Информационный женский портал

Эпигенетика: что управляет нашим генетическим кодом? Эпигеном: параллельная реальность внутри клетки Эпигенетические изменения

За последние десятилетия исследования показали, что прогрессивные изменения в эпигенетической информации сопровождают процесс старения делящихся и неделящихся клеток.

Функциональные исследования простых организмов и сложных как человек показывают, что эпигенетические изменения оказывают огромное влияние на процесс старения. Эти эпигенетические изменения происходят на различных уровнях, в том числе снижение массового уровня основных гистонов.

Гистоны – белки, связывающие непосредственно ДНК

У ребенка клетки в пределах каждого типа аналогичны. Во время жизни спорадически эпигенетическая информация меняется в зависимости от экзогенных и эндогенных факторов (внешних условий). В результате ненормального состояния хроматина характерны различные варианты изменения ДНК, включая мутации ДНК.

Биологическая предрасположенность старения

Старение организма – сложный многофакторный биологический процесс, общий для всех живых организмов. Он проявляется постепенным снижением нормальных физиологических функций в зависимости от времени. Биологическое старение организма имеет важное значение для здоровья человека, потому что с возрастом увеличивается восприимчивость ко многим болезням, включая рак, метаболические расстройства, такие как диабет, сердечно-сосудистые нарушения и нейродегенеративные заболевания. С другой стороны, старение клеток, также называемое репликативная деградация, является специализированным процессом и рассматривается как потенциальный эндогенный противоопухолевый механизм при котором происходит необратимый рост потенциальных онкогенных стимулов. Клеточное старение носит много общего с процессом старения, но и показывает отличительные черты. Хотя причины старения недостаточно изучены, продолжаются усилия, чтобы очертить пути долголетия.

В последние годы большие успехи достигнуты в ходе многочисленных исследований, что эффективно проявляется на клеточных и молекулярных признаках старения. Среди этих признаков эпигенетические изменения являются одними из важнейшим механизмов ухудшения функции клеток, наблюдаемые при старении и возраст-зависимых заболеваний.

Эпигенетика изучает закономерности изменения генов

По определению эпигенетика представляет обратимый наследственный механизм который происходит без какого-либо изменения базовой последовательности ДНК, а также происходит репарация ДНК.

Репарация ДНК – способность исправлять повреждения

Хотя хромосомы в геноме несут в себе генетическую информацию, эпигеном, ответственным за функциональное использование и стабильность является генотип с фенотипом – общими характеристиками. Эти эпигенетические изменения могут быть спонтанными или под влиянием внешних или внутренних воздействий. Эпигенетика потенциально служит недостающим звеном, чтобы объяснить, почему картина деградации отличается от двух генетически идентичных особей, таких, как однояйцовые близнецы, или же, в животном мире, между животными с одинаковой генетической структурой, например, матки и рабочих пчел.

Исследования долголетия населения показали, что генетические факторы могут объяснить от 20 до 30% различий наблюдаемых в продолжительности жизни близнецов, большинство остального разброса возникло через эпигенетическое изменение в течение своей жизни – различное влияние окружающей среды, включая питание.

Например, различные дифференциальные изменения хранимой эпигенетической информации создает поразительный контраст во внешности, репродуктивном поведении и продолжительности жизни рабочих пчел и матки, несмотря на идентичное содержание ДНК.

Таким образом, эпигенетика открывает большие перспективы для выбора лечебных мероприятий при генетических изменениях, которые в настоящее время технически необратимы в организме человека. Соответственно, определение и понимание эпигенетики и эпигенетических изменений, которые происходят во время старения, является основной областью исследования, которое может проложить путь к разработке новых терапевтических подходов к задержке старения и возрастных заболеваний.

Эпигенетические изменения при старении

Существуют различные типы эпигенетической информации, закодированной в наш эпигеном, включая, но не ограничиваясь наличием или отсутствием гистонов на какой-либо конкретной последовательности ДНК.

Эти различные типы эпигенетической информации составляют наш эпигеном и являются важными определяющими факторами функционирования и судьбу всех клеток и тканей организма как одноклеточных, так и многоклеточных организмов. Несомненно, каждый из этих различных видов эпигенетической информации является функционально значимым для процесса старения.

Все больше свидетельств в последние годы также явно указывают на структуру хроматина, который несет много эпигенетической информации, как основного игрока в процессе старения. Основная единица структуры хроматина является нуклеос, который состоит из 147 пар оснований ДНК обернутых вокруг гистонов. Упаковка геномной ДНК в высокоорганизованную структуру хроматина регулирует все геномные процессов в ядре, в том числе репликацию ДНК, транскрипцию, рекомбинацию и репарацию ДНК, контролируя доступ к ДНК.

Хроматин – вещество хромосом

Исследования на людях и различных моделей деградации свидетельствуют о прогрессирующей потери конфигурации при старении хромосомной архитектуры, целостность генома и экспрессия генов. Исследования подтвердили, что все эти эффекты в основном сохраняется на всем пути от одноклеточных организмов, таких как дрожжи, до сложных многоклеточных как человек. Эти сохраняющиеся механизмы помогают получить более четкое представление о процессе старения. Эпигенетические изменения в значительной степени влияют на процесс старения для последующих достижений в области эпигенетики и выявления возможных перспективных направлений.

Сокращение гистона при старении

Репликативное нарушение сопровождается потерей примерно половина основных гистоновых белков.

Гистоны – белки ДНК

Резкое снижение основных гистоновых белков обусловлено снижением синтеза белков гистонов. У человека, снижение синтеза новых гистонов во время деградации является следствием роста укороченной , которые активируются в ответ на повреждение ДНК, потенциально объясняя механизм укорочения теломер ограничением числа делений клеток. Следовательно, потери основных гистонов может быть более обобщенное явление, наблюдаемое с возрастом у многих организмов.

Процесс старения, несомненно, является сложным. В организме жизни, старение клетки претерпевает множество изменений и происходит накопление повреждений макромолекул. Фенотип старения проявляется путем суммирования изменений различных сигналов.

Генетические и экологические изменения однозначно важно расшифровать для действия конкретного фактора на процесс долголетия. Становится очевидным механистически, что многие из тех факторов, которые влияют на продолжительность жизни, действуют главным образом путем модификации эпигенома. Несомненно, эпигенетическое влияние на процессы старения должны быть включены в нашем нынешнем понимании старения.

Старение клетки

Молодые здоровые клетки поддерживают эпигенетическое состояние, что способствует образованию компактной структуры гистона и регуляции основных биологических процессов. Однако старение клетки испытывают изменения во всех аспектах. Обратимый характер эпигенетических механизмов позволяет восстановить или обратить вспять некоторые из этих фенотипов для достижения более молодой клетки. В то время как некоторые молекулярные изменения при старении могут быть классифицированы как причина старения, другие изменения просто сопровождают процесс старения. Однако, характеризуя причины и последствия деградации, нужно внимательно проанализировать экспериментальные результаты, поскольку большинство соответствующих путей взаимосвязаны.

