Информационный женский портал

Эпигенетика: мутации без изменения ДНК. Отличие генетических и эпигенетических заболеваний Эпигенетическая изменчивость

Наука

Что если ваше решение сегодня съесть еще один пакет чипсов или выкурить еще одну сигарету может повлиять не только на ваше здоровье, но и на здоровье ваших детей? Более того, что если ваш образ жизни влияет на здоровье ваших детей, ваших внуков и правнуков? Как оказалось, от нашего повседневного выбора зависит намного больше, чем мы себе представляли.

Традиционный взгляд на ДНК заключается в том, что она выражает себя через наши гены, которые помогают нам выживать, размножаться, развиваться, а также, что ДНК – это постоянная величина, заложенная природой на протяжении многих тысячелетий. Теперь, однако, представляется, что условия окружающей среды, такие как стресс, питание и окружение оказывают влияние на то, как ведет себя не только наша ДНК, но и ДНК наших детей, даже если они еще только в проекте.

Все это относится к сравнительно новой науке, которая называется эпигенетика. Ниже мы рассмотрим пять самых значимых открытий эпигенетики, а также что они означают для нашего здоровья.

5. То, что ДНК может сделать намного важнее, чем ее структура

ДНК – это важная структура, однако, она не ответственна за все. Подобные надзорные функции принадлежат эпигеному. Как описывал Джон Клауд (John Cloud), эпигеном берет бразды правления в верхней части генома и говорит каждому гену работать или нет посредством эпигенетических маркеров. Это основа эпигенетики, изучение изменений в поведении наших генов, которые могут быть переданы, фактически не изменяя наш генетический код. Потенциально, это означает, что наш организм может обладать биологическими реакциями на условия окружающей среды, которые позитивно или негативно сказываются на нашем здоровье, не меняя при этом ДНК.

К примеру, Клауд предлагает проиллюстрировать эпигенетику, рассмотрев близнецов, которые обладают идентичным генетическим материалом. Почему же тогда близнецы не страдают от одних и тех же заболеваний, таких как, к примеру, астма или психические расстройства? Играет ли в данном случае роль эпигенетика? В настоящее время именно этими вопросами и занята наука. Кроме того, исследователи изучают, существуют ли лекарственные препараты или методы, которые можно использовать для того, чтобы в лучшую сторону изменить генетическое поведение.

4. Когда дело доходит до развития заболевания, эпигенетика задает тон

Хорошо, что можно использовать ДНК в качестве козла отпущения, однако, есть и другие факторы, увеличивающие наши шансы на развитие того или иного заболевания, среди которых: экологические проблемы, плохое питание, социальные взаимодействия и воздействия окружающей среды, которые способствуют эпигенетическим изменениям.

Как отмечает Сара Бальдауф (Sarah Baldauf), специалист по эпигенетике, выражение эпигенетических изменений в более позднем возрасте может быть причиной возрастных заболеваний, таких, как, к примеру, болезнь Альцгеймера. "С возрастом, стареют и наши гены, поэтому они могут просто отключиться, что и приводит к болезни", - говорит она. Что это может означать? Исследователи надеются разработать препараты, которые будут управлять эпигенетическими изменениями и которые защитят нас или остановят болезнь.

Далее она приводит один пример работы исследовательской команды, которая обнаружила эпигенетические изменения у мышей, приведшие к развитию у грызунов волчанки. Однако, им удалось полностью вылечить мышей, создав лекарственный препарат, который вызвал эпигенетические изменения.

3. Эпигенетика тесно связана с развитием рака

Ранее раковые заболевания уже были включены в список потенциальных болезней, связанных с эпигенетическими изменениями. Эта тема заслуживает дальнейшего обсуждения из-за вероятности ее близкой связи с наукой.

Исследователи рассматривают возможность того, что изменения в эпигеноме вызывают рост опухоли. Некоторое время назад эксперты полагали, что рак связан либо с мутациями, из-за которых наши клетки перестают нас защищать либо с потерей этой защиты при делении клеток. Это правда, однако, существует и третья причина. Опухоли могут расти, потому что хорошие клетки с отличной защитой получают эпигенетический сигнал не выполнять свою работу. С помощью лекарственных препаратов и даже меняя образ жизни, мы, возможно, в будущем сможем изменить эпигенетическое поведение, и вернуть эти защитные клетки к работе.

На недавней конференции американского института раковых исследований была рассмотрена связь между эпигенетикой и раком. К примеру, один из специалистов Родерик Дэшвуд (Roderick Dashwood) описывал исследование, которое показало, что с помощью определенных продуктов питания, таких как брокколи, удалось "выключить" работу особых белков, которые развиваются в организме человека вместе с раком и не позволяют клетками умереть естественным путем.

2. Дородовой уход необходим для того, чтобы следить за эпигенетическими изменениями

Что произойдет, если беременную крысу подвергать воздействию инсектицидов и фунгицидов? Повлияет ли это на ее потомство? Безусловно, да. В ходе исследования во время такого воздействия произошли эпигенетические изменения, которые привели к увеличению случаев мужского бесплодия или же способствовали очень слабому производству спермы. Более того, эти эпигенетические изменения сохранились на протяжении следующих четырех (!) поколений. Поэтому дородовой уход является ключом к здоровью наших потомков и будущих поколений.

Таким образом, если дородовой уход важен, есть ли определенный период беременности, во время которого нужен особый контроль? Похоже, что так. Проведенное колумбийским университетом исследование связывает недостаточное питание во время беременности с негативными последствиями для здоровья ребенка на протяжении всей его жизни. Однако, еще более интригующим оказался тот факт, что особенно опасно недоедание в первые 10 недель беременности.

1. Эпигенетика связана не только с экологией, но и социальными взаимодействиями

Когда дело доходит до эпигенетики, подсчет того, сколько раз в день вы обнимаете своего ребенка, обретает совершенно иной смысл. Похоже, что эпигенетические изменения также связаны с социальными и поведенческими взаимодействиями.

Одно из проведенных исследований показало, что от того, как крыса ухаживает за своими детенышами, зависит поведение малышей в будущем и их эпигенетические маркеры. Более того, команда исследователей показала, что они могут восполнить нехватку заботы при помощи специальных лекарственных препаратов, тем самым меняя эпигенетический фон.

Что касается людей, то когда в их жизни происходят стрессовые ситуации, они также накладывают свой отпечаток на то, как ведет себя наш геном. Кроме того, эпигенетические изменения сохраняются даже после того, как гормон стресса покидает наш организм.

Генетика предполагает, а эпигенетика располагает.

Генетика предполагает, а эпигенетика располагает. Почему беременным женщинам надо принимать фолиевую кислоту?

Меня всегда поражал один интересный факт - отчего некоторые люди, так рьяно старающиеся вести здоровый образ жизни, не курить, спать положенное число часов каждый день, употреблять в пищу самые свежие и натуральные продукты, одним словом, делать всё то, о чем так любят назидательно рассказывать врачи и диетологи, порой живут гораздо меньше, чем заядлые курильщики или предпочитающие не сильно ограничивать себя в еде лежебоки? Может быть, врачи просто сгущают краски?

Что происходит?

Всё дело в том, клетки нашего организма обладают памятью, и это уже вполне доказанный факт.

