Информационный женский портал

Величину зрачка и кривизну хрусталика регулирует нервные. Ядра глазодвигательного и блокового нервов обеспечивают содружественные движения глаз. Кроме того первое регулирует ширину зрачка и кривизну хрусталика. Вопросы в начале параграфа

Вариант 1

А1.Нервная система образована клетками нервной ткани, особенностью которой являются

А).Быстрая регенерация Б).Возбудимость и проводимость

Г).Возбудимость и сократимость Д).Волокнистое строение

А2.Как называется короткий отросток нейрона: а) аксон, б) дендрит, в) нерв, г) синапс.

А3. Сколько пар нервов отходит от спинного мозга: а) 30, б) 31, в) 13, г) 12

А4.Величину зрачка и кривизну хрусталика регулируют нервные центры расположенные

    В продолговатом мозге

    В среднем мозге

    В мозжечке

    в затылочных долях больших полушарий

А5.Центры условных рефлексов расположены

    в коре больших полушарий

    в продолговатом мозге

    в промежуточном мозге

    в спином мозге

А6. Какой отдел головного мозга обеспечивает координацию движения: а) гипоталамус, б) таламус,

в) большие полушария, г) мозжечок

А7. Парасимпатическая нервная система активизируется

1..при большой физической нагрузке 2. в случае опасности 3. при стрессе 4. во время отдыха

А8. Сумеречное зрение обеспечивается

    радужной оболочкой 2. Колбочками 3.палочками 4. Хрусталиком

А. 9 Слуховая труба среднего уха обеспечивает

    1.колебания жидкости в улитке внутреннего уха

    передачу звуковых колебаний от барабанной перепонки к суховым косточкам среднего уха

    3преобразование механических колебаний в нервные импульсы

    Выравнивание давления по разным сторонам барабанной перепонки

А10. Постоянство внутренней среды организма контролируется: а) кора головного мозга, б)

промежуточный мозг, в) мост, г) средний мозг.

А11. Работой скелетных мышц управляет нервная система: а) вегетативная, б) соматическая, в)

симпатическая, г) парасимпатическая

Часть2

В1. Выберите три правильных ответа из шести. При близорукости

1.глазное яблоко укороченное 2.изображение фокусируется перед сетчаткой

3. необходимо носить очки с двояковыпуклыми линзами 4. Глазное яблоко имеет удлиненную форму

5.изображение фокусируется за сетчаткой 6. рекомендуются очки с фокусирующими линзами

Ответ:______________

В2. Установите соответствие между отделом нервной системы и его функциями

А) обрабатывает информацию от рецепторов кожи и мышц

Б) управляет работой сердечно-сосудистой системы

В) регулирует расширение и сужение зрачка

Г) управляет мимическими мышцами

Д) поддерживает постоянство внутренней среды

Е) управляет работой скелетных мышц

1. соматической

2. автономной

Ответ:

В3. Вставьте в текст пропущенные определения из предложенного перечня, используя для этого цифровые обозначения. Запишите в текст цифры выбранных ответов, а затем получившуюся последовательность цифр (по тексту) впишите в приведенную ниже таблицу.

Головной мозг человека состоит из нескольких отделов, Продолжением спинного мозга является ______(А). В нем находятся жизненно важные нервные центры, например ________(Б). В ________(В) находятся центры, регулирующие температуру тела и отвечающие за чувство жажады, голода, и насыщения, За координацию движений и равновесие отвечает ______(Г), расположенный в затылочной части мозга.

Термины:

1.Мозжечок 2.Центр речи 3. Дыхательный центр 4. Продолговатый мозг 5. Мост 6. Промежуточный мозг

С1. Объясните, почему в момент прицеливания невозможно одинаково отчетливо видеть и мушку и ружье?

Черная субстанция имеет двусторнние связи с подкорковыми ядрами и участвует в координации точных движений пальцев рук, регуляции жевания и глотания. Она может оказывать тормозное влияние на красное ядро.

Верхние бугры четверохолмия являются первичными зрительными центрами. К ним подходят пути от нейронов сетчатки глаза От них сигналы идут к таламусу, а по нисходящему тектоспинальному пути к мотонейронам спинного мозга. Здесь происходит первичный анализ зрительной информации. Например, определение положения источника света, направление его движения. В них также формируются зрительные ориентировочные рефлексы. Т.е. поворот головы в сторону источника света. Нижние бугры четверохолмия: являются первичными слуховыми центрами. К ним идут сигналы от фонорецепторов уха, а от них к таламусу. От них к мотонейронам также идут пути в составе тектоспинального тракта. В этих буграх осуществляется первичный анализ слуховых сигналов, а за счет связей с мотонейронами формируются ориентировочные рефлексы на звуковые раздражители.

Функции промежуточного мозга.

Функционально в нем выделяют 2 отдела: таламус и гипоталамус. В таламусе происходит обработка почти всей информации, идущей от рецепторов к коре. Через него проходят сигналы от зрительных, слуховых, вкусовых, кожных, мышечных, висцеральных рецепторов, а также ядер ствола мозга, мозжечка, подкорковых. Сам он содержит около 120 ядер. Они делятся: на неспецифические и специфические. Неспецифические относятся к переднему отделу ретикулярной формации ствола мозга. Их аксоны нейронов поднимаются к коре и диффузно пронизывают все ее слои. К этим ядрам подходят нервные волокна от нижележащих отделов Р.Ф., гипоталамуса, лимбической системы, базальных ядер. При возбуждении неспецифических ядер в коре мозга развивается периодическая электрическая активность в виде веретен, что свидетельствует о переходе к сонному состоянию. Т.е. они обеспечивают определенный уровень функционального активности коры.

Специфические ядра делятся на переключающие или релейные и ассоциативные. Переключающие ядра состоят из нейронов, у которых мало дендритов и длинный аксон. С помощью них происходит переключение сигналов идущих от нижележащих отделов ЦНС на соответствующие соматосенсорные зоны коры, в которых находится представительство определенных рецепторов. Например в латеральных коленчатых телах переключаются зрительные сигналы на затылочные доли коры. В. переключающих ядрах выделяется наиболее важная информация. При нарушении функции этих ядер выключается восприятие соответствующих сигналов.

Ассоциативные нейроны имеют большее количество отростков и синапсов. Это позволяет им воспринимать различные по характеру сигналы. Они их получают эти сигналы от переключающих и осуществляют их первичный синтез. От них пути идут к ассоциативным зонам коры, в которых происходит высший синтез и формируются сложные ощущения.


Кроме того, ядра таламуса участвуют в формировании безусловных двигательных рефлексов сосания, жевания, глотания. В таламусе находится подкорковый центр болевой чувствительности, в котором формируется общее ощущение боли, не имеющее определенной локализации и окраски.

В гипоталамусе выделяют 32 пары ядер. Их несколько групп - преоптические, передние, средние, наружные и задние. Гипоталамус имеет многочисленные восходящие связи с лимбической системой, базальньши ядрами, таламусом, корой. Нисходящие пути от него идут к таламусу, ретикулярной формации, вегетативным центрам ствола и спинного мозга.

Гипоталамус является высшим подкорковым центром вегетативной регуляции. На висцеральные функции организма он влияет двумя путями. Во-первых через вегетативную нервную систему. Его передние ядра являются высшими парасимпатическими центрами. Поэтому при их возбуждении урежаются сердцебиения, снижается АД, понижается энергетический обмен, температура тела, суживаются зрачки и т.д. При возбуждении задних ядер возникает обратная картина, т.к. они являются высшими симпатическими центрами. Во-вторых, ГТ влияет на многие функции через гипофиз. Посредством нервных и сосудистых связей он образует с ним единую гипоталамо-гипофизарную систему. Такое взаимодействие связано с тем, что некоторым нейронам ГТ свойственно явление нейросекреции. Это способность продуцировать гормоноподобные вещества. В частности, в супраоптическом ядре вырабатываются нейрогормоны вазопрессин и окситоцин. По аксонам секретирующих нейронов они поступают в заднюю долю гипофиза, а оттуда выделяются в кровь. В медиальных ядрах синтезируются либерины и статины. По венозной гипоталамо-гипофизарной сети они транспортируются к передней доле гипофиза. Первые стимулируют синтез и выделение его гормонов, вторые тормозят. В свою очередь тропные гормоны влияют на функции других желез внутренней секреции.