Постоянное сочетание функционального анализа и молекулярного анализа в разных возрастных группах, у разных организмов и разных типах тканей даст всю необходимую информацию чтобы постичь этот эволюционно законсервированный основной процесс с целью разработки терапевтических мероприятий, чтобы противодействовать возраст-индуцированным осложнениям. Центральное понятие складывается для разработки эпигенетических препаратов или даже эпигенетического питания.

Таким образом, основные проблемы, которые будут доминировать на поле в ближайшем будущем будет достижение иерархического понимания того, как эпигенетика влияет на процесс старения и понимание долгосрочных эффектов лечебных вмешательств на эпигеном в стареющем человеке, учитывая взаимосвязанность эпигенетических механизмов.
Несколько важные выводы вытекают из этих исследований: генетическая предрасположенность старения 20-30 %, а остальное в нашей жизни во многом определяется питанием и другими воздействиями внешней среды.

Результаты обеспечивают лучшее понимание механизмов вовлеченных в процесс старения. Учитывая обратимый характер эпигенетической информации, исследования подчеркивают огромные возможности для терапевтического вмешательства при старении и возраст-ассоциированных заболеваний, включая рак.

В журнале «The Lancet» («Ланцет»), ведущем медицинском журнале, в 2010 году была опубликована критическая статья о синдроме дефицита внимания и гиперактивности (СДВГ) и наследственности.

Авторы этой статьи сильно критиковали тот факт, что фармацевты и консервативные медики сознательно и заведомо неправильно общаются с пациентом, когда речь идет о таком термине, как наследственность. Людям внушают, что это заболевание является наследственным, а, следовательно, неизлечимым. Идея этой стратегии заключается в развитии терапевтической зависимости, которая очень удобна фармацевтической промышленности для продажи лекарственных препаратов.

Благодаря эпигенетике мы знаем, что СДВГ является эпигенетическим заболеванием. Другими словами, СДВГ вызван не фатальным наследственным фактором (ошибками в ДНК), а обратимым взаимодействием генов с окружающей их средой. Это объясняет тот факт, что взрослые и дети с синдромом гиперактивности наблюдают быстрое улучшение всех симптомов при изменении своего рациона питания.

Генетика – наука, которая описывает наследственность на основе необратимых ошибок в записи ДНК.

Эпигенетика – это наука, которая занимается исследованием влияния внешних факторов на функционирование генов. Эпигенетика изучает суть проблемы, особенно ошибки воспроизведения (синтеза) белков.

Нутригеномика является специализацией в эпигенетике и исследует влияние питания на функционирование генов.

Генетика и эпигенетика, таким образом, имеют различные взгляды на проблему пациента. В генетике пациент является «жертвой» своей болезни, в этом случае мы можем только держать «под контролем» ситуацию. В эпигенетике ставится акцент на причинные факторы. Это означает, что при изменении условий окружающей среды пациент может снова получить контроль над своим здоровьем.

Генетические и эпигенетические заболевания

Генетическое заболевание, вызванное дефектом того или иного гена, относится к моногенетическим заболеваниям. Это означает, что заболевание вызвано одним дефектным геном. Ген состоит из специфических кодов, которые мы называем ДНК. В этих кодах могут возникать ошибки (мутации). Одна такая мутация может лежать в корне наследственного моногенетического заболевания.

В отличие от генетических заболеваний эпигенетические нарушения не вызываются мутацией ДНК, а возникают под влиянием факторов окружающей среды, таких как: пища, травматический опыт, пренатальный стресс, различные химические вещества. Если говорить в молекулярных терминах, то все эти окружающие факторы могут выключить или включить работу специфических генов. Генетические заболевания («орфографические ошибки» в записи ДНК) встречаются в 0,5 % от всех наследственных заболеваний. Генетические заболевания, как правило, необратимы (например, синдром Дауна).

Эпигенетические заболевания – отклонения в работе гена, при которых ДНК остается неповрежденным. Эпигенетическое заболевание может возникнуть двумя способами.

  1. Первый способ – врожденный (в утробе матери или при ретрансляции нездоровых генов от отца или от матери).
  2. Второй способ – приобретенное состояние, в котором у кого-то, например, развивается диабет типа 2 при нездоровом образе жизни. Второй способ относится к воздействиям извне – эпигенетический фактор, например, несбалансированное питание или употребление наркотиков. Эта категория также включает в себя большинство психических и хронических заболеваний, которые, как правило, обратимы. Как только человек восстанавливает работу генов (например, путем использования соответствующей диеты), симптомы исчезают.

Синдром дефицита внимания и гиперактивности (СДВГ) — о коррекции с точки зрения интегративной медицины.

Учебные материалы к изучению и применению на практике:

Синдром дефицита внимания и гиперактивности (СДВГ) - о коррекции с точки зрения интегративной медицины. Подробности
Ох, уж эти «неудобные» дети. Подробности
Здоровье наших детей: Аутизм, Тяжелые металлы, Синдром гиперактивности. Подробности

Интересная статья? Ставь лайки, пиши комменты, делись с друзьями!!!


Секвенирование ДНК генома человека и геномов многих модельных организмов вызвало в последние несколько лет значительное возбуждение в биомедицинском сообществе и среди обычной публики. Эти генетические "синьки", демонстрирующие общепринятые правила менделевской наследственности, оказываются теперь легко доступными для тщательного анализа, открывая дверь для более глубокого понимания биологии человека и его болезней. Эти знания порождают также новые надежды на новые лечебные стратегии. Тем не менее, многие фундаментальные вопросы остаются без ответа. Например, как осуществляется нормальное развитие, при том что каждая клетка обладает одной и той же генетической информацией и все же следует своим особым путем развития с высокой временной и пространственной точностью? Каким образом клетка решает, когда ей делиться и дифференцироваться, а когда сохранять неизменной клеточную идентичность, реагируя и проявляя себя согласно своей нормальной программе развития? Ошибки, случающиеся в вышеупомянутых процессах, могут вести к возникновению таких болезненных состояний, как рак. Закодированы ли эти ошибки в ошибочных "синьках", которые мы унаследовали от одного или обоих родителей, или же имеются какие-то другие слои регуляторной информации, которые не были правильно считаны и декодированы?

У человека генетическая информация (ДНК) организована в 23 пары хромосом, состоящих из примерно 25ООО генов. Эти хромосомы можно сравнить с библиотеками, содержащими разные наборы книг, которые в совокупности обеспечивают инструкции для развития целого человеческого организма. Нуклеотидная последовательность ДНК нашего генома состоит примерно из (3 х на 10 в степени 9) оснований, сокращенно обозначаемых в этой последовательности четырьмя буквами A, С, G и Т, которые образуют определенные слова (гены), предложения, главы и книги. Однако чем же диктуется, когда именно и в каком порядке эти разные книги нужно читать, остается далеко не ясным. Ответ на этот экстраординарный вызов заключается, вероятно, в том, чтобы выяснить, каким образом клеточные события скоординированы в процессе нормального и ненормального развития.