Наши клетки содержат в своих ядрах одинаковый набор генов - участков ДНК, которые несут информацию о молекуле белка или РНК, определяющих путь развития организма в целом. Несмотря на то, что молекула ДНК - это самая длинная молекула в человеческом организме, в которой заключена полная генетическая информация об индивидууме, не все участки ДНК работают одинаково эффективно. В каждой конкретной клетке могут работать разные участки макромолекулы, а большая часть генов человека и вовсе неактивна. На долю генов ДНК, кодирующих белок, у человека приходится менее 2 % генома, а ведь именно они считаются носителями всех генетических признаков. Те гены, которые несут основную информацию об устройстве клетки, как раз активны на протяжении всего времени жизни клетки, но ряд других генов «работает» непостоянно, и их работа зависит от множества факторов и параметров, в том числе и внешних.

Существует достаточно большое количество наследственных заболеваний, среди которых особо выделяются генные болезни - так называемые моногенные заболевания, которые возникают при повреждениях ДНК на уровне гена - это многочисленные болезни обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов, соединительной ткани и так далее. Известно, что часто наследуется именно предрасположенность к тому или иному заболеванию, поэтому человек может быть лишь носителем мутаций в структурных генах и не страдать от генетического заболевания.

Памятник около Института цитологии и генетики СО РАН, Академгородок, Новосибирск

В организме человека существуют особые механизмы контроля экспрессии генов и клеточной дифференцировки, не затрагивающие саму структуру ДНК. «Регулировщики» могут находиться в геноме или представлять собой особые системы в клетках и осуществлять контроль над работой генов в зависимости от внешних и внутренних сигналов различной природы. Подобные процессы - дело рук эпигенетики, которая накладывает свой отпечаток даже на сверхблагополучную генетику, и последняя может в итоге не реализоваться. Другими словами, эпигенетика дает объяснение тому, как факторы окружающего мира могут повлиять на генотип, «активируя» или «дезактивируя» разные гены. Нобелевский лауреат по биологии и медицине Питер Медавар, ёмкое выражение которого вынесено в заголовок статьи, очень точно сформулировал важность влияния эпигенетики на конечный результат.

Что это такое и с чем её едят?

Эпигенетика - наука совсем молодая: её существование не насчитывает и ста лет, что, впрочем, вовсе не мешает ей находиться в статусе одной из самых перспективных дисциплин последнего десятилетия. Направление это настолько популярное, что заметки об эпигенетических исследованиях достаточно часто появляются в последнее время как в серьезных научных журналах, так и в ежемесячниках для широкого круга читателей.

Сам термин появился в 1942 году, и его придумал один из известнейших биологов Туманного Альбиона - Конрад Уоддингтон. А известен этот человек прежде всего тем, что именно он заложил основы междисциплинарного направления, названного в 1993 году термином «системная биология» и сплавляющего воедино собственно биологию и теорию сложных систем.

Конрад Хэл Уоддингтон (1905-1975)

В книге немецкого нейробиолога Петера Шпорка «Читая между строк ДНК» объясняется происхождение этого термина следующим образом - Уоддингтон предложил такое название, которое было чем-то средним между непосредственно термином «генетика» и пришедшим к нам ещё из трудов Аристотеля «эпигенезом» - так когда-то было названо учение о последовательном эмбриональном развитии организма, в ходе которого происходят образования новых органов. С переводе с греческого «epi » означает «на, над, сверху», эпитенетика - это как будто что-то «над» генетикой.
Вначале к эпигенетике относились очень пренебрежительно, что было, конечно же, следствием неясных представлений о том, как различные эпигенетические сигналы могут реализовываться в организме и к каким последствиям могут приводить. На момент выхода работ Конрада Уоддингтона в научном мире витали разрозненные догадки, а сам костяк теории ещё не был построен.
Вскоре стало понятно, что один из эпигенетических сигналов в клетке - это метилирование ДНК , то есть добавление метильной группы (-CH3 ) к цитозиновому основанию в матрице ДНК. Оказалось, что такая модификация ДНК приводит к снижению активности генов, поскольку этот процесс способен влиять на уровень транскрипции. Именно с этого момента эпигенетика прошла реинкарнацию и наконец превратилась в полноценную ветвь науки.
В 1980-е годы была опубликована работа, в которой показывалось, что метилирование ДНК коррелирует с репрессией - «замалчиванием» - генов. Это явление можно наблюдать у всех эукариот, кроме дрожжей. Нашими соотечественниками в дальнейшем были открыты тканевая и возрастная специфичность метилирования ДНК у эукариотических организмов, а также было показано, что ферментативная модификация генома может регулировать экспрессию генов и клеточную дифференцировку. Чуть позднее было доказано, что метилирование ДНК можно контролировать гормонально.
Профессор Моше Зиф (из Университета Макгилла, Канада) даёт такое образное сравнение: «Давайте представим гены в ДНК, как предложения, составленные из букв-нуклеотидов, полученных от родителей. Тогда метилирование - это как расстановка знаков препинания, которая может влиять на смысл фраз, акценты фраз, разбивку на параграфы. В итоге весь этот «текст» может по-разному читаться в разных органах -сердце, мозге и так далее. И, как мы знаем теперь, расстановка таких «знаков препинания» зависит и от тех сигналов, которые мы получаем извне. По всей видимости, этот механизм помогает гибче адаптироваться к изменчивым обстоятельствам внешнего мира».
Помимо метилирования ДНК, существует ещё целый ряд эпигенетических сигналов разнообразной природы - деметилирование ДНК, гистоновый код (модификация гистонов - ацетилирование ,метилирование , фосфорилирование и прочие), позиционирование элементов хроматина , транскрипционная и трансляционная репрессия генов малыми РНК . Интересно, что некоторые из этих процессов связаны с друг другом и даже взаимозависимы - это помогает надёжно осуществлять эпигенетический контроль за избирательным функционированием генов.

Попробуем разобраться в основах

По Уоддингтону, эпигенетика - «ветвь биологии, изучающая причинные взаимодействия между генами и их продуктами, образующими фенотип». Согласно современным представлениям, фенотип многоклеточных - это результат взаимодействия огромного количества продуктов генов в онтогенезе. Таким образом, генотип развивающегося организма на самом деле представляет собой эпигенотип. Работа эпигенотипа достаточно жёстко скоординирована и задаёт определённое направление в развитии. Однако, помимо этого направления, которое в итоге приводит к реализации основной для популяции линии фенотипа (фенотип нормы), существуют «тропинки» - субтраектории, благодаря которым реализуются устойчивые, но отличные от нормы состояния фенотипа. Так реализуется поливариантность онтогенеза.
Интересно задуматься о том, что все клетки развивающейся особи вначале тотипотентны - это значит, что они обладают одинаковой потенцией к развитию и способны дать начало любому типу клеток организма. С течением времени происходит дифференцировка, в ходе которой клетки приобретают разные свойства и функции, становясь нейронами, эритроцитами, миоцитами и так далее. Расхождение свойств происходит за счет экспрессии различных паттернов генов: на определенных этапах развития клетка получает специальные сигналы, например, гормональной природы, которые реализуют тот или иной эпигенетический «маршрут», что и приводит к клеточной дифференцировке.
Конрад Уоддингтон ввел удачную метафору - «эпигенетический ландшафт», благодаря которой становится понятен механизм влияния природно-средовых факторов на развитие молодого организма эукариот. Процесс онтогенеза - это поле возможностей, представляющее собой ряд эпигенетических траекторий, по которым проложена дорога в развитии особи от зиготы до взрослого состояния. Каждая «равнина» этого ландшафта существует не просто так - она ведёт к формированию ткани или органа, а иногда и целой системы или части организма. Траектории, получающие преимущество, в работах Уоддингтон называны креодами, а холмы и хребты, разделяющие траектории, репеллерами - «отталкивателями». В сороковых годах прошлого века ученые не имели представлений о физической модели генома, поэтому предположения Уоддингтона были настоящей революцией.

