Информационный женский портал

Около медицины: искусственные органы уже близко. Выращивание искусственных органов Разработка технологии производства искусственных органов

Когда речь заходит о создании в лабораторных условиях человеческих органов, способных выполнять предписанные природой функции в организме человека, на лице большинства невольно возникает скептическая ухмылка. Как-то это больше похоже на фантастику.

Тем не менее, сегодня выращивание новых органов – самая что ни на есть объективная реальность, как и первые пациенты, жизни которых спасены, благодаря уникальнейшим операциям по пересадке органов. И с гордостью хочется заявить, что эти первопроходческие исследования в области регенеративной медицины осуществляются у нас на Кубани.

Рассказ человека, которому посчастливилось всю информацию получить из первых уст, хочется передать без купюр, что мы и делаем.

Паоло Маккиарини – это не только итальянское имя. Этот человек - истинный итальянец, с присущим его национальности темпераментом и эмоциональностью. Выражая свое восхищение, он с восторгом восклицает: «Фантастика!!!», тут же запросто переходя к отчаянному возгласу: «Они ждут, когда я умру!!!», упоминая о коллегах, испытывающих чувство досады от превосходства этого человека, и далее продолжая самозабвенно делиться перспективами новейших разработок, дающих надежду на спасение новых человеческих жизней.

Являясь участником сочинской конференции «Генетика старения и долголетия», на которую прибыли известнейшие специалисты в этой области со всего мира, Паоло Маккиарини оказался в более выигрышном положении, потому что преодолевать кордоны ему не пришлось, не смотря на то, что специалист он вселенского масштаба.


Уже несколько лет этот человек, является руководителем Центра регенеративной медицины Кубанского медицинского университета. Чтобы получить согласие профессора Маккиарини приехать на работу в Краснодар, правительство России выделило 150 миллионов рублей на создание центра.

Профессор с благодарностью отмечает, что работая в нашей стране, у него нет необходимости выискивать возможности для решения финансовых проблем, и все свое время и талант он максимально использует для спасения жизни людей.

Как создаются органы для трансплантации

Паоло Маккиарини является автором и разработчиком новаторской технологии выращивания трахеи, что, действительно, служит гордостью и главнейшим достижением регенеративной медицины. В 2008 году он впервые в истории человечества выполнил операцию по пересадке пациентке трахеи, выращенной из ее собственных стволовых клеток на донорском каркасе в биореакторе. Через год была проведена феноменальная операция, когда орган был выращен внутри тела пациента без применения биореактора. В 2011 году профессором Маккиарини была проведена беспрецедентная операция по пересадке человеческого органа полностью созданного в лабораторных условиях на искусственном каркасе, когда донорские органы не использовались.

Первый визит Маккиарини в Россию состоялся в 2010 году. Фонд «Наука за продление жизни», пригласил его провести мастер – класс по регенеративной медицине. В этом же году профессор Маккиарини впервые в России осуществил пересадку трахеи молодой женщине, пострадавшей в результате автомобильной аварии и потерявшей возможность разговаривать и нормально дышать. Пациентка восстановила здоровье, а итальянский доктор продолжил развивать регенеративную медицину в нашей стране, постоянно внедряя что-то передовое. Например, вместе с искусственно выращенной трахеей человеку была пересажена часть гортани.

‑ Трудно представить, как можно воспроизвести орган автономно, в отсутствие человека?

‑ По большому счету этого сделать нельзя. Имея клетки взрослого человека, вырастить целый орган, не имея орган донора, или искусственный каркас, не удастся.

Как происходил процесс подготовки материала, когда все только начиналось? Получали донорский орган. Донором мог быть человек или животное, чаще всего свинья. Этот орган опускался в специальный раствор, где растворялись мышечные ткани, таким образом, освобождая его от генетического материала. В результате оставался только каркас из соединительной ткани. Каждый орган имеет каркас, позволяющий ему сохранять форму, так называемый внеклеточный матрикс. Хотя, полученный таким образом каркас органа, изъятого у свиньи, с иммунной системой человека не конфликтует, тем не менее, есть опасность случайного проникновения какого-нибудь вируса, а для мусульман этот вариант не приемлем по религиозным соображениям. Так что орган, изъятый у погибшего человека, для получения каркаса подходил больше.

В 2011 году была внедрена новейшая технология создания искусственного каркаса, позволяющая обходиться без доноров, в принципе. Этот каркас представляет собой трубку, выполненную в соответствии с индивидуальными размерами органа пациента, изготовленную из упругого и пластичного нанокомпозитного материала. Это колоссальный рывок вперед. Получая искусственный каркас, отпадает необходимость в донорах, и сразу же снимаются все вопросы биоэтики, особенно когда дело касается детей.

‑ Но трубка это же не орган. Как его оживить и заставить работать?

‑ Для этих целей существует биореактор.

‑ Что-то наподобие биопринтера?