Если просуммировать все хромосомы, молекула ДНК у высших эукариот имеет длину около 2 метров и, следовательно, должна быть максимально сконденсирована - примерно в 10ООО раз, - чтобы поместиться в клеточном ядре - том компартменте клетки, в котором хранится наш генетический материал. Накручивание ДНК на "шпульки" из белков, так называемых гистоновых белков , обеспечивает элегантное решение этой проблемы упаковки и дает начало полимеру, в котором повторяются комплексы белок:ДНК и который известен как хроматин . Однако в процессе упаковки ДНК для лучшего соответствия ограниченному пространству задача усложняется - во многом так же, как при расстановке слишком большого числа книг на библиотечных полках: становится все труднее и труднее найти и прочесть книгу по выбору, и, таким образом, становится необходимой система индексирования.

Такое индексирование обеспечивается хроматином как платформой для организации генома. Хроматин не однороден по своей структуре; он выступает в различных формах упаковки - от фибриллы высококонденсированного хроматина (известного как гетерохроматин) до менее компактизированной формы, где гены обычно экспрессируются (известной как эухроматин). В основной полимер хроматина могут вводиться изменения путем включения необычных гистоновых белков (известных как варианты гистонов), измененных структур хроматина (известных как ремоделинг хроматина) и добавления химических "флажков", меток к самим гистоновым белкам (известного как ковалентные модификации). Более того, добавление метальной группы непосредственно к цитозиновому основанию (С) в матрице ДНК (известное как метилирование ДНК) может создавать сайты для присоединения белков, чтобы изменить состояние хроматина или повлиять на ковалентную модификацию резидентных гистонов.

Полученные в последнее время данные позволяют предполагать, что некодирующие РНК могут "направлять" переход специализированных участков генома в более компактные состояния хроматина. Таким образом, на хроматин следует смотреть как на динамический полимер, который может индексировать геном и усиливать сигналы, поступающие из внешней среды, определяя в конечном счете, какие гены должны экспрессироваться, а какие нет.

В совокупности эти регуляторные возможности наделяют хроматин неким организующим геномы началом, которое известно как "эпигенетика". В некоторых случаях паттерны эпигенетического индексирования оказываются наследующимися в ходе клеточных делений, обеспечивая тем самым клеточную "память", которая может расширять потенциал наследуемой информации, заключенный в генетическом (ДНК) коде. Таким образом, в узком смысле слова эпигенетику можно определять как изменения в транскрипции генов, обусловленные модуляциями хроматина, которые не являются результатом изменений в нуклеотидной последовательности ДНК.

В этом обзоре представлены основные концепции, связанные с хроматином и эпигенетикой, и обсуждения, каким образом эпигенетический контроль может дать нам ключ для решения некоторых давнишних тайн - таких как клеточная идентичность, опухолевый рост, пластичность стволовых клеток, регенерация и старение. По мере того, как читатели будут "продираться" через последующие главы, мы советуем им обратить внимание на широкий спектр экспериментальных моделей, которые, по- видимому, имеют эпигенетическую (неДНКовую) основу. Выраженное в механистических терминах понимание того, как функционирует эпигенетика, будет, вероятно, иметь важные и далеко идущие последствия для биологии и болезней человека в эту "постгеномную" эру.

Эпигенетика – направление генетики, сравнительно недавно оформившееся в самостоятельную область исследований. Но уже сегодня этамолодая динамичная наука предлагает революционный взгляд на молекулярные механизмы развития живых систем .

Одна из наиболее дерзких и вдохновляющих эпигенетических гипотез о том, что активность многих генов подвержена влиянию извне, сейчас находит подтверждение во множестве экспериментов на модельных животных. Исследователи осторожно комментируют их результаты, но не исключают, что и Homo sapiens не в полной мере зависит от наследственности, а значит может на нее целенаправленно воздействовать.

В перспективе, если ученые окажутся правы и им удастся подобрать ключи к механизмам управления генами, человеку станут подвластны физические процессы, происходящие в организме. В их числе вполне может оказаться и старение.

На рис. механизм РНК- интерференции.

Молекулы дцРНК могут представлять собой РНК-шпильку или две спаренные комплементарные друг другу цепи РНК.
Длинные молекулы дцРНК нарезаются (процессируются) в клетке на короткие ферментом Dicer : один из его доменов специфически связывает конец молекулы дцРНК (отмечен звездочкой), при этом другой — производит разрывы (отмечены белыми стрелками) в обеих цепях дцРНК.

В результате образуется двунитевая РНК длиной 20-25 нуклеотидов (siРНК), а Dicer переходит к следующему циклу разрезания дцРНК, связываясь с ее новообразованным концом.


Эти siРНК могут включаться в состав комплекса, содержащего белок Argonaute (AGO) . Одна из цепей siРНК в комплексе с белком AGO находит в клетке комплементарные ей молекулы матричной РНК (мРНК). AGO разрезает молекулы мРНК-мишени, в результате чего мРНК деградирует, или останавливает трансляцию мРНК на рибосоме. Короткие РНК могут также подавлять транскрипцию (синтез РНК) гомологичного им по нуклеотидной последовательности гена в ядре.
(рисунок, схема и комментарий / журнал «Природа» №1, 2007 г.)

Возможны и другие, пока не известные, механизмы.
Разница между эпигенетическими и генетическими механизмами наследования в их стабильности, воспроизводимости эффектов. Генетически обусловленные признаки могут воспроизводиться неограниченно долго, пока в соответствующем гене не возникает определенное изменение (мутация).
Индуцированные определенными стимулами эпигенетические изменения обычно воспроизводятся в ряду клеточных поколений в пределах жизни одного организма. Когда они передаются в следующие генерации, то могут воспроизводиться не более 3-4 поколений, а потом, если индуцировавший их стимул исчезает, постепенно сходят на нет.

А как это выглядит на молекулярном уровне? Эпигенетические маркеры , как принято называть эти химические комплексы, находятся не в нуклеотидах, образующих структурную последовательность молекулы ДНК, а на них и непосредственно улавливают определенные сигналы?

Совершенно верно. Эпигенетические маркеры действительно находятся не В нуклеотидах а НА них (метилирование) либо ВНЕ их (ацетилирование гистонов хроматина, микроРНК).
То, что происходит при передаче этих маркеров в следующие поколения, лучше всего объяснить, используя в качестве аналогии новогоднюю елку. Переходящие из поколения в поколение «игрушки» (эпигенетические маркеры) полностью снимаются с нее в процессе формирования бластоциста (8-клеточного зародыша), а потом, в процессе имплантации «надеваются» на те же места, где находились раньше. Это было известно уже давно. А вот то, что стало известно недавно, и что полностью перевернуло наши представления в биологии, имеет отношение к эпигенетическим модификациям, приобретенным на протяжении жизни данного организма.