Эпигенетический ландшафт по Уоддингтону

Развивающийся организм - это шар, который может катиться, следуя различным «вариациям» своего развития. Ландшафт накладывает некоторые ограничения на траекторию движения шара по мере того, как он спускается с возвышенности. Фактор из внешней среды может повлиять на изменение курса шара, тем самым спровоцировав попадание шара в более глубокую впадину, из которой не так легко выбраться.
Промежутки между эпигенетическими впадинами - это критические точки для молодого организма, в которых процесс развития приобретает чёткие формы в том числе и в зависимости от факторов среды. Переходы между соединяющимися впадинами указывают на процесс развития между основными изменениями, а склоны впадин характеризуют скорость этого процесса: пологие впадины - знак относительно устойчивых состояний, в то время как крутые склоны - сигнал быстрых изменений. При этом в местах переходов внешние факторы вызывают более серьёзные последствия, в то время как в других областях ландшафта их влияние может быть незначительным. Красота идеи эпигенетического ландшафта заключается ещё и в том, что она хорошо иллюстрирует один из принципов развития: к одинаковому результату можно прийти совершенно разными путями.

Критические точки эпигенетического ландшафта, аналогия с шаром: 2 возможных траектории

После того, как эпигенетическая траектория выстроена, клетки уже не могут свободно отойти от своего пути развития - так из зиготы, одной-единственной «стартовой» клетки, образуется эукариотический организм, обладающий набором клеток, совершенно разных по виду и функциям. Таким образом, эпигенетическое наследование - это наследование паттерна экспрессии генов.

Иллюстрация к теории эпигенетического ландшафт. Варианты развития событий

Кроме описания морфогенеза конкретной особи, вполне можно говорить об эпигенетическом ландшафте популяции, то есть о предсказуемости реализующегося фенотипа для той или иной популяции, в том числе и относительной частоты возможных вариативных признаков.

Фолиевая кислота и неслучайные случайности

Один из первых наглядных экспериментов, показывающих, что эпигенетика действительно «располагает», был проведён профессором Рэнди Джиртлом и постдоком Робертом Уотерлендом из университета Дьюка, США. Они внедрили обычным лабораторным мышами ген окраски агути. Агути или, как их ещё называют, «южноамериканские золотистые зайцы» - род млекопитающих отряда грызунов, внешне похожих на морских свинок. Эти грызуны обладают золотистой шерстью, иногда даже с оранжевым оттенком. Интегрированный в геном мышей «чужой» ген привёл к тому, что лабораторные мыши поменяли окраску - их шерсть стала жёлтой. Однако ген агути принёс мышам некоторые неприятности: после его внедрения животные приобрели лишний вес, а также предрасположенность к диабету и онкологическим заболеваниям. Такие мыши приносили нездоровое потомство, с теми же предрасположенностями. Мышата были золотистого цвета.

Симпатичный агути (Dasyprocta aguti)

Однако экспериментаторам всё же удалось «выключить» нехороший ген, не прибегая к изменению нуклеотидов ДНК. Беременных самок трансгенных мышей посадили на специальную диету, обогащённую фолиевой кислотой - источником метильных групп. В результате рождённые мышата были уже не золотистого, а естественного окраса.

Почему «сработала» фолиевая кислота? Чем больше метильных групп поступало из пищи в развивающийся зародыш, тем больше возможностей было у ферментов, катализирующих присоединение метильной группы к эмбриональной ДНК, что дезактивировало возможное действие гена. Профессор Джиртл так прокомментировал свой эксперимент и его результаты: «Эпигенетика доказывает, что мы ответственны за целостность нашего генома. Раньше мы думали, что только гены предопределяют, кто мы. Сегодня мы точно знаем: всё, что мы делаем, всё, что мы едим, пьем или курим, оказывает воздействие на экспрессию наших генов и генов будущих генераций. Эпигенетика предлагает нам новую концепцию свободного выбора».

Профессор Рэнди Джиртл и его трансгенные мыши

Не менее интересных результатов добился Майкл Мини из Университета Макгилла в канадском Монреале, наблюдая за крысами, воспитывающими своё потомство. Если крысята с рождения постоянно получали внимание и заботу матери, то они росли спокойными по характеру и достаточно смышлёными. Напротив, крысята, матери которых с самого начала игнорировали своё потомство и мало его опекали, вырастали боязливыми и нервными. Как оказалось, причина крылась в эпигенетических факторах: забота крыс-мам о детях контролировала метилирование генов, которые отвечают за реакцию на стресс-рецепторы кортизола, экспрессируемых в гиппокампе. Ещё в одном эксперименте, проведённом чуть позже, те же факторы рассматривались применительно к человеку. Эксперимент проводился с использованием магнитно-резонансной томографии и имел целью установить какую-либо зависимость между оказываемой родителями заботой во время детского возраста и организацией мозга в целом. Оказалось, что забота матери играет ключевую роль в этом процессе. Взрослый человек, страдавший в детстве от дефицита любви и внимания матери, имел меньший размер гиппокампа, чем человек, детские годы которого были благополучны. Гиппокамп, как орган лимбической системы мозга, крайне многофункционален и похож на ОЗУ компьютера: принимает участие в формировании эмоций, определяет силу памяти, участвуя в процессе перевода кратковременной памяти в долговременную, связан с удержанием внимания, отвечает за скорость мышления, а также, помимо много другого, определяет предрасположенность человека к ряду психических заболеваний, в том числе к посттравматическому стрессовому расстройству.

Эрик Нестлер, профессор нейробиологии Фридмановского института мозга при Медицинском центре Маунт-Синай, Нью-Йорк, США, изучал механизмы возникновения депрессии на опытах всё с теми же мышами. Спокойных и дружелюбных мышей помещали в клетки с агрессивными особями. Спустя десять дней некогда счастливые и мирные мыши проявляли признаки депрессии: теряли интерес к вкусной еде, общению с противоположным полом, становились беспокойными, а некоторые из них и вовсе постоянно ели, набирая вес. Иногда оказывалось, что состояние депрессии было стабильным и полный выход представлялся возможным лишь в случае лечения антидепрессантами. Исследование ДНК-клеток «системы вознаграждения » мозга мышей из эксперимента показало, что примерно у 2000 генов изменилась картина эпигенетической модификации, а у 1200 из них увеличилась степень метилирования гистонов, при котором подавляется активность генов. Как оказалось, аналогичные эпигенетические изменения были обнаружены в ДНК головного мозга людей, которые умерли, находясь в депрессивном состоянии. Разумеется, депрессия сама по себе сложный многопараметрический процесс, но, видимо, он умеет «выключать» гены той области мозга, которая связана с получением удовольствия от жизни.

Но ведь депрессии подвержены не все люди… То же самое происходило и с мышами - около трети грызунов избежали негативного состояния, находясь в стрессовой ситуации, при том, что устойчивость присутствовала на уровне генов. Иными словами, у таких мышей отсутствовали характерные эпигенетические изменения. Однако, у «стойких» мышей произошли эпигенетические изменения в других генах клеток центра «системы вознаграждения » мозга. Таким образом, возможна альтернативная эпигенетическая модификация, которая выполняет защитную функцию, а устойчивость к стрессу - это не результат отсутствия генетически обусловленной склонности, а влияние эпигенетической программы, которая включается для защиты и противостояния травмирующему воздействию на психику.