Благодаря многочисленным связям, высокой чувствительности нейронов гипоталамуса к составу омывающей его крови, отсутствию в этом отделе гематоэнцефалического барьера, в нем находятся центры терморегуляции, регуляции водно-солевого обмена, обмена белков, жиров, углеводов и др. За счет них регулируется гомеостаз.

Гипоталамус участвует в формировании некоторых мотиваций и поведенческих реакций. Например, мотиваций и поведения голода, жажды. При раздражение вентромедиального ядра чувство голода и соответствующее поведение исчезают. При его разрушении наоборот наступает неутолимый голод. Т.е. здесь находятся центры голода и насыщения. При раздражении паравентрикулярного ядра развивается чувство жажды и питьевое поведение, а при разрушении жажда исчезает. В гипоталамусе расположены центры бодрствования и сна. В опытах с самораздражением (Олдс), когда в определенные ядра ГТ вживляются электроды, установлено, что здесь находятся центры двух базисных эмоций -удовольствия и неудовольствия. При раздражении некоторых ядер ГТ у человека возникает эйфория, повышается сексуальность.

ГТ принадлежит важная роль в развитии стресса, т.е. реакций напряжения на угрожающую ситуацию. При воздействии физиологических или психологических стрессоров (холод, недостаток кислорода, эмоциональном напряжении) кора посылает сигналы к симпатическим центрам ГТ, которые активируют симпатический отдел вегетативной нервной системы, выделение кортикотропинрелизинг гормона, а как следствие АКТГ. В результате происходит симпатическая активация внутренних органов, выделяются адреналин из мозгового слоя и кортикостероиды.

При патологии ГТ возникают расстройства терморегуляции (гипер- и гипотермия), аппетита (афагия-, гиперфагия), сна. Эндокринные нарушения, связанные с гипоталамусом, могут проявляться преждевременным половым созреванием, нарушениями менструального цикла, полового влечения, несахарным диабетом.

27-09-2012, 14:39

Описание

Особое внимание строению хрусталика уделялось на самых ранних этапах микроскопии. Именно хрусталик впервые исследован микроскопически Левенгуком, который указал на его волокнистую структуру.

Форма и размер

(Lens) представляет собой прозрачное, двояковыпуклое в виде диска, полутвердое образование, расположенное между радужкой и стекловидным телом (рис. 3.4.1).

Рис. 3.4.1. Взаимоотношение хрусталика с окружающими структурами и его форма: 1 - роговая оболочка; 2- радужная оболочка; 3- хрусталик; 4 - ресничное тело

Хрусталик уникален тем, что он является единственным «органом» тела человека и большинства животных, состоящим из одного типа клеток на всех стадиях - от эмбрионального развития и постнатальной жизни вплоть до смерти. Существенным его отличием является отсутствие в нем кровеносных сосудов и нервов. Уникален он и в отношении особенностей метаболизма (преобладает анаэробное окисление), химического состава (наличие специфических белков - кристаллинов), отсутствия толерантности организма к его белкам. Большинство этих особенностей хрусталика связано с характером эмбрионального его развития, о чем будет сказано несколько ниже.

Передняя и задняя поверхности хрусталика соединяются в так называемой экваториальной области. Экватор хрусталика открывается в заднюю камеру глаза и при помощи цинновой связки (ресничный поясок) присоединен к ресничному эпителию (рис. 3.4.2).

Рис. 3.4.2. Соотношение структур переднего отдела глаза (схема) (no Rohen; 1979): а - срез, проходящий через структуры переднего отдела глаза (1 - роговая оболочка: 2- радужная оболочка; 3- ресничное тело; 4 - ресничный поясок (циннова связка); 5 - хрусталик); б - сканирующая электронная микроскопия структур переднего отдела глаза (1 - волокна зонулярного аппарата; 2- ресничные отростки; 3 - ресничное тело; 4 - хрусталик; 5 - радужка; 6 - склера; 7 - шлеммов канал; 8 - угол передней камеры)

Благодаря расслаблению цинновой связки при сокращении ресничной мышцы происходит деформация хрусталика (увеличение кривизны передней и, в меньшей степени, задней поверхностей). При этом выполняется основная его фу7нкция - изменение рефракции, позволяющее на сетчатке получить четкое изображение независимо от расстояния до предмета. В покое без аккомодации хрусталик дает 19,11 из 58,64 дптр преломляющей силы схематического глаза. Для выполнения своей основной роли хрусталик должен быть прозрачным и эластичным, каковым он и является.

Хрусталик человека растет непрерывно на протяжении всей жизни, утолщаясь примерно на 29 мкм в год. Начиная с 6-7-й недели внутриутробной жизни (18 мм эмбриона) он увеличивается в передне-заднем размере в результате роста первичных хрусталиковых волокон. На стадии развития, когда эмбрион достигает размера в 18-24 мм, хрусталик имеет приблизительно сферическую форму. С появлением вторичных волокон (размер эмбриона 26 мм) хрусталик уплощается и его диаметр увеличивается. Зонулярный аппарат , появляющийся при длине эмбриона 65 мм, не влияет на увеличение диаметра хрусталика. В последующем хрусталик быстро увеличивается в массе и объеме. При рождении он имеет почти сферическую форму.

В первые два десятилетия жизни увеличение толщины хрусталика прекращается, но продолжает увеличиваться его диаметр. Фактором, способствующим увеличению диаметра, является уплотнение ядра . Натяжение цинновой связки способствует изменению формы хрусталика.

Диаметр хрусталика (измеренный по экватору) взрослого человека равен 9-10 мм. Толщина его на момент рождения в центре равна приблизительно 3,5-4,0 мм, 4 мм в 40 лет, а затем медленно увеличивается до 4.75-5,0 мм к старческому возрасту. Толщина изменяется и в связи с изменением аккомодационной способности глаза.

В отличие от толщины экваториальный диаметр хрусталика с возрастом изменяется в меньшей степени. При рождении он равняется 6,5 мм, на втором десятилетии жизни - 9- 10 мм. В последующем он практически не меняется (табл. 3.4.1).

Таблица 3.4.1. Размеры хрусталика (по Rohen, 1977)

Передняя поверхность хрусталика менее выпуклая, чем задняя (рис. 3.4.1). Она представляет собой часть сферы с радиусом кривизны, равным в среднем 10 мм (8,0-14,0 мм). Передняя поверхность граничит с передней камерой глаза посредством зрачка, а по периферии с задней поверхностью радужки. Зрачковый край радужки опирается на переднюю поверхность хрусталика. Боковая поверхность хрусталика обращена в сторону задней камеры глаза и посредством цинновой связки присоединяется к отросткам ресничного тела.

Центр передней поверхности хрусталика называют передним полюсом . Располагается он примерно на расстоянии 3 мм позади задней поверхности роговой оболочки.

Задняя поверхность хрусталика обладает большей кривизной (радиус кривизны равен 6 мм (4,5-7,5 мм)). Ее обычно рассматривают в комплексе со стекловидной мембраной передней поверхности стекловидного тела. Тем не менее между этими структурами существует щелеподобное пространство , выполненное жидкостью. Это пространство позади хрусталика было описано еще Бергером (Berger) в 1882 году. Его можно наблюдать при использовании щелевой лампы.

Экватор хрусталика лежит в пределах ресничных отростков на расстоянии от них в 0,5 мм. Экваториальная поверхность неровная. Она обладает многочисленными складками, образование которых связано с тем, что к этой области прикрепляется цинновая связка. Складки исчезают при аккомодации, т. е. при прекращении натяжения связки.

Коэффициент преломления хрусталика равен 1,39, т. е. несколько больший, чем коэффициент преломления камерной влаги (1,33). Именно по этой причине, несмотря на меньший радиус кривизны, оптическая сила хрусталика меньше, чем роговой оболочки. Вклад хрусталика в рефракционную систему глаза равен приблизительно 15 из 40 диоптрий.

При рождении аккомодационная сила, равная 15-16 диоптриям, уменьшается наполовину к 25 годам, а в возрасте 50 лет равна лишь 2 диоптриям.