Например, если у организма под влиянием определенного воздействия (теплового шока, голодания и т.д.), происходит устойчивая индукция эпигенетических изменений («покупка новой игрушки»). Как предполагалось раньше, подобные эпигенетические маркеры бесследно стираются при оплодотворении и образовании зародыша и, таким образом, не передаются потомкам. Оказалось, что это не так. В большом количестве работ последних лет эпигенетические изменения, индуцированные средовыми стрессами у представителей одного поколения, обнаруживались у представителей 3-4 последующих поколений. Это свидетельствует о возможности наследования приобретенных признаков, что до последнего времени считалось абсолютно невозможным.

Каковы важнейшие факторы, вызывающие эпигенетические изменения?

Это все факторы, действующие на протяжении чувствительных (сенситивных) этапов развития. У человека это весь период внутриутробного развития и первые три месяца после рождения. К важнейшим можно отнести питание, вирусные инфекции, курение матери во время беременности, недостаточная наработка витамина D (при инсоляции), материнский стресс.
То есть, они увеличивают адаптацию организма к изменяющимся условиям. А какие «мессенджеры» существуют между факторами окружающей среды и эпигенетическими процессами – пока никому не известно.

Но, кроме того, есть данные, говорящие о том, что наиболее «сенситивный» период, во время которого возможны основные эпигенетические модификации – периконцептуальный (первые два месяца после зачатия). Возможно, действенными могут оказаться попытки направленного вмешательства в эпигенетические процессы даже до зачатия, то есть на половые клетки еще до образования зиготы. Однако эпигеном остается достаточно пластичным и после окончания этапа эмбрионального развития, некоторые исследователи пытаются его корректировать и у взрослых людей.

Например, Мин Джу Фан (Ming Zhu Fang ) и ее коллеги из Университета Рутгерса в Нью-Джерси (США) обнаружили, что у взрослых людей при помощи определенного компонента зеленого чая (антиоксидант — эпигаллокатехингаллат (EGCG)) можно за счет деметилирования ДНК активизировать гены-супрессоры (подавители) опухолевого роста.

Сейчас в США и в Германии в стадии разработки уже находятся около десятка препаратов, в основу создания которых легли результаты недавних исследований эпигенетиков в диагностике раковых заболеваний.
А какие вопросы в эпигенетике сейчас являются ключевыми? Как их решение может продвинуть изучение механизмов (процесса) старения?

Я считаю, что процесс старения по своей сути является эпигенетическим (« как этап онтогенеза»). Исследования в этой области начались только в последние годы, но, если они увенчаются успехом, возможно, человечество получит новое мощное средство для борьбы с болезнями и продления жизни.
Ключевыми сейчас являются вопросы эпигенетической природы заболеваний (например, рака) и разработка новых подходов к их предупреждению и лечению.
Если удастся изучить молекулярные эпигенетические механизмы возрастных заболеваний, можно будет успешно противодействовать их развитию.

Ведь, например, рабочая пчела живет 6 недель, а пчеломатка – 6 лет.
При полной генетической идентичности они различаются только тем, что будущую пчеломатку во время развития кормят маточным молочком на несколько дней больше, чем обычную рабочую пчелу.

В результате у представителей этих пчелиных каст формируются несколько отличные эпигенотипы. И, несмотря на внешнее и биохимическое подобие, длительность их жизни различается в 50 раз!

В процессе исследований в 60-е годы было показано, что уменьшается с возрастом. Но удалось ли ученым продвинуться в ответе на вопрос: почему это происходит?

Есть масса работ, свидетельствующих о том, что особенности и темп старения зависят от условий раннего онтогенеза. Большинство связывает это именно с корригировкой эпигенетических процессов.

Метилирование ДНК действительно уменьшается с возрастом, почему это происходит – пока не известно. Одна из версий – что это следствие адаптации, попытка организма приспособиться как к внешним стрессам, так и ко внутреннему «сверхстрессу» — старению.

Возможно, что «включающиеся» при возрастном деметилировании ДНК – дополнительный адаптивный ресурс, одно из проявлений процесса витаукта (как его назвал выдающийся геронтолог Владимир Вениаминович Фролькис) — физиологического процесса, противодействующего старению.


Чтобы произвести изменения на генном уровне, нужно выявить и заменить мутировавшую «букву» ДНК, может быть участок генов. Пока наиболее перспективный путь для осуществления таких операций — биотехнологический. Но до сих пор это экспериментальное направление и особых прорывов в нем пока нет. Метилирование более пластичный процесс, его проще изменять — в том числе, с помощью фармакологических препаратов. Возможно ли научиться избирательно контролировать ? Что еще для этого еще предстоит сделать?

Метилирование – вряд ли. Оно неспецифично, действует на все «оптом». Можно научить обезьяну лупить по клавишам пианино, и она будет извлекать из него громкие звуки, но «Лунную сонату» исполнит вряд ли. Хотя есть примеры, когда при помощи метилирования удавалось изменить фенотип организма. Наиболее известен пример с мышами – носителями мутантного гена агути (я его уже приводил). Реверсия к нормальному цвету шерсти происходила у этих мышей, потому, что «дефектный» ген был у них «выключен» за счет метилирования.

Но избирательно влиять на экспрессию генов можно, и для этого прекрасно подходят интерферирующие РНК, которые действуют высокоспецифично, только на «собственные» . Такие работы уже проводятся.

Например, недавно американские исследователи пересаживали мышам, у которых была подавлена функция иммунной системы, опухолевые человеческие клетки, которые могли свободно размножаться и метастазировать в иммунодефицитных мышиных организмах. Ученым удалось определить экспрессированные в метастазирующих клетках и, синтезировав соответствующую интерферирующую РНК и введя ее мышам, заблокировать синтез «раковой» информационной РНК и, соответсвенно, подавить опухолевый рост и метастазирование.

То есть, исходя из современных исследований, можно говорить о том, что в основе различных процессов, происходящих в живых организмах, лежат эпигенетические сигналы. Что они из себя представляют? Какие факторы влияют на их формирование? Удается ли ученым эти сигналы дешифровать?

Сигналы могут быть самыми разными. При развитии и стрессе – это сигналы прежде всего гормональной природы, но есть данные, что к экспрессии генов белков теплового шока (HSP70) в культуре клеток может приводить даже влияние низкочастотного электромагнитного поля определенной частоты, интенсивность которого в миллион (!) раз меньше естественного электромагнитного поля. В данном случае это поле, конечно же, действует не «энергетически», а является неким сигнальным «триггером», «запускающим» экспрессию гена. Тут многое еще загадочно.

Например, недавно открытый bystander effect («эффект свидетеля»).
Вкратце его суть такова. Когда мы облучаем культуру клеток, у них возникают реакции широкого спектра, от хромосомных аберраций до радиоадаптивных реакций (способности выдерживать большие дозы облучения). Но если мы удалим все облученные клетки и в оставшуюся питательную среду перенесем другие, необлученные, у них проявятся те же реакции, хотя их никто не облучал.


Предполагается, что облученные клетки выделяют в среду некие эпигенетические «сигнальные» факторы, которые и вызывают в необлученных клетках аналогичные изменения. Какова природа этих факторов – пока никто не знает.