Нестлер в своём отчете сообщил также следующее: «Мы обнаружили, что среди «защитных» генов, эпигенетически модифицированных у стойких к стрессу мышей, много таких, чья активность восстанавливается до нормы у депрессивных грызунов, которые были пролечены антидепрессантами. Это означает, что у людей, склонных к депрессии, антидепрессанты оказывают свое действие, помимо всего прочего, запуская защитные эпигенетические программы, которые естественным образом работают у более стойких индивидов. В таком случае следует искать не только новые, более мощные антидепрессанты, но и вещества, мобилизующие защитные системы организма».

Если есть в кармане пачка сигарет….

Ни для кого не секрет, что в обществе периодически вспыхивают серьезные споры, связанные с вопросом курения. Приверженцы пачки сигарет в кармане любят повторять о недоказанности вреда этой привычки, однако эпигенетика и здесь внезапно выходит из-за кулис. Всё дело в том, что у человека есть важный ген р16, способный тормозить развитие онкологических опухолей. Исследования, проведённые в последнее десятилетие, показывают, что некоторые вещества, содержащиеся в табачном дыме, заставляют выключаться р16, что, естественно, ни к чему хорошему не приводит. Но - вот что интересно! - недостаток белка, за производство которого отвечает р16, - стоп-кран для процессов старения. Учёные из Китая утверждают, что при правильном и безопасном для организма выключении гена возможно задержать процессы утраты мышечной массы и помутнения хрусталика.

В нормально функционирующей, здоровой и полноценной клетке гены, запускающие процесс образования онкологической опухоли, неактивны. Это происходит благодаря метилированию промоторов (стартовых «площадок» специфической транскрипции) этих онкогенов, называемых островками CpG. В ДНК азотистые основания цитозин (С) и гуанин (G) соединены фосфором, при этом на одном островке может находится до нескольких тысяч оснований, и около 70 % промоторов всех генов имеют эти островки.

Thymine(красный) , Adenine(зеленый) , Cytosine(синий) , Guanine(черный) - мягкие игрушки

Ацетальдегид алкоголя, побочный продуктпереработки этанола в организме человека, как и некоторые вещества, содержащиеся в табаке, ингибируют образование метильных групп на ДНК, что включает «спящие» онкогены. Известно что до 60 % всех мутаций в половых клетках приходится именно на островки CpG, что нарушает правильную эпигенетическую регуляцию генома. Метильные группы попадают в наш организм с пищей, поскольку мы не вырабатываем ни фолиевой, ни метиониновой аминокислот - богатых источников СН3 -групп. Если наш рацион не содержит этих аминокислот, то нарушение процессов метилирования ДНК неизбежно.

Разработки и планы на будущее

За последние годы эпигенетика успела существенно прорасти в технологии. В одном из обзоров Массачуссетского технологического института (США) эпигенетика названа среди десяти важнейших технологий, которые в ближайшее время могут изменить мир и оказать наибольшее влияние на человечество.
Моше Зиф так прокомментировал сложившуюся ситуацию: «В противоположность генетическим мутациям, эпигенетические изменения потенциально обратимы. Мутировавший ген скорее всего никогда не сможет вернуться в нормальное состояние. Единственное решение в данной ситуации - вырезать или дезактивировать этот ген во всех клетках, которые его несут. Гены же с нарушенным паттерном метилирования, с измененным эпигеномом могут быть возвращены к норме, и довольно просто. Уже существуют эпигенетические лекарства, например 5-азацитидин (коммерческое название - видаза), представляющий собой неметилированный аналог цитидина, нуклеозида ДНК и РНК, который, встраиваясь в ДНК, снижает ее уровень метилирования. Это лекарство используется сейчас против миелодиспластического синдрома, известного также, как прелейкемия».

Немецкая компания Epigenomics уже выпустила серию скрининг-тестов, позволяющих диагностировать онкологическое заболевание на разных стадиях его развития по эпигенетическим изменениям в организме, основанных на ДНК-метилировании. Компания продолжает свои исследования в направлении создания тестов на предмет предрасположенности к разным видам онкологии, стремясь «сделать тестирование на ДНК-метилирование в качестве обычной практики в клинической лаборатории». В том же направлении ведут работу и другие компании: Roshe Pharmaceuticals, MethylGene, NimbleGen, Sigma-Aldrich, Epigentek. В 2003 году был запущен проект Human Epigenome Project, в рамках работы над которым учёные смогли расшифровать вариабельные локусы метилирования ДНК на трех хромосомах человека: 6, 20 и 22.

Эпигенетические механизмы, участвующие в регуляции экспрессии генов

На сегодняшний день уже стало понятно, что изучение механизмов «включения-выключения» генов даёт медицине куда больше возможностей для развития, чем генная терапия. Планируется, что в будущем эпигенетика сможет рассказать нам о причинах и процессах развития некоторых заболеваний с «генетическим уклоном» - например, болезни Альцгеймера, Крона, диабета, поможет изучить механизмы, приводящие к образованию онкологических опухолей, развитию психических расстройств и так далее.

19 февраля 2015 года в журнале Nature увидела свет статья «Cell-of-origin chromatin organization shapes the mutational landscape of cancer». Группой учёных было обнаружено, что паттерн мутаций в раковой клетке соотносится со структурой хроматина. Что это означает? Очень многое. Часто онкологи развивают методы лечения конкретных видов опухолей, но плохо идентифицируют границы частных случаев. Если каждому виду онкологической опухоли поставить в соответствие изменённую структуру хроматина, то станет понятно, что та или иная опухоль развилась из конкретного типа клеток, а это полностью революционизирует лечение рака. Так называемые эпигеномные карты помогут с определением причин развития онкологии: опухолевые клетки «живут» с мутациями, распространёнными по всей ДНК клетки.

Исследуя болезнь Альцгеймера, учёные достаточно давно обнаружили некоторые «генетические вариации», связанные с заболеванием. Они были слабо изучены вследствие того, что содержались в части генома, не кодирующей белки. Биолог Манолис Келлис из Массачусетского технологического института, изучая эпигеномные карты головного мозга человека и мыши, пришёл к выводу, что эти «вариации» некоторым образом связаны с иммунной системой. «В общем-то это то, о чем многие в научной среде интуитивно догадывались, - говорит Келлис, - но на самом деле никто не показал этого на должном уровне». Исследования продолжаются.

Несмотря на превеликое множество работ, посвященных эпигенетике, в ней ещё более чем достаточно и чёрных дыр, и белых пятен. Международная организация под названием The International Human Epigenome Consortium ( http://ihec-epigenomes.org/) ставит своей целью предоставление свободного доступа к эпигенетическим материалам человека для развития фундаментальных и прикладных исследований в областях, связанных с эпигенетикой. В планах - отображение более 1000 типов клеток, исследование изменений эпигенома выбранных для испытания людей на протяжении нескольких лет с параллельным изучением влияния внешних факторов. «Эта работа будет занимать нас, по крайней мере, в ближайшие десятилетия. Геном не только трудно читать, сам процесс занимает много времени», - утверждает Манолис Келлис.

Кроме того, на данный момент ведутся серьезные разработки в области альтернативных и эффективных методов лечения психических расстройств. Уже показано, что некоторые лекарственные вещества, защищающие ацетильные группы гистонов, инактивируя ферменты-отщепители ацетильных групп, оказывают сильный антидепрессивный эффект. Фермент гистон-дезацетилаза, катализирующий отщепление, можно найти в клетках разных областей головного мозга, во многих тканях и органах, поэтому-то лекарство из-за неизбирательной активности и оказывает побочное действие. Исследователи изучают возможности создания таких веществ, которые подавляли бы активность только гистон-дезацетилазы в головном мозге, отвечающих за психическое состояние человека («центре вознаграждения»). Но никто не мешает попытаться идентифицировать другие белки, участвующие в эпигенетической модификации хроматина клеток головного мозга, или выявить гены, эпигенетически модифицирующиеся при депрессии (например, связанные с синтезом рецепторов специфических нейромедиаторов или сигнальных белков, которые участвуют в активации нейронов). Такие исследования позволят запустить поиск или синтез лекарств, которые смогут инактивировать эти конкретные гены или их продукты.