При биомикроскопическом исследовании хрусталика с расширенным зрачком можно обнаружить особенности его структурной организации (рис. 3.4.3).

Рис. 3.4.3. Послойность строения хрусталика при биомикроскопическом его исследовании у индивидуумов различного возраста (по Bron et al., 1998): а - возраст 20 лет; б - возраст 50 лет; б - возраст 80 лет (1 - капсула; 2 - первая кортикальная светлая зона (С1 альфа); 3 - первая зона разобщения (С1 бета); 4 - вторая кортикальная светлая зона (С2): 5 - рассеивающая свет зона глубокой коры (С3); 6 - светлая зона глубокой коры; 7 - ядро хрусталика. Отмечается увеличение хрусталика и усиление рассеивания света

Во-первых, выявляется многослойность хрусталика. Различаются следующие слои, считая спереди к центру:

  • капсула;
  • подкапсулярная светлая зона (кортикальная зона С 1а);
  • светлая узкая зона неоднородного рассеивания (С1);
  • полупрозрачная зона коры (С2).
Перечисленные зоны и составляют поверхностную кору хрусталика. Существует еще две более глубоко расположенные зоны коры. Их называют еще пернуклеарными. Эти зоны флюоресцируют при освещении хрусталика синим светом (С3 и С4).

Ядро хрусталика рассматривают как его пренатальную часть. Оно также обладает слоистостью. В центре располагается светлая зона, называемая «зародышевым» (эмбриональным) ядром. При исследовании хрусталика с помощью щелевой лампы также можно обнаружить швы хрусталика. Зеркальная микроскопия при большой кратности увеличения позволяет увидеть эпителиальные клетки и волокна хрусталика.

Определяются следующие структурные элементы хрусталика (рис. 3.4.4-3.4.6):

Рис. 3.4.4. Схема микроскопического строения хрусталика: 1 - капсула хрусталика; 2 - эпителий хрусталика центральных участков; 3- эпителий хрусталика переходной зоны; 4- эпителий хрусталика экваториальной области; 5 - эмбриональное ядро; 6-фетальное ядро; 7 - ядро взрослого; 8 - кора

Рис. 3.4.5. Особенности строения экваториальной области хрусталика (по Hogan et al., 1971): 1 - капсула хрусталика; 2 - экваториальные эпителиальные клетки; 3- хрусталиковые волокна. По мере пролиферации эпителиальных клеток, расположенных в области экватора хрусталика, они смещаются к центру, превращаясь в хрусталиковые волокна

Рис. 3.4.6. Особенности ультраструктуры капсулы хрусталика экваториальной области, цинновой связки и стекловидного тела: 1 - волокна стекловидного тела; 2 - волокна цинновой связки; 3-прекапсулярные волокна: 4-капсула хрусталика

  1. Капсула.
  2. Эпителий.
  3. Волокна.

Капсула хрусталика (capsula lentis). Хрусталик со всех сторон покрыт капсулой, которая является не чем иным, как базальной мембраной эпителиальных клеток. Капсула хрусталика самая толстая базальная мембрана тела человека. Спереди капсула толще (15,5 мкм спереди и 2,8 мкм - позади) (рис. 3.4.7).

Рис. 3.4.7. Толщина капсулы хрусталика в различных зонах

Более выражено утолщение по периферии передней капсулы, поскольку в этом месте прикрепляется основная масса цинновой связки. С возрастом толщина капсулы увеличивается, что более выражено спереди. Это связано с тем, что эпителий, являющийся источником базальной мембраны, расположен спереди и участвует в ремодуляции капсулы, отмечаемой по мере роста хрусталика.

Способность эпителиальных клеток к капсулообразованию сохраняется на протяжении всей жизни и проявляется даже в условиях культивирования эпителиальных клеток.

Динамика изменения толщины капсулы приведена в табл. 3.4.2.

Таблица 3.4.2. Динамика изменения толщины капсулы хрусталика с возрастом, мкм (по Hogan, Alvarado, Wedell, 1971)

Эти сведения могут понадобиться хирургам, производящим экстракцию катаракты и использующим капсулу для крепления заднекамерных интраокулярных линз.

Капсула является довольно мощным барьером на пути бактерий и воспалительных клеток , но свободно проходима для молекул, размер которых соизмерим с размером гемоглобина. Хотя капсула не содержит эластических волокон, она исключительно эластична и практически постоянно находится под действием внешних сил, т. е. в растянутом состоянии. По этой причине рассечение или разрыв капсулы сопровождается скручиванием. Свойство эластичности используется при проведении экстракапсулярной экстракции катаракты. Благодаря сокращению капсулы выводится содержимое хрусталика. Это же свойство используется также при лазерной капсулотомии.

В световом микроскопе капсула выглядит прозрачной, гомогенной (рис. 3.4.8).

Рис. 3.4.8. Светооптическое строение капсулы хрусталика, эпителия капсулы хрусталика и хрусталиковых волокон наружных слоев: 1 - капсула хрусталика; 2 - эпителиальный слой капсулы хрусталика; 3 - хрусталиковые волокна

В поляризованном свете выявляется ее пластинчатая волокнистая структура. При этом волокнистость располагается параллельно поверхности хрусталика. Капсула также положительно окрашивается при проведении ШИК-реакции, что свидетельствует о наличии в ее составе большого количества протеогликанов.

Ультраструктурно капсула имеет относительно аморфное строение (рис. 3.4.6, 3.4.9).

Рис. 3.4.9. Ультраструктура цинновой связки, капсулы хрусталика, эпителия капсулы хрусталика и хрусталиковых волокон наружных слоев: 1 - циннова связка; 2 - капсула хрусталика; 3- эпителиальный слой капсулы хрусталика; 4 - хрусталиковые волокна

Незначительная пластинчатость намечается благодаря рассеиванию электронов нитевидными элементами, складывающимися в пластины.

Выявляется около 40 пластин, толщина каждой из которых равна приблизительно 40 нм. При большем увеличении микроскопа выявляются нежные коллагеновые фибриллы диаметром 2,5 нм.

В постнатальном периоде происходит некоторое утолщение задней капсулы, что свидетельствует о возможности секреции базального материала задними кортикальными волокнами.

Fisher установил, что 90% утраты эластичности хрусталика наступает в результате изменения эластичности капсулы.

В экваториальной зоне передней капсулы хрусталика с возрастом появляются электронноплотные включения , состоящие из коллагеновых волокон диаметром 15 нм и с периодом поперечной исчерченности, равной 50-60 нм. Предполагается, что они образуются в результате синтетической деятельности эпителиальных клеток. С возрастом появляются и волокна коллагена, периодичность исчерченности которых равна 110 нм.

Места прикрепления цинновой связки к капсуле названы пластинами Бергера (Berger, 1882) (другое название-перикапсулярная мембрана). Это поверхностно расположенный слой капсулы, имеющий толщину от 0,6 до 0,9 мкм. Он менее плотный и содержит больше гликозаминогликанов, чем остальная часть капсулы. Волокна этого фиброгранулярного слоя перикапсулярной мембраны имеют толщину только 1-3 нм, в то время как толщина фибрилл цинновой связки 10 нм.

В перикапсулярной мембране обнаруживается фибронектин, витреонектин и другие матричные белки, которые играют определенную роль в прикреплении связок к капсуле. В последнее время установлено наличие еще одного микрофиблиллярного материала, а именно фибриллина, о роли которого указано выше.

Подобно другим базальным мембранам капсула хрусталика богата коллагеном IV типа. Она также содержит коллагены I, III и V типов. Обнаруживается и множество других внеклеточных матричных компонентов - ламинин, фибронектин, гепаран сульфат и энтактин.

Проницаемость капсулы хрусталика человека изучалась многими исследователями. Капсула свободно пропускает воду, ионы и другие молекулы небольшого размера. Она является барьером на пути белковых молекул, имеющих размер гемоглобина. Различий в пропускной способности капсулы в норме и при катаракте не обнаружил никто.