Большие ожидания в улучшении качества жизни и продолжительности жизни связаны с научными достижениями в области изучения стволовых клеток. Удастся ли эпигенетике оправдать возлагающиеся на нее надежды в перепрограммировании клеток? Есть ли для этого серьезные предпосылки?

Если будет разработана надежная методика «эпигенетического перепрограммирования» соматических клеток в стволовые, это, безусловно, окажется революцией в биологии и медицине. Пока в этом направлении сделаны только первые шаги, но они обнадеживают.

Известная сентенция: человек — то, что он ест. Какой эффект оказывает еда на наши ? Например, генетики из Университета Мельбурна , изучавшие механизмы работы клеточной памяти, обнаружили, что после получения одноразовой дозы сахара, клетка в течение нескольких недель хранит соответствующий химический маркер.

Есть даже специальный раздел эпигенетики — Nutritional Epigenetics , занимающийся именно вопросом зависимости эпигенетических процессов от особенностей питания. Особенно важны эти особенности на ранних стадиях развития организма. Например, при вскармливании младенца не материнским молоком, а сухими питательными смесями на основе коровьего молока, в клетках его тела происходят эпигенетиеские изменения, которые, фиксируясь по механизму импринтинга (запечатления), приводят со временем к началу аутоиммунного процесса в бета-клетках поджелудочной железы и, как следствие, заболеванию диабетом I типа.


На рис. развитие диабета (рис. увеличивается при нажатии курсором). При таких аутоиммунных заболеваниях, как диабет 1-го типа, иммунная система человека атакует его собственные органы и ткани.
Некоторые из аутоантител начинают вырабатываться в организме задолго до появления первых симптомов болезни. Их выявление может помочь в оценке риска развития заболевания.

(рисунок из журнала «В МИРЕ НАУКИ» , июль 2007 № 7)

А неполноценное (ограниченное по количеству калорий) питание в период внутриутробного развития – прямой путь к ожирению во взрослом возрасте и диабету II типа.

Это означает, что человек все-таки несет ответственность не только за себя, но и за своих потомков: детей, внуков, правнуков?

Да, конечно, причем в значительно большей степени, чем это было принято считать раньше.

А какова эпигенетическая составляющая в, так называемом, геномном импринтинге?

При геномном импринтинге один и тот же ген фенотипически проявляется по-разному в зависимости от того, от отца или матери он попадает к потомку. То есть, если ген наследуется от матери, то он уже метилирован и не экспрессируется, тогда как ген, наследуемый от отца не метилирован, и экспрессируется.

Наиболее активно изучается геномный импринтинг при развитии различных наследственных заболеваний, которые передаются только от предков определенного пола. Например, ювенильная форма болезни Гентингтона проявляется только при наследовании мутантного аллеля от отца, а атрофическая миотония — от матери.
И это при том, что сами , вызывающие эти заболевания, абсолютно одинаковы независимо от того, наследуются ли они от отца или матери. Различия заключаются в «эпигенетической предыстории», обусловленной их пребыванием в материнском или, наоборот, отцовском, организмах. Другими словами, они несут «эпигенетический отпечаток» пола родителя. При нахождении в организме предка определенного пола они метилируются (функционально репрессируются), а другого – деметилируются (соответственно, экспрессируются), и в таком же состоянии наследуются потомками, приводя (или не приводя) к возникновению определенных заболеваний.

Вы занимались изучением влияния радиации на организм. Известно, что малые дозы радиации положительно влияют на продолжительность жизнь плодовых мушек дрозофил . Возможна ли тренировка человеческого организма малыми дозами облучения? Александра Михайловича Кузина , высказанному им еще в 70-х годах прошлго века, к стимулирующему эффекту приводят дозы, примерно на порядок большие фоновых.

В Керале, например, уровень фона не в 2, а в 7,5 раз превышает «среднеиндийский» уровень, но ни заболеваемость раком, ни смертность от него не отличаются от общей индийской популяции.

(См., напр., последнее на эту тему: Nair RR, Rajan B, Akiba S, Jayalekshmi P, Nair MK, Gangadharan P, Koga T, Morishima H, Nakamura S, Sugahara T. Background radiation and cancer incidence in Kerala, India-Karanagappally cohort study. Health Phys. 2009 Jan;96(1):55-66 )

В одном из исследований Вы проанализировали данные по датам рождения и смерти 105 тысяч киевлян, которые умерли в период с 1990 по 2000 гг. Какие выводы были сделаны?

Наибольшей оказалась продолжительность жизни людей, родившихся в конце года (особенно в декабре), наименьшей – у «апрельских-июльских». Различия между минимальными и максимальными среднемесячными значениями оказались очень велики и достигали 2,6 года у мужчин и 2,3 года у женщин. Результаты, полученные нами, говорят о том, что то, сколько человек проживет, в значительной степени зависит от сезона года, в который он родился.

Возможно ли прикладное применение полученной информации?

Какими могли бы быть рекомендации? Например, зачинать детей весной (лучше всего – в марте), чтобы они были потенциальными долгожителями? Но это абсурд. Природа не дает одним все, а другим – ничего. Так и с «сезонным программированием». Например, в исследованиях, осуществленных во многих странах (Италии, Португалии, Японии), выявлено, что наивысшими интеллектуальными возможностями обладают школьники и студенты, родившиеся в конце весны – начале лета (по нашим данным – «короткожители»). Эти исследования демонстрируют бессмысленность “прикладных” рекомендаций по рождению детей в определенные месяцы года. А вот серьезным поводом для дальнейшего научного исследования механизмов, определяющих «программирование», а также поиска средств направленной коррекции этих механизмов с целью продления жизни в будущем, эти работы, безусловно, являются.

Один из пионеров эпигенетики в России, профессор МГУ Борис Ванюшин в своей работе «Материализация эпигенетики или Небольшие изменения с большими последствиями» написал, что век прошлый был веком генетики, а нынешний — век эпигенетики.

Что позволяет оценивать позиции эпигинетики так оптимистично?

После завершения программы «Геном человека» ученое сообщество было в шоке: оказалось, что информация о строении и функционировании человека заключена в приблизительно 30 тысячах генов (по разным оценкам, это всего около 8-10 мегабайт информации). Специалисты, которые работают в сфере эпигенетики, называют ее «второй информационной системой» и считают, что расшифровка эпигенетических механизмов контроля развития и жизнедеятельности организма приведет к революции в биологии и медицине.

Например, в ряде исследований уже удалось выявить типичные закономерности в таких рисунках. На их основе врачи могут диагностировать формирование онкозаболеваний на ранней стадии.
Но осуществим ли такой проект?

Да, конечно, хотя он очень затратный и вряд ли может быть реализован во время кризиса. А вот в перспективе – вполне.

Еще в 1970 году группа Ванюшина в журнале „Nature“ опубликовала данные о том, что регулирует клеточную дифференцировку, приводя к различиям в экспрессии генов. И Вы об этом говорили. Но если у организма в каждой клетке содержится один и тот же геном, то эпигеном у каждого типа клеток — свой, соответственно и ДНК метилирована по-разному. Учитывая, что типов клеток в человеческом организме порядка около двухсот пятидесяти — объем информации может быть колоссальным.