И напоследок

«Так всё-таки, как жить сейчас? Вести здоровый образ жизни? Срочно записываться в спортзал и пересматривать свой рацион питания?» - с нетерпением спросите вы. Питер Шпорк в своей книге «Читая между строк ДНК» отвечает на него с долей юмора. Он говорит о том, что резко и навсегда вычёркивать из своей жизни вечера на диване и вредную еду всё-таки не стоит, ведь такая встряска скорее всего приведёт к стрессам, которые также могут отразиться на эпигенетике. Главное, чтобы «вредности» не стали образом жизни или укоренившейся привычкой. Эпигенетика, как маячок в бурном море жизни, показывает нам, что наш организм проходит порой через критические периоды развития, когда эпигены чувствительны к раздражителям из внешней среды. Именно поэтому женщине, ждущей ребёнка, обязательно надо регулярно принимать фолиевую кислоту и оберегать себя от стрессов и негативных ситуаций.

A. and others. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518, pp 360-364, 19 February 2015. http:// biochemies. com

В журнале «The Lancet» («Ланцет»), ведущем медицинском журнале, в 2010 году была опубликована критическая статья о синдроме дефицита внимания и гиперактивности (СДВГ) и наследственности.

Авторы этой статьи сильно критиковали тот факт, что фармацевты и консервативные медики сознательно и заведомо неправильно общаются с пациентом, когда речь идет о таком термине, как наследственность. Людям внушают, что это заболевание является наследственным, а, следовательно, неизлечимым. Идея этой стратегии заключается в развитии терапевтической зависимости, которая очень удобна фармацевтической промышленности для продажи лекарственных препаратов.

Благодаря эпигенетике мы знаем, что СДВГ является эпигенетическим заболеванием. Другими словами, СДВГ вызван не фатальным наследственным фактором (ошибками в ДНК), а обратимым взаимодействием генов с окружающей их средой. Это объясняет тот факт, что взрослые и дети с синдромом гиперактивности наблюдают быстрое улучшение всех симптомов при изменении своего рациона питания.

Генетика – наука, которая описывает наследственность на основе необратимых ошибок в записи ДНК.

Эпигенетика – это наука, которая занимается исследованием влияния внешних факторов на функционирование генов. Эпигенетика изучает суть проблемы, особенно ошибки воспроизведения (синтеза) белков.

Нутригеномика является специализацией в эпигенетике и исследует влияние питания на функционирование генов.

Генетика и эпигенетика, таким образом, имеют различные взгляды на проблему пациента. В генетике пациент является «жертвой» своей болезни, в этом случае мы можем только держать «под контролем» ситуацию. В эпигенетике ставится акцент на причинные факторы. Это означает, что при изменении условий окружающей среды пациент может снова получить контроль над своим здоровьем.

Генетические и эпигенетические заболевания

Генетическое заболевание, вызванное дефектом того или иного гена, относится к моногенетическим заболеваниям. Это означает, что заболевание вызвано одним дефектным геном. Ген состоит из специфических кодов, которые мы называем ДНК. В этих кодах могут возникать ошибки (мутации). Одна такая мутация может лежать в корне наследственного моногенетического заболевания.

В отличие от генетических заболеваний эпигенетические нарушения не вызываются мутацией ДНК, а возникают под влиянием факторов окружающей среды, таких как: пища, травматический опыт, пренатальный стресс, различные химические вещества. Если говорить в молекулярных терминах, то все эти окружающие факторы могут выключить или включить работу специфических генов. Генетические заболевания («орфографические ошибки» в записи ДНК) встречаются в 0,5 % от всех наследственных заболеваний. Генетические заболевания, как правило, необратимы (например, синдром Дауна).

Эпигенетические заболевания – отклонения в работе гена, при которых ДНК остается неповрежденным. Эпигенетическое заболевание может возникнуть двумя способами.

  1. Первый способ – врожденный (в утробе матери или при ретрансляции нездоровых генов от отца или от матери).
  2. Второй способ – приобретенное состояние, в котором у кого-то, например, развивается диабет типа 2 при нездоровом образе жизни. Второй способ относится к воздействиям извне – эпигенетический фактор, например, несбалансированное питание или употребление наркотиков. Эта категория также включает в себя большинство психических и хронических заболеваний, которые, как правило, обратимы. Как только человек восстанавливает работу генов (например, путем использования соответствующей диеты), симптомы исчезают.

Синдром дефицита внимания и гиперактивности (СДВГ) — о коррекции с точки зрения интегративной медицины.

Учебные материалы к изучению и применению на практике:

Синдром дефицита внимания и гиперактивности (СДВГ) - о коррекции с точки зрения интегративной медицины. Подробности
Ох, уж эти «неудобные» дети. Подробности
Здоровье наших детей: Аутизм, Тяжелые металлы, Синдром гиперактивности. Подробности

Интересная статья? Ставь лайки, пиши комменты, делись с друзьями!!!

Эпигенетика — сравнительно недавнее направление биологической науки и пока не так широко известно, как генетика. Под ней понимают раздел генетики, который изучает наследуемые изменения активности генов во время развития организма или деления клеток.

Эпигенетические изменения не сопровождаются перестановкой последовательности нуклеотидов в дезоксирибонуклеиновой кислоте (ДНК).

В организме существуют различные регуляторные элементы в самом геноме, которые контролируют работу генов, в том числе в зависимости от внутренних и внешних факторов. Долгое время эпигенетику не признавали, т. к. было мало информации о природе эпигенетических сигналов и механизмах их реализации.

Структура генома человека

В 2002 г. в результате многолетних усилий большого числа ученых разных стран закончена расшифровка строения наследственного аппарата человека, который заключен в главной молекуле ДНК. Это одно из выдающихся достижений биологии начала ХХI века.

ДНК, в которой находится вся наследственная информация о данном организме, называется геномом. Гены — это отдельные участки, занимающие очень небольшую часть генома, но при этом составляют его основу. Каждый ген отвечает за передачу в организме человека данных о строении рибонуклеиновой кислоты (РНК) и белка. Структуры, которые передают наследственную информацию, называют кодирующими последовательностями. В результате проекта «Геном» были получены данные, согласно которым геном человека оценивался в более чем 30 000 генов. В настоящее время, в связи с появлением новых результатов масс-спектрометрии, геном предположительно насчитывает около 19 000 генов .

Генетическая информация каждого человека содержится в ядре клетки и расположена в особых структурах, получивших название хромосомы. Каждая соматическая клетка содержит два полных набора (диплоидный) хромосом. В каждом единичном наборе (гаплоидном) присутствует 23 хромосомы — 22 обычные (аутосомы) и по одной половой хромосоме — Х или Y.

Молекулы ДНК, содержащиеся во всех хромосомах каждой клетки человека, представляют собой две полимерные цепи, закрученные в правильную двойную спираль.

Обе цепи удерживают друг друга четырьмя основаниями: аденин (А), цитозин (Ц), гуанин (Г) и тиамин (Т). Причем основание А на одной цепочке может соединиться только с основанием Т на другой цепочке и аналогично основание Г может соединяться с основанием Ц. Это называется принципом спаривания оснований. При других вариантах спаривание нарушает всю целостность ДНК.

ДНК существует в виде тесного комплекса со специализированными белками, и вместе они составляют хроматин.