Эпителий хрусталика (epithelium lentis) состоит из одного слоя клеток, лежащих под передней капсулой хрусталика и распространяющихся на экватор (рис. 3.4.4, 3.4.5, 3.4.8, 3.4.9). Клетки на поперечных срезах кубовидной формы, а в плоскостных препаратах полигональные. Количество их колеблется от 350 000 до 1000 000. Плотность эпителиоцитов в центральной зоне - 5009 клеток в мм2 у мужчин и 5781-у женщин. Плотность клеток несколько увеличивается по периферии хрусталика.

Необходимо подчеркнуть, что в тканях хрусталика, в частности в эпителии, преобладает анаэробный тип дыхания . Аэробное окисление (цикл Кребса) наблюдается только в эпителиальных клетках и наружных хрусталиковых волокнах, при этом этот путь окисления обеспечивает до 20% потребности хрусталика в энергии. Эта энергия используется для обеспечения активных транспортных и синтетических процессов, необходимых для роста хрусталика, синтеза мембран, кристаллинов, белков цитоскелета и нуклеопротеинов. Функционирует и пентозофосфатный шунт, обеспечивающий хрусталик пентозами, необходимыми для синтеза нуклеопротеидов.

Эпителий хрусталика и поверхностные волокна коры хрусталика участвуют в выведении натрия из хрусталика , благодаря деятельности Na -К+-насоса. При этом используется энергия АТФ. В задней части хрусталика ионы натрия во влагу задней камеры распространяются пассивно. Эпителий хрусталика состоит из нескольких субпопуляций клеток, отличающихся, в первую очередь, пролиферативной активностью. Выявляются определенные топографические особенности распределения эпителиоцитов различных субпопуляций. В зависимости от особенностей строения, функции и пролиферативной активности клеток выделяют несколько зон эпителиальной выстилки.

Центральная зона . Центральная зона состоит из относительно постоянного количества клеток, число которых медленно уменьшается с возрастом. Эпителиоциты полигональной формы (рис. 3.4.9, 3.4.10, а),

Рис. 3.4.10. Ультраструктурная организация эпителиальных клеток капсулы хрусталика промежуточной зоны (а) и экваториальной области (б) (по Hogan et al, 1971): 1 - капсула хрусталика; 2 - апикальная поверхность соседней эпителиальной клетки; 3-пальцевые в давления в цитоплазму эпителиальной клетки соседних клеток; 4 - эпителиальная клетка, ориентированная параллельно капсуле; 5 - ядросодержащая эпителиальная клетка, расположенная в коре хрусталика

ширина их - 11 -17 мкм, а высота - 5-8 мкм. Своей апикальной поверхностью они прилежат к наиболее поверхностно расположенным хрусталиковым волокнам. Ядра смещены к апикальной поверхности клеток большого размера и имеют многочисленные ядерные поры. В них. как правило, два ядрышка.

Цитоплазма эпителиоцитов содержит умеренное количество рибосом, полисом, гладкий и шероховатый эндоплазматический ретикулум, маленькие митохондрии, лизосомы и гранулы гликогена. Выражен аппарат Гольджи. Видны цилиндрической формы микротрубочки диаметром 24 нм, микрофиламенты промежуточного типа (10 нм), филаменты альфа-актинина.

При помощи методов иммуноморфологии в цитоплазме эпителиоцитов доказано наличие так называемых матричных белков - актина, винметина, спектрина и миозина, которые обеспечивают жесткость цитоплазмы клетки.

В эпителии присутствует также альфа-кристаллин. Бета- и гамма-кристаллины отсутствуют.

К капсуле хрусталика эпителиоциты присоединены при помощи полудесмосом . Между эпителиоцитами видны десмосомы и щелевые контакты, имеющие типичное строение. Система межклеточных контактов обеспечивает не только сцепление между эпителиальными клетками хрусталика, но определяет ионную и метаболическую связь между клетками.

Несмотря на наличие многочисленных межклеточных контактов между эпителиальными клетками, существуют пространства, выполненные бесструктурным материалом низкой электронной плотности. Ширина этих пространств колеблется от 2 до 20 нм. Именно благодаря этим пространствам осуществляется обмен метаболитов между хрусталиком и внутриглазной жидкостью.

Эпителиальные клетки центральной зоны отличаются исключительно низкой митотической активностью . Митотический индекс равен всего 0,0004% и приближается к митотическому индексу эпителиоцитов экваториальной зоны при возрастной катаракте. Существенно митотическая активность возрастает при различных патологических состояниях и, в первую очередь, после травмы. Увеличивается число митозов после воздействия на эпителиальные клетки ряда гормонов, при экспериментальных увеитах.

Промежуточная зона . Промежуточная зона находится ближе к периферии хрусталика. Клетки этой зоны цилиндрические с центрально расположенным ядром. Базальная мембрана имеет складчатый вид.

Герминативная зона . Герминативная зона прилежит к преэкваториальной зоне. Именно эта зона отличается высокой пролиферативной активностью клеток (66 митозов на 100 000 клеток), которая постепенно снижается с возрастом. Длительность протекания митоза у различных животных колеблется от 30 минут до 1 часа. При этом выявлены суточные колебания митотической активности.

Клетки этой зоны после деления смещаются кзади и в последующем превращаются в хрусталиковые волокна. Некоторые из них смещаются и кпереди, в промежуточную зону.

Цитоплазма эпителиоцитов содержит малочисленные органоиды . Имеются короткие профили шероховатого эндоплазматического ретикулума, рибосомы, маленькие митохондрии и аппарат Гольджи (рис. 3.4.10, б). Количество органоидов нарастает в экваториальной области по мере увеличения количества структурных элементов цитоскелета актина, виментина, белка микротрубочек, спектрина, альфа-актинина и миозина. Существует возможность различить целые актиновые сетеподобные структуры, особенно видимые в апикальной и базальной частях клеток. Помимо актина в цитоплазме эпителиальных клеток выявлены виментин и тубулин. Предполагают, что сократительные микрофиламенты цитоплазмы эпителиальных клеток способствуют путем их сокращения перемещению межклеточной жидкости.

В последние годы показано, что пролиферативная активность эпителиальных клеток герминативной зоны регулируется многочисленными биологически активными веществами - цитокинами . Выявлено значение интерлейкина-1, фактора роста фибробластов, трансформирующего фактора роста бета, эпидермального фактора роста, инсулиноподобного фактора роста, фактора роста гепатоцитов, фактора роста кератиноцитов, постагландина Е2. Часть перечисленных факторов роста стимулируют пролиферативную активность, а часть - ингибируют ее. Необходимо отметить, что перечисленные факторы роста синтезируются или структурами глазного яблока, или другими тканями организма, поступая в глаз через кровь.

Процесс формирования хрусталиковых волокон . После конечного разделения клетки одна или обе дочерние клетки смещаются в смежную переходную зону, в которой клетки организованы в меридианально ориентированные ряды (рис. 3.4.4, 3.4.5, 3.4.11).

Рис. 3.4.11. Особенности расположения хрусталиковых волокон: а - схематическое изображение; б - сканирующая электронная микроскопия (по Kuszak, 1989)

В последующем эти клетки дифференцируются во вторичные волокна хрусталика, разворачиваясь на 180° и удлиняясь. Новые волокна хрусталика сохраняют полярность таким образом, что задняя (базальная) часть волокна сохраняет контакт с капсулой (базальной пластинкой), в то время как передняя (апикальная) часть отделена от этого эпителием. По мере превращения эпителиоцитов в хрусталиковые волокна формируется ядерная дуга (при микроскопическом исследовании ряд ядер эпителиальных клеток, расположенных в виде дуги).

Предмитотическому состоянию эпителиальных клеток предшествует синтез ДНК, в то время как дифференциация клеток в хрусталиковые волокна сопровождается усилением синтеза РНК, поскольку в этой стадии отмечается синтез структурных и мембранных специфических белков. Ядрышки дифференцирующихся клеток резко увеличиваются, а цитоплазма становится более базофильной в связи с увеличением количества рибосом, что объясняется усилением синтеза мембранных компонентов, белков цитоскелета и кристаллинов хрусталика. Эти структурные изменения отражают усиление белкового синтеза .

В процессе образования хрусталикового волокна в цитоплазме клеток появляются многочисленные микротрубочки диаметром 5 нм и промежуточные фибриллы, ориентированные вдоль клетки и играющие важную роль в морфогенезе хрусталиковых волокон.