Именно поэтому проект «Эпигеном человека» и является очень сложным (хоть и не безнадежным) для реализации.

Он считает, что самые незначительные явления могут оказывать огромное влияние на жизнь человека: «Если окружающая среда играет такую роль в изменении нашего генома, тогда мы должны построить мост между биологическими и социальными процессами. Это абсолютно изменит наш взгляд на вещи».

Все настолько серьезно?

Конечно. Сейчас в связи с последними открытиями в области эпигенетики многие ученые говорят о необходимости критического переосмысления многих положений, которые казались либо незыблемыми, либо навсегда отвергнутыми, и даже о необходимости смены основополагающих парадигм в биологии. Подобная революция мышления, безусловно, может сказаться самым существенным образом на всех аспектах жизни людей, начиная от мировоззрения и стиля жизни и заканчивая взрывом открытий в биологии и медицине.

Информация о фенотипе содержится не только в геноме, но и в эпигеноме, который пластичен и может, изменяясь под воздействием определенных средовых стимулов, влиять на проявление генов – ПРОТИВОРЕЧИЕ ЦЕНТРАЛЬНОЙ ДОГМЕ МОЛЕКУЛЯРНОЙ БИОЛОГИИ, СОГЛАСНО КОТОРОЙ ПОТОК ИНФОРМАЦИИ МОЖЕТ ИДТИ ТОЛЬКО ОТ ДНК К БЕЛКАМ, НО НЕ НАОБОРОТ.
Индуцированные в раннем онтогенгезе эпигенетические изменения могут фиксироваться по механизму импринтинга и менять всю последующую судьбу человека (в том числе психотип, метаболизм, предрасположенность к заболеваниям и т.п.) – ЗОДИАКАЛЬНАЯ АСТРОЛОГИЯ.
Причиной эволюции, помимо случайных изменений (мутаций), отбираемых естественным отбором, являются направленные, адаптивные изменения (эпимутации) – КОНЦЕПЦИЯ ТВОРЧЕСКОЙ ЭВОЛЮЦИИ французского философа (Нобелевского лауреата по литературе, 1927 г.) Анри БЕРГСОНА.
Эпимутации могут передаваться от предков потомкам – НАСЛЕДОВАНИЕ ПРИОБРЕТЕННЫХ ПРИЗНАКОВ, ЛАМАРКИЗМ.

На какие актуальные вопросы предстоит ответить м в ближайшем будущем?

Как происходит развитие многоклеточного организма, какова природа сигналов, настолько точно определяющих время возникновения, структуру и функции различных органов тела?

Можно ли, влияя на эпигенетические процессы, изменять организмы в желательном направлении?

Можно ли за счет корректировки эпигенетических процессов предотвращать развитие эпигенетически обусловленных заболеваний, например, диабета и рака?

Какова роль эпигенетических механизмов в процессе старения, можно ли с их помощью продлевать жизнь?

Возможно ли, что непонятные в наше время закономерности эволюционирования живых систем (эволюция «не по Дарвину») объясняются вовлеченностью эпигенетических процессов?

Естественно, это только мой персональный перечень, у других исследователей он может отличаться.

Почему некоторые курильщики живут более ста лет, а люди, ведущие здоровый образ жизни, могут тяжело болеть? На эти вопросы может ответить эпигенетика - наука, исследующая изменение активности генов, не затрагивающих структуру ДНК. T&P публикует обзор книги немецкого нейробиолога Петера Шпорка об одной из самых перспективных научных дисциплин.

Появление эпигенетики

Петер Шпорк пишет о сравнительно молодой науке. Название «эпигенетика» появилось в 1942 году, когда Конрад Уоддингтон, биолог из Англии, заложивший основы системной биологии, предложил этот термин как среднее между «генетикой» и аристотелевским «эпигенезом» - учением о последовательном эмбриональном развитии. Мы знаем о классическом эксперименте Аристотеля с разбиванием куриных яиц - с помощью него философу удалось установить, что сначала в зародыше формируется сердце, а возникновение внутренних частей предшествует развитию наружных. В 40-х, когда ученым была еще непонятна физическая природа генома, предположение Уоддингтона о эпигенетическом ландшафте было революционным.

По аналогии с географическим ландшафтом, на котором есть реки, текущие от истока к устью, можно представить себе развитие организма как течение реки - исток в данном случае станет зачатием, а устье - зрелостью. Однако не стоит забывать о рельефе, по которому пролегает речное русло: этой метафорой можно обозначить внешние условия, которые влияют на развитие организма. Лавина, камнепад или даже землетрясение могут иначе направить течение реки. Приспосабливаясь к новым условиям, организм претерпевает мутации, что составляет основу изменчивости - важнейшую часть биологической эволюции.

«То, что клетки передают по наследству только свой геном, больше не отвечает научной действительности»

Петер Шпорк

Нейрофизиолог

В 60-х и 70-х началось активное изучение генов. Теперь мы все знаем, что многие гены владеют информацией о структуре клетки и способах ее функционирования и активны в течение всей жизни человека. Однако ученые столкнулись с тем, что многие гены работают непостоянно, а режим их включения зависит от внешних факторов. Как раз такими механизмами и занимается эпигенетика - наука, исследующая изменение активности генов, не затрагивающее структуру ДНК. Таким образом, мнение о том, что все функции человеческого организма обусловлены последовательностью цепочки ДНК, опровергается эпигенетикой. Иными словами, эпигенетика может объяснить, как окружающая среда может влиять на включение и выключение наших генов. Первая Нобелевская премия за открытия в области эпигенетики была присуждена только в 2006 году - это были ученые из США.

Второй код

Шпорк сравнивает человеческие гены с компьютерным «железом». Хорошо иметь дорогую видеокарту и мощный процессор. Но что насчет софта? Разве без него можно выполнить самое элементарное действие - набрать текст, посмотреть изображение? Эпигенетики занимаются как раз программным обеспечением нашего организма. В ближайшей перспективе ученые намерены исследовать, как, изменяя свой образ жизни, мы можем научиться управлять нашими генами и продлевать жизнь - свою и наших потомков.

Генетика и ее печально известная прикладная отрасль, евгеника, предполагали, что только генетический материал влияет на состояние развития организма. Рэнди Джертл , биолог из Дюкского университета (Дарем, США), опровергнул это с помощью наглядного эксперимента: он давал генетически идентичным лабораторным мышам во время беременности различный корм. Мыши, родившиеся от матерей, употребляющих в пищу корм с биодобавками, были здоровыми и бурыми, а мыши, лишенные такого корма, рождались желтыми и болезненными. Эти изменения будут в дальнейшем влиять на всю последующую жизнь животных: плохое питание отключило в них некоторые гены, определяющие цвет шерсти и сопротивляемость болезням. Гены эмбрионов на момент кормления были уже сформированными и не подвергались воздействию - следовательно, воздействию подвергалось что-то еще. Как раз этими механизмами воздействия и занимается эпигенетика - «над-генетика», изучающая эпигеномы, расположенные как бы над геномом клеток.