Гистоны — это нуклеопротеины, основная составляющая хроматина. Им свойственно образование новых веществ путем присоединения двух структурных элементов в комплекс (димер), что является особенностью для последующей эпигенетической модификации и регуляции.

ДНК, хранящая генетическую информацию, при каждом клеточном делении самовоспроизводится (удваивается), т. е. снимает с самой себя точные копии (репликация). Во время клеточного деления связи между двумя цепями двойной спирали ДНК разрушаются и нити спирали разделяются. Затем на каждой из них строится дочерняя цепь ДНК. В результате молекула ДНК удваивается, образуются дочерние клетки.

ДНК служит матрицей, на которой происходит синтез разных РНК (транскрипция). Этот процесс (репликация и транскрипция) осуществляется в ядрах клеток, а начинается он с области гена, называемой промотором, на котором связываются белковые комплексы, копирующие ДНК для формирования матричной РНК (мРНК).

В свою очередь последняя служит не только носителем ДНК-информации, но и переносчиком этой информации для синтеза белковых молекул на рибосомах (процесс трансляции).

В настоящее время известно, что зоны гена человека, кодирующие белки (экзоны), занимают лишь 1,5% генома . Большая часть генома не имеет отношения к генам и инертна в плане передачи информации. Выявленные зоны гена, не кодирующие белки, называются интронами.

Первая копия мРНК, полученная с ДНК, содержит в себе весь набор экзонов и интронов. После этого специализированные белковые комплексы удаляют все последовательности интронов и соединяют друг с другом экзоны. Этот процесс редактирования называется сплайсингом.

Эпигенетика объясняет один из механизмов, с помощью которого клетка способна контролировать синтез производимого ею белка, определяя в первую очередь, сколько копий мРНК можно получить с ДНК.

Итак, геном — это не застывшая часть ДНК, а динамическая структура, хранилище информации, которую нельзя свести к одним генам.

Развитие и функционирование отдельных клеток и организма в целом не запрограммированы автоматически в одном геноме, но зависят от множества различных внутренних и внешних факторов. По мере накопления знаний выясняется, что в самом геноме существуют множественные регуляторные элементы, которые контролируют работу генов. Сейчас это находит подтверждение во множестве экспериментальных исследований на животных .

При делении во время митоза дочерние клетки могут наследовать от родительских не только прямую генетическую информацию в виде новой копии всех генов, но и определенный уровень их активности. Такой тип наследования генетической информации получил название эпигенетического наследования.

Эпигенетические механизмы регуляции генов

Предметом эпигенетики является изучение наследования активности генов, не связанной с изменением первичной структуры входящей в их состав ДНК. Эпигенетические изменения направлены на адаптацию организма к изменяющимся условиям его существования.

Впервые термин «эпигенетика» предложил английский генетик Waddington в 1942 г. Разница между генетическими и эпигенетическими механизмами наследования заключается в стабильности и воспроизводимости эффектов .

Генетические признаки фиксируются неограниченное число, пока в гене не возникает мутация. Эпигенетические модификации обычно отображаются в клетках в пределах жизни одного поколения организма. Когда данные изменения передаются следующим поколениям, то они могут воспроизводиться в 3-4 генерациях, а затем, если стимулирующий фактор пропадает, эти преобразования исчезают.

Молекулярная основа эпигенетики характеризуется модификацией генетического аппарата, т. е. активации и репрессии генов, не затрагивающих первичную последовательность нуклеотидов ДНК.

Эпигенетическая регуляция генов осуществляется на уровне траскрипции (время и характер транскрипции гена), при отборе зрелых мРНК для транспорта их в цитоплазму, при селекции мРНК в цитоплазме для трансляции на рибосомах, дестабилизации определенных типов мРНК в цитоплазме, избирательной активации, инактивации молекул белков после их синтеза.

Совокупность эпигенетических маркеров представляет собой эпигеном. Эпигенетические преобразования могут влиять на фенотип.

Эпигенетика играет важную роль в функционировании здоровых клеток, обеспечивая активацию и репрессию генов, в контроле транспозонов, т. е. участков ДНК, способных перемещаться внутри генома, а также в обмене генетического материала в хромосомах .

Эпигенетические механизмы участвуют в геномном импритинге (отпечаток) — процессе, при котором экспрессия определенных генов осуществляется в зависимости от того, от какого родителя поступили аллели. Импритинг реализуется через процесс метилирования ДНК в промоторах, в результате чего транскрипция гена блокируется.

Эпигенетические механизмы обеспечивают запуск процессов в хроматине через модификации гистонов и метилирование ДНК. За последние два десятилетия существенно изменились представления о механизмах регуляции транскрипции эукариот. Классическая модель предполагала, что уровень экспрессии определяется транскрипционными факторами, связывающимися с регуляторными областями гена, которые инициируют синтез матричной РНК. Гистонам и негистоновым белкам отводилась роль пассивной упаковочной структуры для обеспечения компактной укладки ДНК в ядре.

В последующих исследованиях была показана роль гистонов в регуляции трансляции. Был обнаружен так называемый гистоновый код, т. е. модификация гистонов, неодинаковая в разных районах генома. Видоизмененные гистоновые коды могут приводить к активизации и репрессии генов .

Модификациям подвергаются различные части структуры генома. К концевым остаткам могут присоединяться метильные, ацетильные, фосфатные группы и более крупные белковые молекулы.

Все модификации являются обратимыми и для каждой существуют ферменты, которые ее устанавливают или удаляют.

Метилирование ДНК

У млекопитающих метилирование ДНК (эпигенетический механизм) было изучено раньше других. Показано, что он коррелирует с репрессией генов. Экспериментальные данные показывают, что метилирование ДНК является защитным механизмом, подавляющим значительную часть генома чужеродной природы (вирусы и др.).

Метилирование ДНК в клетке контролирует все генетические процессы: репликацию, репарацию, рекомбинацию, транскрипцию, инактивацию Х-хромосомы. Метильные группы нарушают ДНК-белковое взаимодействие, препятствуя связыванию транскрипционных факторов. Метилирование ДНК влияет на структуру хроматина, блокирует транскрипционные репрессоры .

Действительно, повышение уровня метилирования ДНК коррелирует с относительным увеличением содержания некодирующей и повторяющейся ДНК в геномах высших эукариот. Экспериментальные данные показывают, что это происходит потому, что метилирование ДНК служит главным образом как защитный механизм, чтобы подавлять значительную часть генома чужеродного происхождения (реплицированные перемещающиеся элементы, вирусные последовательности, другие повторяющиеся последовательности).

Профиль метилирования — активирование или угнетение — меняется в зависимости от средовых факторов. Влияние метилирования ДНК на структуру хроматина имеет большое значение для развития и функционирования здорового организма, чтобы подавлять значительную часть генома чужеродного происхождения, т. е. реплицированные перемещающиеся элементы, вирусные и другие повторяющиеся последовательности.

Метилирование ДНК происходит путем обратимой химической реакции азотистого основания — цитозина, в результате чего метильная группа СН3 присоединяется к углероду с образованием метилцитозина. Этот процесс катализируется ферментами ДНК-метилтрансферазами. Для метилирования цитозина необходим гуанин, в результате образуется два нуклеотида, разделенные фосфатом (СрG).

Скопление неактивных последовательностей СрG называется островками СрG. Последние представлены в геноме неравномерно . Большинство из них выявляются в промоторах генов. Метилирование ДНК происходит в промоторах генов, в транскрибируемых участках, а также в межгенных пространствах.

Гиперметилированные островки вызывают инактивацию гена, что нарушает взаимодействие регуляторных белков с промоторами.