Клетки различной степени дифференциации в области ядерной дуги располагаются как бы в шахматном порядке. Благодаря этому между ними образуются каналы, обеспечивающие строгую ориентацию в пространстве вновь дифференцирующихся клеток. Именно в эти каналы проникают цитоплазматические отростки . При этом образуются меридианальные ряды хрусталиковых волокон.

Важно подчеркнуть, что нарушение меридианальной ориентации волокон является одной из причин развития катаракты как у экспериментальных животных, так и у человека.

Превращение эпителиоцитов в хрусталиковые волокна происходит довольно быстро. Это было показано в эксперименте на животных с использованием тимидина, меченного изотопом. У крыс эпителиоцит превращается в хрусталиковое волокно спустя 5 недель.

В процессе дифференциации и смещения клеток к центру хрусталика в цитоплазме хрусталиковых волокон уменьшается количество органоидов и включений . Цитоплазма приобретает гомогенный вид. Ядра подвергаются пикнозу, а затем и полностью исчезают. Вскоре исчезают органоиды. Basnett выявил, что потеря ядер и митохондрий наступает внезапно и в одном поколении клеток.

Количество хрусталиковых волокон на протяжении жизни постоянно увеличивается. «Старые» волокна смещаются к центру. В результате этого формируется плотное ядро.

С возрастом уменьшается интенсивность образования хрусталиковых волокон. Так, у молодых крыс в сутки формируется приблизительно пять новых волокон, в то время как у старых крыс - одно.

Особенности мембран эпителиальных клеток . Цитоплазматические мембраны соседних эпителиальных клеток формируют своеобразный комплекс межклеточных связей. Если боковые поверхности клеток слегка волнистые, то апикальные зоны мембран образуют «пальцевые вдавления», погружающиеся в надлежащие хрусталиковые волокна. Базальная часть клеток присоединена к передней капсуле при помощи полудесмосом, а боковые поверхности клеток соединяются десмосомами.

На боковых поверхностях мембран смежных клеток обнаружены также щелевые контакты , через которые может происходить обмен небольшими молекулами между хрусталиковыми волокнами. В области щелевых контактов обнаруживаются белки кеннесины различной молекулярной массы. Некоторые исследователи предполагают, что щелевые контакты между хрусталиковыми волокнами отличаются от таковых в других органах и тканях.

Исключительно редко можно увидеть плотные контакты.

Структурная организация мембран хрусталиковых волокон и характер межклеточных контактов свидетельствуют о возможном наличии на поверхности клеток рецепторов, контролирующих процессы эндоцитоза , который имеет большое значение в перемещении метаболитов между этими клетками. Предполагается существование рецепторов к инсу лину-, гормону роста и бета-адренергическим антагонистам. На апикальной поверхности эпителиальных клеток выявлены ортогональные частицы, встроенные в мембрану и имеющие диаметр 6-7 нм. Предполагают, что эти образования обеспечивают перемещение между клетками питательных веществ и метаболитов.

Волокна хрусталика (fibrcie lentis) (рис. 3.4.5, 3.4.10-3.4.12).

Рис. 3.4.12. Характер расположения хрусталиковых волокон. Сканирующая электронная микроскопия (по Kuszak, 1989): а-плотно упакованные хрусталиковые волокна; б - «пальцевые вдавления»

Переход от эпителиальных клеток герминативной зоны к хрусталиковому волокну сопровождается исчезновением между клетками «пальцевых вдавлений», а также началом удлинения базальной и апикальной частей клетки. Постепенное накопление хрусталиковых волокон и смещение их к центру хрусталика сопровождается формированием ядра хрусталика. Это смещение клеток приводит к образованию S- или С-подобной дуги (ядерная дута), направленной вперед и состоящей из «цепи» ядер клеток. В области экватора зона ядерных клеток имеет ширину порядка 300-500 мкм.

Расположенные глубже волокна хрусталика имеют толщину 150 мкм. Когда они теряют ядра, ядерная дуга исчезает. Хрусталиковые волокна имеют веретенообразную или ремнеподобную форму , располагаясь по дуге в виде концентрических слоев. На поперечном разрезе в области экватора они гексагональной формы. По мере погружения к центру хрусталика постепенно нарушается их однообразие по размеру и форме. В области экватора у взрослых ширина хрусталикового волокна колеблется от 10 до 12 мкм, а толщина - от 1,5 до 2,0 мкм. В задних частях хрусталика волокна более тонкие, что объясняется асимметричной формой хрусталика и большей толщиной передней коры. Длина хрусталиковых волокон в зависимости от глубины расположения колеблется от 7 до 12 мм. И это при том, что первоначальная высота эпителиальной клетки равняется всего 10 мкм.

Концы хрусталиковых волокон встречаются в определенном месте и формируют швы.

Швы хрусталика (рис. 3.4.13).

Рис. 3.4.13. Формирование швов в месте стыка волокон, происходящее в различные периоды жизни: 1 - Y-образный шов, формирующийся в эмбриональном периоде; 2 - более развитая система швов, возникающая в детском периоде; 3 - наиболее развитая система швов, обнаруживаемая у взрослых

В фетальном ядре имеется передний вертикально расположенный Y-образный и задний инвертированный Y-образный швы. После рождения по мере роста хрусталика и увеличения количества слоев хрусталиковых волокон, формирующих свои швы, происходит пространственное объединение швов с образованием звездоподобной структуры, обнаруживающейся у взрослых.

Основное значение швов заключается в том, что благодаря такой сложной системе контакта между клетками сохраняется форма хрусталика практически на протяжении всей жизни .

Особенности мембран хрусталиковых волокон . Контакты типа «пуговица - петля» (рис. 3.4.12). Мембраны соседствующих хрусталиковых волокон соединены при помощи разнообразных специализированных образований, изменяющих свое строение по мере смещения волокна с поверхности в глубь хрусталика. В поверхностных 8-10 слоях передних отделов коры волокна соединяются при помощи образований типа «пуговица - петля» («шар и гнездо» американских авторов), распределенных равномерно по всей длине волокна. Подобного типа контакты существуют только между клетками одного слоя, т. е. клетками одного поколения, и отсутствуют между клетками разных поколений. Это обеспечивает возможность передвижения волокон относительно друт друга в процессе их роста.

Между более глубоко расположенными волокнами контакт типа «пуговица - петля» обнаруживается несколько реже. Распределены они в волокнах неравномерно и случайным образом. Появляются они и между клетками различных поколений.

В самых глубоких слоях коры и ядра, кроме указанных контактов («пуговица - петля»), появляются сложные интердигитации в виде гребней, впадин и борозд . Обнаружены также и десмосомы, но только между дифференцирующимися, а не зрелыми хрусталиковыми волокнами.

Предполагают, что контакты между хрусталиковыми волокнами необходимы для поддержания жесткости структуры на протяжении всей жизни, способствующей сохранению прозрачности хрусталика. Еще один тип межклеточных контактов обнаружен в хрусталике человека. Это щелевой контакт . Щелевые контакты выполняют две роли. Во-первых, поскольку они соединяют хрусталиковые волокна на большом протяжении, сохраняется архитектоника ткани, тем самым обеспечивается прозрачность хрусталика. Во-вторых, именно благодаря наличию этих контактов происходит распространение питательных веществ между хрусталиковыми волокнами. Это особо важно для нормального функционирования структур на фоне пониженной метаболической активности клеток (недостаточное количество органоидов).

Выявлено два типа щелевых контактов - кристаллические (обладающих высоким омическим сопротивлением) и некристаллические (с низким омическим сопротивлением). В некоторых тканях (печень) указанные типы щелевидных контактов могут преобразовываться один в другой при изменении ионного состава окружающей среды. В волокне хрусталика они неспособны к подобному преобразованию Первый тип щелевых контактов найден в местах прилегания волокон к эпителиальным клеткам, а второй - только между волокнами.

