной всемирной организации здравоохранения более 70% населения, старше сорока лет страдают теми или иными заболеваниями опорно-двигательного аппарата...

Каждый год мужчины и женщины посещают поликлиники и больницы с целью обследования и лечения. Тысячи женщин ежегодно после приёма у врача узнают о наличии в их организме какой-либо патологии, какого-нибудь заболевания, требующего неотложного лечения с целью недопущения его последующего развития. Более чем у 30% женщин старше тридцати лет встречается мастопатия, то есть происходящий в молочных железах патологический процесс, характеризующийся регрессивными изменениями ткани. Диагноз «мастопатия» ставится врачом женщине только после того, как он выслушает её жалобы, прощупает молочные железы и сделает их маммографию, а также проанализирует уровень гормонов в её крови...



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!