Метилирование ДНК оказывает огромное влияние на экспрессию генов и, в конечном счете, на функцию клеток, тканей и организма в целом. Установлена прямая зависимость между высоким уровнем метилирования ДНК и количеством репрессированных генов.

Удаление метильных групп из ДНК в результате отсутствия метилазной активности (пассивное деметилирование) реализуется после репликации ДНК. При активном деметилировании участвует ферментативная система, превращающая 5-метилцитозин в цитозин независимо от репликации. Профиль метилирования меняется в зависимости от средовых факторов, в которых находится клетка.

Утрата способности поддерживать метилирование ДНК может приводить к иммунодефициту, злокачественным опухолям и другим заболеваниям .

Долгое время механизм и ферменты, вовлеченные в процесс активного деметилирования ДНК, оставались неизвестными.

Ацетилирование гистонов

Существует большое число посттрансляционных модификаций гистонов, которые формируют хроматин. В 1960-е годы Винсент Олфри идентифицировал ацетилирование и фосфорилирование гистонов из многих эукариот .

Ферменты ацетилирования и деацетилирования (ацетилтрансферазы) гистонов играют роль в ходе транскрипции. Эти ферменты катализируют ацетилирование локальных гистонов. Деацетилазы гистонов репрессируют транскрипцию.

Эффект ацетилирования это ослабление связи между ДНК и гистонами из-за изменения заряда, в результате чего хроматин становится доступным для факторов транскрипции.

Ацетилирование представляет собой присоединение химической ацетил-группы (аминокислоты лизин) на свободный участок гистона. Как и метилирование ДНК, ацетилирование лизина представляет собой эпигенетический механизм для изменения экспрессии генов, не влияющих на исходную последовательность генов. Шаблон, по которому происходят модификации ядерных белков, стали называть гистоновым кодом.

Гистоновые модификации принципиально отличаются от метилирования ДНК. Метилирование ДНК представляет собой очень стабильное эпигенетическое вмешательство, которое чаще закрепляется в большинстве случаев.

Подавляющее большинство гистоновых модификаций более вариативно. Они влияют на регуляцию экспрессии генов, поддержание структуры хроматина, дифференциацию клеток, канцерогенез, развитие генетических заболеваний, старение, репарацию ДНК, репликацию, трансляцию. Если гистоновые модификации идут на пользу клетки, то они могут продолжаться довольно долго .

Одним из механизмов взаимодействия между цитоплазмой и ядром является фосфорилирование и/или дефосфорилирование транскрипционных факторов. Гистоны были одними из первых белков, фосфорилирование которых было обнаружено. Это осуществляется с помощью протеинкиназ.

Под контролем фосфорилируемых транскрипционных факторов находятся гены, в том числе гены, регулирующие пролиферацию клеток. При подобных модификациях в молекулах хромосомных белков происходят структурные изменения, которые приводят к функциональным изменениям хроматина.

Помимо описанных выше посттрансляционных модификаций гистонов имеются более крупные белки, такие как убиквитин, SUMO и др., которые могут присоединяться с помощью ковалентной связи к боковым аминогруппам белка-мишени, оказывая воздействие на их активность.

Эпигенетические изменения могут передаваться по наследству (трансгенеративная эпигенетическая наследственность). Однако в отличие от генетической информации, эпигенетические изменения могут воспроизводиться в 3-4 поколениях, а при отсутствии фактора, стимулирующего эти изменения, исчезают. Передача эпигенетической информации происходит в процессе мейоза (деления ядра клетки с уменьшением числа хромосом вдвое) или митоза (деления клеток).

Модификации гистонов играют фундаментальную роль в нормальных процессах и при заболеваниях.

Регуляторные РНК

Молекулы РНК выполняют в клетке множество функций. Одной из них является регуляция экспрессии генов. За эту функцию отвечают регуляторные РНК, к которым относятся антисмысловые РНК (aRNA), микроРНК (miRNA) и малые интерферирующие РНК (siRNA)

Механизм действия разных регуляторных РНК схож и заключается в подавлении экспрессии генов, реализующейся путем комплементарного присоединения регуляторной РНК к мРНК, с образованием двухцепочечной молекулы (дцРНК). Само по себе образование дцРНК приводит к нарушению связывания мРНК с рибосомой или другими регуляторными факторами, подавляя трансляцию. Также после образования дуплекса возможно проявление феномена РНК-интерференции — фермент Dicer, обнаружив в клетке двухцепочечную РНК, «разрезает» ее на фрагменты. Одна из цепей такого фрагмента (siRNA) связывается комплексом белков RISC (RNA-induced silencing complex) .

В результате деятельности RISC одноцепочечный фрагмент РНК соединяется с комплементарной последовательностью молекулы мРНК и вызывает разрезание мРНК белком семейства Argonaute. Данные события приводят к подавлению экспрессии соответствующего гена.

Физиологические функции регуляторных РНК разно-образны — они выступают основными небелковыми регуляторами онтогенеза, дополняют «классическую» схему регуляции генов.

Геномный импритинг

Человек обладает двумя копиями каждого гена, один из которых унаследован от матери, другой от отца. Обе копии каждого гена имеют возможность быть активной в любой клетке. Геномный импритинг это эпигенетически избирательная экспрессия только одного из аллельных генов, наследуемых от родителей. Геномный импритинг затрагивает и мужское и женское потомство. Так, импритингованный ген, активный на материнской хромосоме, будет активным на материнской хромосоме и «молчащим» на отцовской у всех детей мужского и женского пола. Гены, подверженные геномному импритингу, в основном кодируют факторы, регулирующие эмбриональный и неонатальный рост .

Импритинг представляет сложную систему, которая может ломаться. Импритинг наблюдается у многих больных с хромосомными делециями (утраты части хромосом). Известны заболевания, которые у человека возникают в связи с нарушением функционирования механизма импритинга.

Прионы

В последние десятилетие внимание привлечено к прионам, белкам, которые могут вызывать наследуемые фенотипические изменения, не изменяя нуклеотидной последовательности ДНК. У млекопитающих прионный белок расположен на поверхности клеток. При определенных условиях нормальная форма прионов может изменяться, что модулирует активность этого белка.

Викнер выразил уверенность в том, что этот класс белков является одним из многих, которые составляют новую группу эпигенетических механизмов, требующих дальнейшего изучения. Он может находиться в нормальном состоянии, а в измененном состоянии прионные белки могут распространяться, т. е. стать инфекционными .

Первоначально прионы были открыты как инфекционные агенты нового типа, но сейчас считают, что они представляют собой феномен общебиологический и являются носителями информации нового типа, хранимой в конформации белка. Феномен прионов лежит в основе эпигенетической наследственности и регуляции экспрессии генов на посттрансляционном уровне.

Эпигенетика в практической медицине

Эпигенетические модификации контролируют все стадии развития и функциональную активность клеток. Нарушение механизмов эпигенетической регуляции напрямую или косвенно связано с множеством заболеваний.

К заболеваниям с эпигенетической этиологией относят болезни импринтинга, которые в свою очередь делятся на генные и хромосомные, всего в настоящее время насчитывают 24 нозологии.