Низкоомные щелевые контакты содержат внутримембранные частицы, не позволяющие соседним мембранам сближаться более чем на 2 нм. Благодаря этому в глубоких слоях хрусталика ионы и молекулы небольшого размера достаточно легко распространяются между хрусталиковыми волокнами, и их концентрация довольно быстро выравнивается. Имеются и видовые различия в количестве щелевых контактов. Так, в хрусталике человека они занимают поверхность волокна по площади 5%, у лягушки- 15%, у крысы - 30%, а у цыпленка - 60%. Щелевых контактов нет в области швов.

Необходимо кратко остановиться на факторах, обеспечивающих прозрачность и высокую рефракционную способность хрусталика. Высокая рефракционная способность хрусталика достигается высокой концентрацией белковых филаментов , а прозрачность - их строгой пространственной организацией, однородностью структуры волокон в пределах каждого поколения и небольшим объемом межклеточного пространства (менее 1% объема хрусталика). Способствует прозрачности и небольшое количество внутрицитоплазматических органоидов, а также отсутствие в хрусталиковых волокнах ядер. Все перечисленные факторы сводят к минимуму рассеивание света между волокнами.

Есть другие факторы, влияющие на рефракционную способность. Одним из них является увеличение концентрации белка по мере приближения к ядру хрусталика . Именно благодаря увеличению концентрации белка отсутствует хроматическая аберрация.

Не меньшее значение в структурной целостности и прозрачности хрусталика имеет и рефляция ионного содержания и степени гидратации волокон хрусталика . При рождении хрусталик прозрачен. По мере роста хрусталика появляется желтизна ядра. Возникновение желтизны, вероятно, связанно с влиянием на него ультрафиолетового света (длина волны 315-400 нм). При этом в коре появляются флюоресцирующие пигменты. Предполагают, что эти пигменты экранируют сетчатку от разрушительного действия коротковолновой световой радиации. Пигменты накапливаются в ядре с возрастом, а у некоторых людей участвуют в образовании пигментной катаракты. В ядре хрусталика в старческом возрасте и особенно при ядерной катаракте увеличивается количество нерастворимых белков, которые представляют собой кристаллины, молекулы которых «сшиты».

Метаболическая активность в центральных участках хрусталика незначительна. Практически отсутствует обмен белков . Именно поэтому они относятся к долгоживущим белкам и легко подвергаются повреждению окислителями, приводящими к изменению конформации белковой молекулы из-за образования сульфгидрильных групп между молекулами белка. Развитие катаракты характеризуется увеличением зон рассеивания света. Это может быть вызвано нарушением регулярности расположения хрусталиковых волокон, изменением структуры мембран и нарастанием рассеивания света, в связи с изменением вторичной и третичной структуры белковых молекул. Отек хрусталиковых волокон и их разрушение приводит к нарушению водно-солевого обмена.

Статья из книги: .

Глаз (рис. 1, 2) обычно имеет шаровидную форму и помещается в костной воронке - глазнице. Сзади и с боков он защищен от внешних воздействий, костными стенками глазницы, а спереди - векам. Внутренняя поверхность век и передняя часть глазного яблока, за исключением роговицы, покрыта слизистой оболочкой - конъюнктивой. У верхненаружного края глазницы расположена слезная железа, которая выделяет жидкость, омывающую глаз. Равномерному распределению слезной жидкости по поверхности глаза способствуют мигания век.

Движения глазного яблока осуществляются при помощи шести глазных мышц. Они обеспечивают согласованные повороты обоих глаз в разные стороны. Одним концом эти мышцы прикрепляются к заднему отделу глазницы, другим - к поверхностным слоям глазного яблока,

Наружная оболочка глаза носит название склеры, или белочной оболочки. Это плотная непрозрачная ткань белого цвета. В передней части она переходит в прозрачною роговицу, которая как бы вставлена в склеру подобно часовому стеклу.

Под склерой расположена сосудистая оболочка глаза. Она состоит в основном из большого количества сосудов и обеспечивает питание тканей глаза. В переднем отделе глазного яблока сосудистая оболочка переходит в ресничное (цилинарное) тело и радужную оболочку (радужку).

В ресничном теле заложена мышца, связанная с хрусталиком и регулирующая его кривизну. Хрусталик - прозрачное эластичное тело, имеющее форму двояковыпуклой линзы.

Радужная оболочка в виде вертикальной занавески расположена за роговицей. В центре радужки имеется круглое отверстие - зрачок. Величина зрачка может изменяться. В зависимости от этого в глаз попадает большее или меньшее количество света. Изменением величины зрачка ведает мышца, находящаяся в радужке. Ткань радужной оболочки содержит особое красящее вещество - меланин. В зависимости от количества этого пигмента цвет радужки колеблется от серого и голубого до коричневого, почти черного. Цветом радужки определяется цвет глаз.

При отсутствии пигмента (людей с такими глазами называют альбиносами) лучи света проникают в глаз не только через зрачок, но и через ткань радужки. У альбиносов глаза имеют красноватый оттенок. У них недостаток пигмента в радужке часто сочетается с недостаточной пигментацией кожи и волос. Зрение у таких людей обычно значительно понижено,

Между роговицей и радужкой, а также между радужкой и хрусталиком имеются небольшие пространства, называемые соответственно передней и задней камерами глаза. В них находится прозрачная жидкость - водянистая влага. Она снабжает питательными веществами роговицу и хрусталик, которые лишены кровеносных сосудов. Полость глаза позади хрусталика заполнена прозрачной желеобразной массой - стекловидным телом.

Внутренняя поверхность глаза выстлана тонкой весьма сложной по строению сетчатой оболочкой (сетчаткой или ретиной). Она содержит светочувствительные клетки, названные из-за своей формы колбочками и палочками. Нервные волокна, отходящие от этих клеток, собираются шесте и образуют зрительный нерв, который направляется в головной мозг.

Глаз человека представляет собой своеобразную оптическую камеру, в которой можно выделить светочувствительный экран - сетчатку и светопреломляющие среды: роговицу и хрусталик. Последний посредством так называемой цинковой связки соединен с цилиарной мышцей, располагающейся широким кольцом позади корня радужной оболочки. Благодаря деятельности этой мышцы хрусталик может менять свою форму, становиться более или менее выпуклым и соответственно сильнее или слабее преломлять попадающие в глаз лучи света.

Отмеченная способность хрусталика, называемая аккомодацией (рис. 3), имеет очень большое значение. Она позволяет отчетливо видеть предметы, расположенные на различном расстоянии, обеспечивая совмещение фокуса попадающих в глаз лучей от рассматриваемого предмета с сетчатой оболочкой.

Рефракция - преломляющая способность глаза при покое аккомодации, когда хрусталик максимально упрощен. Различают три вида рефракции глаза: соразмерную


(эмметропическую), дальнозоркую (гиперметропическую) и близорукую (миопическую).

В глазу с соразмерной рефракцией параллельные лучи, идущие от далеких предметов, пересекаются на сетчатке (рис. 4). Тем самым обеспечивается отчетливое видение предмета. Для получения на сетчатке ясных изображений расположенных близко предметов такой глаз должен усилить свою преломляющую способность за счет напряжения аккомодации, т. е. путем увеличения кривизны хрусталика. Чем ближе находится рассматриваемый предмет, тем более выпуклым должен стать хрусталик, чтобы перенести фокусное изображение предмета на сетчатку.

Дальнозоркий глаз обладает относительно слабой преломляющей способностью. В таком глазу параллельные лучи, идущие от далеких предметов, пересекаются за сетчаткой (рис. 4). Для перемещения изображения на сетчатку дальнозоркий глаз должен усилить свою преломляющую способность за счет утолщения хрусталика уже при рассматривании отдаленных предметов.

В близоруком глазу параллельные лучи, идущие от далеких предметов, пересекаются впереди сетчатки, не доходя до неё. Такому глазу, преломляющая способность которого и без того велика, аккомодация помочь не в состоянии. О степени дальнозоркости или близорукости судят по оптической силе стекла, которое, будучи приставленным к глазу в условиях покоя аккомодации, так изменяет направление попадающих в него параллельных лучей, что они пересекаются на сетчатке.