«Благодаря эпигеному клетки обладают памятью»

Ренато Паро

Профессор Швейцарской высшей технической школы Цюриха

Правда в том, что если бы только геном, состоящий из всего лишь четырех различных компонентов, своего рода «монтажная схема», определял бы наше развитие, то мы бы были все примерно одинаковые. «Даже шимпанзе мало чем отличались бы от нас», - пишет Шпорк. Именно благодаря эпигеному, «второму коду», наш организм способен выстраивать клетки разных типов - волоса, печени, мозга, - хотя в них один и тот же геном. Эпигеном, таким образом, - это указания насчет того, как управлять геномом. Именно он отвечает за активацию и дезактивацию определенных генов и программирует скорость старения клеток. Очевидно, что, если бы каждая клетка одновременно считывала все свои гены и синтезировала все возможные белки, организм не смог бы функционировать. То, чему нас учили в школе, что клетки передают по наследству только свой геном, больше не отвечает научной действительности. На самом деле клетки наследуют и эпигеном.

«Эпигенетические переключатели определяют, какие именно гены клетка в принципе может использовать, а какие - нет. Таким образом эпигеном создает грамматику, структурирующую текст жизни».

Петер Шпорк

Нейрофизиолог

Влияние эпигенетики на геронтологию огромно. Теперь ученые знают, что несмотря на существование неизменного генома, судьба человека в большой степени в его собственных руках. «Измените стиль жизни - и вы положите начало цепочке биохимических изменений, которые станут незаметно, но неуклонно помогать и вам, и, возможно, всем вашим потомкам до конца их жизни на Земле», - предлагает Шпорк. И, несмотря на то, что это высказывание походит на то, что обещают все мировые религии, оно имеет под собой строгие биологические основания.

После того как в 2003 году эпохально завершился проект «Геном человека», ученые столкнулись с новыми проблемами. Фармацевты уже надеялись на новые генные препараты, но оказалось, что сбой функции какого-то определенного гена редко приводит к развитию болезни, которую можно диагностировать заранее. Все оказалось куда сложнее, чем выглядело в начале. Ученые узнали, что геном не устойчивый текст. Число генов может увеличиваться, например, в 16 раз, а сами гены - модифицироваться, дробиться и снова состыковываться: такие гены называются транспозонами .

Ученые делали ставки на своеобразном генном тотализаторе - они должны были угадать, сколько генов будет у человека по окончанию исследований. Оценки разнились - количество генов прыгало от 27 до 160 тысяч. После окончания секвенирования генома человека в 2003 году выяснилось, что генетический код амебы в двести раз длиннее человеческого, - последний составляет лишь примерно 22 тысячи генов. Почему же сложность организмов не отражается в их ДНК? Или, может быть, у более сложных организмов ДНК более компактная? Но что тогда делать с дрожжами, у которых ДНК в двести раз короче человеческой?

Эпигенетика ответила на вопрос о том, как у человека может быть генов меньше, чем у амебы или сорняка: высшие организмы способны синтезировать из одной «схемы» множество вариантов белков. Иными словами, все дело в генной регуляции - она появляется только у сложных организмов, и чем она сложнее, тем разнообразнее устроена его жизнедеятельность. Таким образом, несмотря на небольшое количество генов, человек, благодаря своему эпигеному, гораздо сложнее других организмов. Этот же тезис эпигенетиков отвечает и на другой популярный вопрос: почему мы мало отличаемся от шимпанзе, если совпадение наших геномов - 98,7%? Несмотря на то, что различия в генетическом материале минимальны, эпигенетические различия - огромны.

«Раз окружающая среда влияет на изменение наших эпигеномов, разрыв между биологическими и социальными процессами практически ликвидируется. И это в корне меняет наш взгляд на жизнь»

Ведущий специалист Университета МакДжил, Монреаль

Еще один вопрос, который можно было задать эволюционным биологам еще несколько десятилетий назад, - как человек приспосабливается к внешней среде в долгосрочной перспективе? Ранее наука знала только о двух крайностях - эволюции, которая требует тысяч лет, и гормональных изменениях, работающих сверхбыстро. Однако между ними оказался немаловажный срединный механизм - эпигенетические переключатели. Именно они формируют наше приспособление к окружающей среде на срок, соизмеримый со сроком человеческой жизни. Особенно важно, что изменения, произведенные ими, будут действовать долгосрочно - даже если в клетку не будут поступать новые сигналы. Так становится понятнее, почему питание нашей матери или ранние детские переживания могут влиять на всю дальнейшую жизнь. Но не стоит думать, что эпигеном - абсолютно неподвижная система. Человек способен менять свойства своего организма, как в лучшую, так и в худшую сторону.

Как эпигеном действует на
бабочек, муравьев и пчел

Нужно заметить, что эпигенетическая система - привилегия не только человека. Петер Шпорк описывает, как в детстве он наблюдал за превращениями гусеницы бражника. Примитивная гусеница смогла заново переродиться в прекрасную бабочку с помощью эпигенетических изменений. За зиму миллиарды клеток гусеницы трансформировались - изменились ее метильные и ацетильные группы, перестроилась РНК, изменилась форма гистонов - все эти изменения имели отношение не к генетике, а к эпигенетике. В ДНК каждой клетки бражника существуют генетические коды и гусеницы и бабочки. Но переключение между двумя этими схемами полностью зависит от эпигенетического кода.

«Геном и белки функционируют как одна огромная библиотека: ДНК содержит тексты, а эпигенетические структуры выполняют функции библиотекарей, каталогов и указателей, распоряжающихся информацией и упорядочивающих ее».

Петер Шпорк

Нейрофизиолог

Другой пример важности эпигенома - медоносные пчелы, развивающиеся поначалу как одинаковые личинки. На момент, когда они выбираются из яиц, природой еще не решено, кто из них будет маткой, а кто - рабочей пчелой. Все они обладают потенциалом стать пчелиной королевой. За три дня после вылупления, когда пчелы-няньки кормят личинок маточным молоком, особи дифференцируются. Это напрямую зависит от питания - некоторых личинок постепенно переводят на корм из обычной пыльцы и нектара. Но других вплоть до окукливания кормят «королевским желе», которое содержит витамины и фолиевую кислоту , влияющие на эпигеном. В 2008 году группе австралийских исследователей удалось получить пчелиных маток без молочка - они только манипулировали эпигенетическими переключателями.

Влияние внешней среды и эпигеном важны и для муравьев. Самые большие из них - солдаты - в триста раз больше, чем садовники, которые ухаживают за грибами. Несмотря на такие различия, все эти муравьи - один вид и, мало того, «единоутробные» братья и сестры. Ученые склоняются к тому, что температура и влажность места, в котором развивается личинка муравья, и есть решающий фактор, определяющий его будущую «касту». Восприимчивый эпигеном муравьев, считывая сигналы внешней среды, включает различные гены, и муравей развивается одним из возможных способов.