При болезнях генного импринтинга наблюдается моноаллельная экспрессия в локусах хромосом одного из родителей. Причиной являются точечные мутации в генах, дифференцированно экспрессирующихся в зависимости от материнского и отцовского происхождения и приводящих к специфическому метилированию цитозиновых оснований в молекуле ДНК. К ним относят: синдром Прадера-Вилли (делеция в отцовской хромосоме 15) — проявляется черепно-лицевым дисморфизмом, низким ростом, ожирением, мышечной гипотонией, гипогонадизмом, гипопигментацией и задержкой умственного развития; синдром Ангельмана (делеция критического района, находящегося в 15-й материнской хромосоме), основными признаками которого являются микробрахицефалия, увеличенная нижняя челюсть, выступающий язык, макростомия, редкие зубы, гипопигментация; синдром Беквитта-Видемана (нарушение метилирования в коротком плече 11-й хромосомы), проявляющийся классической триадой, включающей макросомию, омфалоцеле макроглоссию и др. .

К числу важнейших факторов, влияющих на эпигеном, относятся питание, физическая активность, токсины, вирусы, ионизирующая радиация и др. Особенно чувствительным периодом к изменению эпигенома является внутриутробный период (особенно охватывающий два месяца после зачатия) и первые три месяца после рождения. В период раннего эмбриогенеза геном удаляет большую часть эпигенетических модификаций, полученных от предыдущих поколений. Но процесс репрограммирования продолжается в течение всей жизни .

К заболеваниям, где нарушение генной регуляции является частью патогенеза, можно отнести некоторые виды опухолей, сахарный диабет, ожирение, бронхиальную астму, различные дегенеративные и другие болезни .

Эпигоном при раке характеризуется глобальными изменениями в метилировании ДНК, модификации гистонов, а также изменением профиля экспрессии хроматин-модифицирующих ферментов.

Опухолевые процессы характеризуются инактивацией посредством гиперметилирования ключевых генов-супрессоров и посредством гипометилирования активацией целого ряда онкогенов, факторов роста (IGF2, TGF) и мобильных повторяющихся элементов, расположенных в районах гетерохроматина .

Так, в 19% случаев гипернефроидные опухоли почки ДНК островков СрG была гиперметилированной, а при раке груди и немелкоклеточной карциноме легких выявлена взаимосвязь между уровнями гистонового ацетилирования и экспрессией супрессора новообразований — чем ниже уровни ацетилирования, тем слабее экспрессия гена.

В настоящее время уже разработаны и внедрены в практику противоопухолевые лекарственные препараты, основанные на подавлении активности ДНК-метилтрансфераз, что приводит к снижению метилирования ДНК, активации генов-супрессоров опухолевого роста и замедлению пролиферации опухолевых клеток. Так, для лечения миелодиспластического синдрома в комплексной терапии применяют препараты децитабин (Decitabine) и азацитидин (Azacitidine) . С 2015 г. для лечения множественной миеломы в сочетании с классической химиотерапией применяют панобиностат (Panibinostat), являющийся ингибитором гистоновой деацитилазы . Данные препараты по данным клинических исследований оказывают выраженный положительный эффект на уровень выживаемости и качество жизни пациентов.

Изменения экспрессии тех или иных генов могут происходить и в результате действия на клетку факторов внешней среды. В развитии сахарного диабета 2-го типа и ожирения играет роль так называемая «гипотеза экономного фенотипа», согласно которой недостаток питательных веществ в процессе эмбрионального развития приводит к развитию патологического фенотипа . На моделях животных был выявлен участок ДНК (локус Pdx1), в котором под влиянием недостаточности питания снижался уровень ацетилирования гистонов, при этом наблюдались замедление деления и нарушения дифференцировки B-клеток островков Лангерганса и развития состояния, схожего с сахарным диабетом 2-го типа .

Активно развиваются и диагностические возможности эпигенетики. Появляются новые технологии, способные анализировать эпигенетические изменения (уровень метилирования ДНК, экспрессию микроРНК, посттрансляционные модификации гистонов и др.), такие как иммунопреципитация хроматина (CHIP), проточная цитометрия и лазерное сканирование, что дает основания полагать, что в ближайшее время будут выявлены биомаркеры для изучения нейродегенеративных заболеваний, редких, многофакторных болезней и злокачественных новообразований и внедрены в качестве методов лабораторной диагностики .

Итак, в настоящее время эпигенетика бурно развивается. С ней связывают прогресс в биологии и медицине.

Литература

  1. Ezkurdia I., Juan D., Rodriguez J. M. et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes // Human Molecular Genetics. 2014, 23 (22): 5866-5878.
  2. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome // Nature. 2001, Feb. 409 (6822): 860-921.
  3. Xuan D., Han Q., Tu Q. et al. Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages // Journal of Cellular Physiology. 2016, May; 231 (5): 1090-1096.
  4. Waddington C. H. The Epigenotpye // Endeavour. 1942; 18-20.
  5. Бочков Н. П. Клиническая генетика. М.: Гэотар.Мед, 2001.
  6. Jenuwein T., Allis C. D. Translating the Histone Code // Science. 2001, Aug 10; 293 (5532): 1074-1080.
  7. Коваленко Т. Ф. Метилирование генома млекопитающих // Молекулярная медицина. 2010. № 6. С. 21-29.
  8. Элис Д., Дженювейн Т., Рейнберг Д. Эпигенетика. М.: Техносфера, 2010.
  9. Taylor P. D., Poston L. Development programming of obesity in mammals // Experemental Physiology. 2006. № 92. P. 287-298.
  10. Льюин Б. Гены. М.: БИНОМ, 2012.
  11. Plasschaert R. N., Bartolomei M. S. Genomic imprinting in development, growth, behavior and stem cells // Development. 2014, May; 141 (9): 1805-1813.
  12. Wickner R. B., Edskes H. K., Ross E. D. et al. Prion genetics: new rules for a new kind of gene // Annu Rev Genet. 2004; 38: 681-707.
  13. Мутовин Г. Р. Клиническая генетика. Геномика и протеомика наследственной патологии: учеб. пособие. 3-е изд., перераб. и доп. 2010.
  14. Романцова Т. И. Эпидемия ожирения: очевидные и вероятные причины // Ожирение и метаболизм. 2011, № 1, с. 1-15.
  15. Bégin P., Nadeau K. C. Epigenetic regulation of asthma and allergic disease // Allergy Asthma Clin Immunol. 2014, May 28; 10 (1): 27.
  16. Martínez J. A., Milagro F. I., Claycombe K. J., Schalinske K. L. Epigenetics in Adipose Tissue, Obesity, Weight Loss, and Diabetes // Advances in Nutrition. 2014, Jan 1; 5 (1): 71-81.
  17. Dawson M. A., Kouzarides T. Cancer epigenetics: from mechanism to therapy // Cell. 2012, Jul 6; 150 (1): 12-27.
  18. Kaminskas E., Farrell A., Abraham S., Baird A. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes // Clin Cancer Res. 2005, May 15; 11 (10): 3604-3608.
  19. Laubach J. P., Moreau P., San-Miguel J..F, Richardson P. G. Panobinostat for the Treatment of Multiple Myeloma // Clin Cancer Res. 2015, Nov 1; 21 (21): 4767-4773.
  20. Bramswig N. C., Kaestner K. H. Epigenetics and diabetes treatment: an unrealized promise? // Trends Endocrinol Metab. 2012, Jun; 23 (6): 286-291.
  21. Sandovici I., Hammerle C. M., Ozanne S. E., Constância M. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes // Cell Mol Life Sci. 2013, May; 70 (9): 1575-1595.
  22. Szekvolgyi L., Imre L., Minh D. X. et al. Flow cytometric and laser scanning microscopic approaches in epigenetics research // Methods Mol Biol. 2009; 567: 99-111.

В. В. Смирнов 1 , доктор медицинских наук, профессор
Г. Е. Леонов

ФГБОУ ВО РНИМУ им. Н. И. Пирогова МЗ РФ, Москва



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!