Различают дальнозоркость и близорукость слабой степени (до 3 диоптрий), средней степени (от 4 до 6 диоптрий) и высокой степени (более 6 диоптрий)

Иногда в одном глазу сочетаются разные рефракции или разные степени одной рефракции. Например, по вертикали глаз обладает дальнозоркой рефракцией, а по горизонтали - соразмерной. Или в одном направлении имеется близорукость слабой степени, а в другом близорукость средней степени и т. д. Это зависит обычно от неодинаковой, кривизны роговицы. Неодинакова поэтому и ее преломляющая сила в указанных направлениях. Ясного изображения светящейся точки на сетчатке таких глаз получить нельзя. Отсюда происходит название описанного оптического дефекта глаза - астигматизм, что в переводе с латинского означает «отсутствие (фокусной) точки».

Рефракция обоих глаз не всегда бывает одинаковой. Может быть, например, близорукость одного глаза и дальнозоркость другого или неодинаковая их степень на обоих глазах. Такое состояние называется анизометропией.

Выше мы говорили, что для ясного видения фокус попадающих в глаз лучей должен совпадать с сетчаткой. Но это не единственное условие ясного видения. Для различения тонких деталей предмета необходимо, чтобы его изображение попало на область желтого пятна. сетчатки, расположенную прямо против зрачка. Центральный участок желтого

пятна является местом наилучшего видения. Линию, соединяющую рассматриваемый предмет с центром желтого пятна, называют зрительной линией (или зрительной осью), а способность одновременно направлять на рассматриваемый предмет зрительные линии обоих глаз -конвергенцией. Чем ближе зрительный объект, тем больше должна быть конвергенция, т. е. степень схождения зрительных линий (рис. 5).

Между аккомодацией и конвергенцией имеется известное соответствие: большее напряжение аккомодации требует большей степени конвергенции и, наоборот, слабая аккомодация сопровождается меньшей степенью схождения зрительных линий обоих глаз.

Когда мы говорим «глаз видит», мы допускаем неточность.

Английский поэт В. Блэйк хорошо сказал: «Посредством глаза, а не глазом смотреть на мир умеет разум!»

С глаза, точнее, с его сетчатой оболочки, только начинается цепь сложнейших превращений светового раздражения, которая завершается формированием в нашем сознании определенного зрительного впечатления. Световые лучи от рассматриваемых предметов, проникая через зрачок в глаз, действуют на светочувствительные клетки сетчатки - колбочки и палочки (рис. 6) - и вызывают в них нервное возбуждение, которое передается по зрительному нерву в корковый центр зрения, расположенный в затылочных долях мозга. В коре головного мозга происходит сложный процесс переработки возбуждений, в результате которого и рождается зрительное ощущение.

Возникает субъективный образ объективного мира.

В сетчатой оболочке насчитывается примерно 6 миллионов колбочек и 125 миллионов палочек. Главная масса колбочек сосредоточена в центральной области сетчатки, называемой желтым пятном. По мере удаления от центра число колбочек уменьшается, а палочек - возрастает. На периферии сетчатки имеются только палочки.

Колбочки предназначены для дневного зрения. Они мало чувствительны к слабому освещению. При их помощи воспринимаются форма, цвет и детали предметов. В этом принимают участие и палочки, но их главное назначение - работать при слабом освещении (в сумерках или ночью).

Желтое пятно, особенно его центральная ямка, состоящая только из колбочек, является местом наилучшего зрения. Это зрение называется центральным. Зрение остальных частей сетчатки значительно менее четко и носит название бокового, или периферического. Задержите взгляд на какой-либо букве, читаемой вами сейчас строки, и вы убедитесь в том, что эта буква видна хорошо, все же остальные буквы, особенно расположенные по краям строки,- заметно хуже. Центральное зрение обеспечивает возможность рассматривать мелкие детали предметов, периферическое зрение - возможность ориентироваться в пространстве. При значительном нарушении периферического зрения самостоятельное передвижение становится почти невозможным. Чтобы представить себе зрение такого человека, приставьте к глазам две узкие трубки (сделанные, например, из свернутой газеты) и попробуйте так передвигаться. Вы убедитесь, насколько это трудно.

Удивляет необычайная чувствительность нашего органа зрения к свету. Темной ночью при чистом воздухе глаз может видеть свет обыкновенной свечи на расстоянии 25-27 км. Но еще более удивительна способность органа зрения изменять эту чувствительность, что позволяет ориентироваться в окружающем и в яркий солнечный день и в темную ночь, когда светят лишь звезды.

Яркости предметов, которые видит глаз, могут отличаться друг от друга в миллиарды раз.

Способность глаза приспосабливаться к разной яркости освещения носит название адаптации. Для привыкания глаза к новой степени освещения требуется определённое время. Попав из хорошо освещенного помещения в полутемное, мы вначале ничего не видим. Однако постепенно чувствительность глаза повышается, и мы начинаем различать окружающие нас предметы. Точно так же после перехода из темной комнаты в ярко освещенную мы в первый момент не в состоянии читать: бумага кажется нам чрезмерно яркой и «слепит» глаза. Но достаточно 2-3 мин, чтобы чувствительность глаза к свету снизилась, впечатление «ослепления» исчезло и чтение стало возможным.

При некоторых заболеваниях глаза нарушается способность ориентироваться в условиях слабого освещения. Днем человек видит хорошо, а в сумерках - плохо. Такое состояние называется гемералопией, или «куриной слепотой». Иногда оно может возникать при недостатке в организме витаминов, главным образом витамина А, который, как предполагают, участвует в восстановлении светочувствительного вещества палочек сетчатки. Исключительно важной является способность нашего органа зрения различать бесконечное разнообразие цветных оттенков.

Известно, что все цветовые тона образуются при смещении семи основных цветов спектра, на которые разлагается дневной (белый) свет, проходя через призму. Это цвета: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый. Наш великий соотечественник М. В. Ломоносов впервые доказал, что названные семь цветов можно получить смешивание трёх из них – красного, зелёного и фиолетового (или синего). На этом основании Т. Юнгом и Г. Гельмгольцем было высказано предположение о существовании в сетчатке трех элементов (или компонентов), каждый из которых предназначен для преимущественного восприятия только одного из этих цветов. При действии на глаз цветовых лучей возбуждаются все три элемента, но в разной степени (рис. 7), что и позволяет воспринимать все разнообразие цветовых оттенков. В последнее время с помощью микроспектрофотометрических и микроэлектрофизиологических методов удалось доказать правильность трехкомпонентной теории цветового зрения.

Для суждения о способности глаза различать форму


и величину рассматриваемого предмета пользуются понятием остроты зрения. Мерилом остроты зрения служит угол, под которым виден предмет (рис. 8). Чем меньше


этот угол, тем выше острота зрения. У большинства людей минимальная величина угла зрения равна 1 мин. На это еще в XVII столетии обратил внимание астроном Роберт Гук. «Если две, три, даже десять звезд находятся друг возле друга на расстоянии меньше одной минуты, - писал он, - то глаз не в состоянии различить их отдельно, а они сливаются все вместе, в одну звезду». Поэтому и принято считать этот угол нормой, а остроту зрения глаза, имеющего наименьший угол зрения в 1 мин, единицей остроты зрения. Нужно иметь в виду, что это средняя величина нормы. Иногда здоровый глаз может обладать остротой зрения, несколько меньшей, чем единица. Встречается и острота зрения, значительно превышающая единицу.

Для определения остроты зрения пользуются специальными таблицами, на которые нанесены испытательные знаки различной величины - буквы, кольца, картинки.

Для оценки состояния периферического зрения на специальных приборах - периметрах определяют границы поля зрения, т. е. той части пространства, которую видит глаз в неподвижном положении.

Одновременно обоими глазами можно видеть предмет не раздвоенным только в том случае, если изображение его попадает в желтые пятна сетчаток обоих глаз. В этом нетрудно убедиться, если искусственно изменить положение одного глаза. Слегка надавите через веко на глазное яблоко так, чтобы оно несколько сместилось, и переведите взгляд на какой-либо предмет. Вы увидите, что предмет двоится.

Нормальное совместное зрение обоими глазами, которое называют бинокулярным, или стереоскопическим, зрением, обеспечивает одиночное восприятие рассматриваемого предмета и правильное определение его местоположения в пространстве. Как правило, один глаз, называемый ведущим глазом, видит несколько лучше другого и принимает более активное участие в акте бинокулярного зрения.