Как эпигенетика позволит прожить дольше

Впрочем, для всего человечества актуальнее всего вопрос о том, как открытия эпигенетики повлияют на продолжительность жизни человека. «Почему от рака умирают люди, которые регулярно занимались спортом, никогда не курили и всю жизнь придерживались здорового питания? Почему одни уже в семьдесят лет страдают болезнью Альцгеймера, а другие встречают свой столетний юбилей в здравом уме и трезвой памяти?» - задается вопросами Петер Шпорк. Важно, что эпигенетические исследования показали - очень редко один измененный, «неправильный» ген отвечает за заболевание. Роль генов в заболеваниях ожирением, диабетом или инфарктом сильно преувеличена - для расстройства должны сойтись множество факторов. Болезни возникают не только из-за плохой наследственности, но и из-за влияния окружающей среды - следовательно, то, что мы едим в течение жизни, может изменить эпигенетические системы. Мало того, эпигенетические переключатели могут обезвредить уже мутировавшие гены. С помощью такого «лечения» наш эпигеном (если он хорошо работает) снижает риск возникновения, к примеру, рака или сердечной недостаточности. Однако эпигеном может и навредить, выключая нужные гены.

Ответ на вопрос о том, почему люди, ведущие здоровый образ жизни, могут тяжело болеть, кроется в особенностях эпигенетических переключателей: большинство из них действуют уже в утробе матери или в первые годы жизни. Самые первые решения эпигенетической системы могут влиять на человека всю его жизнь, так как на ранней стадии эпигеном как бы закладывает «русло» эпигенетического ландшафта, обуславливая свой дальнейший путь развития.

«Долины эпигенетического ландшафта со временем только углубляются. Это означает, что в преклонных годах на наше здоровье порой гораздо сильнее влияет рацион нашей матери в период беременности, чем пища в текущий момент жизни. А смесь сигнальных веществ, поступавших в наш мозг за несколько месяцев до рождения и уже после нашего появления на свет, часто определяет личность сильнее, чем воспитание, которое мы получаем в течение многих последующих лет».

Петер Шпорк

Нейрофизиолог

Ученые выяснили, что главная цель эпигеномов - сразу качественно «заморозить» реакции на окружающую среду, чтобы решения, когда-то принятые организмом, сохранялись как можно дольше. Примером может послужить развитие потовых желез - у всех людей есть одинаковое их количество, но все потеют по-разному. Это происходит из-за того, что первые три года жизни потовые железы не активны, а сколько из них активируется, зависит от температуры окружающей среды. Те, кто родился, например, в Африке, будут больше потеть на протяжении жизни - где бы они ни жили, - чем рожденные в Германии. Но когда даже в теплую погоду родители кутают детей, природный механизм нарушается, и дети на всю жизнь остаются потливыми.

Так происходит эпигенетическое программирование в раннем детстве, но не стоит думать, что человек обречен, если не предпринять позитивные шаги в самом раннем возрасте. Для людей, что не обладают хорошим иммунитетом, полезно предпринимать большие усилия, чтобы перепрограммировать свой «софт». К примеру, врачи, для того, чтобы избежать врожденной болезни детей Spina bifida - синдрома расщепленного позвоночника - советуют женщинам еще до зачатия начать принимать фолиевую кислоту, которую добавляют в соль. В США и Канаде ее даже предписано законом добавлять в муку. Позитивное воздействие фолиевой кислоты связано с тем, что она стимулирует работу эпигенетического фермента: так, помогая своей эпигенетической системе, можно подавить предрасположенность к болезням.

Петер Шпорк не советует впадать в панику, пообедав однажды в фастфуде: здоровая еда должна стать нормой, но не обязательно делать из нее культ. Пищевое разнообразие куда лучше витаминных препаратов: свежие овощи и фрукты быстрее обогатят наш организм. Но если говорить о природных стимуляторах эпигенома, то можно составить своеобразное «эпигенетическое меню». В него обязательно будут входить соя, куркума и зеленый чай. Именно эти продукты лучше всего стимулируют систему ферментов эпигенома так, чтобы он производил позитивные изменения в наших клетках. Впрочем, не стоит забывать о токсинах, которые однозначно вредны для эпигенетической системы, особенно на ранних этапах развития. Это, безусловно, пестициды, никотин, алкоголь и большие дозы кофеина, а также соединение бисфенол-А, содержащееся в пластиковых бутылках и во внутреннем покрытии жестяных банок. Это вещество переходит из полимеров прямо в продукты питания.

Острова долголетия

Ученые-эпигенетики, сравнивая биографии долгожителей, обнаружили интересную закономерность. Например, что общего между 122-летней Жанной-Луизой Кальман из Франции, которая бросила курить в 119 (только из-за того, что не могла самостоятельно закурить) и пила портвейн, и жителями японского архипелага Рюкю, живущих до ста лет? Как выясняется, почти все долгожители обитали в местах с мягким климатом, много времени проводили на свежем воздухе, двигались и питались здоровой пищей. Еще один фактор - зачастую долгожители едят маленькими порциями, и скорее немного недоедают, уходя из-за стола чуть-чуть голодными. Вкупе с физической и умственной активностью такая стратегия может сделать из человека не только долгожителя, но и здорового: такие люди не болеют даже в старости, и умирают в основном от износа органов. Нужно заметить, что среди долгожителей было мало фанатиков здоровья: никто из них не вел аскетический образ жизни, а некоторые из них, такие как Кальман, даже курили - впрочем, эта привычка не смогла ей повредить скорее из-за силы ее эпигенетической системы.

Подытоживая свою книгу, Петер Шпорк напоминает об исследованиях, проводимых среди голодающих во время Второй мировой в Нидерландах. Благодаря метрическим книгам мы знаем, что многие дети, которых вынашивали в голодное время, рождались с меньшей продолжительностью жизни и низким ростом. Цепочка продолжалась: эти дети, вырастая, рожали, в свою очередь, тоже очень маленьких детей, хотя жили в условиях изобилия. Эпигенетические изменения не стоит недооценивать: нужно помнить, что весь вред, что мы причиняем себе, будет действовать и на последующие поколения, передаваясь через эпигенетическую систему, поэтому каждый из нас несет колоссальную ответственность.

Но как же тогда нужно жить? Шпорк предупреждает фанатиков здорового образа жизни: алкоголь, картошка фри и ленивые вечера перед компьютером не нужно вычеркивать из жизни, так как это может привести к более вредным стрессам. Главное, чтобы все это не стало привычкой и образом жизни. Эпигенетика не культ вегетарианства или абстиненции; она лишь указывает на то, что в жизни есть критические периоды развития, когда наши эпигеномы очень чутко откликаются на раздражители внешней среды. Поэтому беременным женщинам нужно особенно внимательно относиться к своему здоровью, больным людям - положительно влиять на свое здоровье при помощи физических и умственных усилий, а здоровым - следить за собой и своими близкими и думать о здоровье внуков.

«Нам самим и нашим родителям в значительной мере предоставлено решать, куда направить свой геном - а возможно, даже геном своих потомков».

Петер Шпорк



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!