— Источник—

Аветисов, Э.С. Возвращение зрения/ Э.С. Аветисов.- М: Знание, 1980.- 64 с.

Post Views: 124

Представляет собой основной регулятор всех функций, происходящих в живом организме. В центральное нервной системе он занимает особое место наряду со спинным мозгом.

Строение головного мозга человека и его функции до сих пор изучают ведущие специалисты в области медицины, нейрофизиологии, психиатрии и психологии. Однако многие его тайны не раскрыты до сих пор.

Основные функции отделов головного мозга

Серое вещество, из которого состоит человеческий мозг, представляет собой скопление нейронов. Их количество насчитывается около 25 млрд. Весь мозг покрыт 3 оболочками:

  1. твердой;
  2. мягкой;
  3. паутиной (спинномозговая жидкость, которая циркулирует по каналам этой оболочки защищает мозг от повреждений).

Вес мозга мужчины и женщины немного отличается: у дам его масса в среднем равняется 1245 г, а у представителей сильного пола — 1375 г. При этом стоит отметить, что его вес никаким образом не влияет на уровень умственного развития человека. В первую очередь это зависит от количества связей в головном мозге.

Жизнедеятельность человека полностью зависит от того, каким образом функционируют различные отделы головного мозга. В этом процессе особое место занимают клетки мозга, которые генерируют и передают импульсы.

Строение головного мозга человека вместе с основными функциями хорошо представлены в следующей таблице:

отдел мозга особенности строение выполняемые функции
продолговатый мозг регулирует обмен веществ, анализирует нервные импульсы, там сосредоточены центры жажды и голода, принимает информации от органов чувств координация движений
мост сосредоточены центры зрения и слуха, регулирует величину зрачка и кривизну хрусталика поддерживает устойчивость тела при ходьбе. отвечает за за рефлексы: кашель, работа, чихание т. д. инвертирует сердца и другие внутренние органы
мозжечок связывает передний мост с задним состоит из серого и белого вещества
средний мозн состоит из промежуточного мозга и больших полушарий центр связан с движением глазных яблок, с мимикой.
передний мозг цилиндрический тяж, сходное со спинным мозгом средняя часть и полушария, имеющие кору.

Строение мозга

Три самые крупные части мозга представлены в виде: больших полушарий, мозжечка и мозгового ствола. Список 5 основных отделов мозга выглядит немного по-другому:

  • конечный мозг (занимает 80% всей массы);
  • промежуточный мозг;
  • задний мозг (состоит из мозжечка и моста);
  • средний мозг;
  • продолговатый мозг.

Строение отделов головного мозга можно хорошо рассмотреть на следующем рисунке:

Конечный мозг

Сложно понять без тщательного изучения его структуры и строения. Конечный мозг состоит из 2 больших полушарий: правого и левого. Строение больших полушарий головного мозга отличается от других отделов большим количеством борозд и извилин. Каждое полушарие состоит из:

  • мантии;
  • обонятельного мозга;
  • ядра.

Кору головного мозга специалисты условно разделяют на 3 вида:

  1. древнюю (состоит из: обонятельного бугорка, переднего вещества, подмозолистой, полулунной и боковой подмозолистой извилины);
  2. старую (включает в себя фасцию (зубчатую извилину) и гиппокамб);
  3. новую (к ней относятся все остальные части коры).

Таким образом, строение полушарий головного мозга представляет собой многоуровневую систему, где оба полушария разделены бороздой, в которой находится и свод. Благодаря им оба полушария соединены между собой. Нервные волокна, из которых состоит новая кора, именуется мозолистым телом. Под этим волокнами и находится свод.

В этой многоуровневой системе больших полушарий мозга можно выделить лобную, теменную и затылочную долю, а также подкорку и кору. Оба полушария дополняют друг друга: так, левой половиной тела управляет правое, а за правую половину отвечает левое.

Промежуточный мозг

Он состоит из нескольких частей:

  • вентральной части (представленной гипоталамусом);
  • дорсальной части (в которую входят: эпиталамус, таламус и метаталамус).

Для того чтобы организм человек мог своевременно приспосабливаться к меняющимся условиям окружающей среды все раздражения внешнего мира поступают в одно и то же место: таламус. Уже оттуда они поступают в большие полушари

я головного мозга строение которых было рассмотрено ранее.

Регуляция вегетативных функций происходит в подкорковом центре, представленном гипоталамусом. Он воздействует на организм человека через нервную систему и железы внутренней секреции. Гипоталамус также влияет на обмен веществ и регулирует работу некоторых эндокринных желез. Гипофиз находится именно под ним. От него непосредственно зависит температура тела человека и как протекает работа пищеварительной и сердечно сосудистой системы. В свою очередь, гипоталамус влияет на пищевое и питьевое поведение, а также регулирует сон и бодрствование человека.

Кора головного мозга

Толщина этой поверхности около 3 мм и покрывает оба полушария. Сама кора имеет 6 слоев, которые отличаются между собой шириной, размерами, плотностью расположения и формой нейронов:

  1. Наружный зернистый;
  2. Молекулярный;
  3. Наружный пирамидальный;
  4. Внутренний зернистый;
  5. Внутренний пирамидальный;
  6. Веретеновидный.

Вся состоит из пучков нервных волокон и нейронов. Их насчитывают более 10 млрд.

Каждая доля коры мозга отвечает за работу некоторых специфических функций:

  • затылочная доля — за зрение;
  • лобная — за движения, речь и сложное мышление;
  • височная — обоняние и слух;
  • теменная — вкус и осязание.

В сером веществе все нейроны контактируют друг с другом. Белое вещество головного мозга состоит из нервных волокон. Некоторые из них объединяют оба больших полушария вместе. В белом веществе выделяют 3 вида волокон:

  1. проекционные (выполняют проводящую функцию, благодаря им кора мозга имеет связь с другими образованиями);
  2. ассоциационные (играют связующую роль между различными корковыми участками одного полушария);
  3. комиссуральные (объединяют оба полушария между собой).

Средний мозг

Он осуществляет выпрямительные и установочные рефлексы, благодаря чему человек может ходить и стоять. Также средний мозг влияет на регуляцию мышечного тонуса и позволяет телу поворачиваться в сторону источника резкого звука.

Продолговатый мозг

Он является естественным продолжение спинного мозга. При тщательном анализе становится ясно, что в строении спинного и головного мозга много общего. В головном мозге белое вещество состоит из длинных и коротких нервных волокон. В то время как серое вещество имеет вид ядер. Спинной мозг регулирует обмен веществ, дыхание, кровообращение. Кроме того, он отвечает за равновесие и координацию движений. Также он ответственен за чихание и кашель.

Стволовая часть головного мозга состоит из:

  • продолговатого;
  • среднего;
  • промежуточного мозга;
  • моста.

Дыхание, сердцебиение и членораздельная речь полностью зависят от работы ствола мозга.

Задний мозг

В него входят два элемента человеческого мозга: мост и мозжечок. Мост состоит из дорсальной поверхности, которая накрыта мозжечком, и вентральной волокнистой поверхности. Волокна расположены поперечно таким образом, что непосредственно с моста переходят в среднюю ножку мозжечка. Основная функция заднего мозга — проводниковая.

Мозжечок, который еще называют иногда малым мозгом, занимает почти всю заднюю яму черепа. Его масса равняется 120-150 г. Мозжечок разделен от больших полушарий, которые нависают над ним, поперечной щелью. Условно его можно разделить на червя, два полушария, нижнюю и верхнюю поверхность.

В мозжечке выделяют 2 вещества: белое и серое. Серо вещество представляет собой кору, которая в свою очередь состоит из зернистого, молекулярного слоя и грушевидных нейронов. Белое вещество является мозговым телом мозжечка. Координация движений человека полностью зависит от функционирования мозжечка.

Лимбическая система

Особое внимание стоит уделить , которая непосредственно влияет на эмоциональное поведение человека. Сама система представлена в виде нервных образований, расположенных у верхнего ствола мозга. На сегодняшний день лимбическая система мало изучена, однако ее влияние на человеческий организм весьма существенно: под ее воздействием у человека возникает чувство страха, голода, жажды и даже половое влечение.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!