‑ С помощью биопринтера можно произвести простые ткани или сосуды, но не сложные органы. Биореактор предназначен для размножения и роста клеток, для этого там поддерживаются оптимальные условия. Клетки в биореакторе обеспечиваются питанием, они имеют возможность дышать и оттуда отводятся продукты обмена. Из костного мозга пациента выделяются его собственные клетки, которые и засеваются на каркас. Стволовые клетки такого вида способны преобразоваться в специальные клетки требуемых органов. В течение двух суток каркас обрастает этими клетками, и затем, воздействуя на них определенным образом, клетки превращаются к трахейные. Орган для трансплантации готов, и так как он выращен из собственных клеток пациента, то организмом не отторгается.

‑ Но ведь вы не планируете останавливаться только на трахее?

‑ В настоящее время ведется работа по исследованию на животных пищевода и диафрагмы, выращенных в лаборатории. Далее планируется совместно с Техасским институтом впервые в мире вырастить функционирующее сердце.

В Краснодарском крае существует специальный обезьяний питомник, предназначенный для медицинских исследований. Именно на них планируется провести испытания первого синтетического сердца. Учитывая, что в России многие проблемы решаются значительно легче, чем на Западе или в Штатах, есть большая уверенность, что Россия станет родиной первого человеческого сердца, выращенного в лаборатории.

‑ А какие органы самые востребованные?

‑ Нет предела совершенству и человеческой глупости. Как иначе отнестись к просьбе какого-то там президента общества гомосексуалистов снабдить его пенисом?

‑ Два пениса – это мысль!

‑ Да в том-то и дело, что там не то, что два, вообще почему-то ни одного не было. Вот только в пенисах я не силен. Кстати, с маткой тоже не смог помочь. Людей ведь мучают не только болезни, а всякие бредовые идеи тоже жить спокойно не дают.

Наш центр не работает с этими новомодными тенденциями. Что пробовали, так это вырастить яички, потому что проблема эта весьма актуальна из-за огромного количества детей, у которых обнаружен рак яичек или имеются врожденные отклонения. Однако, стволовые клетки не удалось преобразовать в клетки яичек и исследования завершились безрезультатно.

Естественно, основные усилия нашего центра направлены на выращивание тех органов, пересадка которых поможет спасти максимальное количество людей. Вот сейчас один из самых актуальных проектов – выращивание диафрагмы. Тысячи детей появляются на свет с отсутствием этого органа и поэтому умирают.

‑ Какие органы представляют самую большую сложность при выращивании?

‑ Сложнее всего дела обстоят с сердцем, почками и печенью, и не потому, что их трудно вырастить. На сегодняшний день вырастить можно практически все органы, а вот как заставить их правильно работать и вырабатывать необходимые организму вещества, это пока вопрос. Искусственные органы прекращают функционировать через несколько часов. Мы не знаем досконально принцип их работы, в этом вся причина.

А ведь вполне возможно, что стволовые клетки можно использовать для восстановления работы органов, требующих пересадки. Запустить внутренние процессы регенерации организма. Сегодня – это моя самая заветная мечта, и если удастся реализовать эту фантастическую идею, не потребуются больше операции и выращивание органов, ведь стволовые клетки есть у каждого человека.

‑ Сколько требуется времени на создание синтетического органа?

‑ Время пропорционально сложности органа. Для трахеи достаточно четырех дней, для сердца понадобится три недели.

‑ А можно ли вырастить мозг?

‑ Есть у меня такие намерения в перспективе.

‑ Ведь мозг имеет бесчисленное множество связей между нейронами. Как с ними быть?

‑ Не так все сложно, просто на проблему нужно смотреть под другим ракурсом. Полностью заменить мозг нельзя, и об этом речи нет. Но, если у человека травма головы, часть мозга повреждена, но человек остался в живых. Вот эту неработающую часть мозга нужно заменить субстратом, который призван вызвать рост нейронов, привлекая их из других участков мозга. Через некоторое время пострадавшая часть мозга постепенно включится в работу и обрастет связями. Сколько бы людей смогли избавить от проблем!

Мечты и разочарования

‑ Как реагируют коллеги на ваши успехи?

‑ Это тема непростая и грустно о ней говорить. Когда человек делает то, чего никто никогда в мире не делал, его всегда ожидают неприятности. Должно пройти много времени, прежде чем что-то сделанное впервые начнет восприниматься адекватно. До этого все стремятся критиковать, причем довольно жестко, считая порой мои действия, чуть ли не безумством. Зачастую люди очень ревностно относятся к успеху коллег: на меня устраивали нападки, стремились создать условия невыносимые для работы, порой применяя весьма грязные методы.

‑ Что в вашей личной жизни и профессиональной деятельности создает самые большие трудности?

‑ Если взять мою личную жизнь, то ее просто не существует. Работа – это не самое сложное. Труднее справиться с постоянными нападками коллег, их неуемной ревностью. Отсутствие элементарного уважения, и чисто человеческих отношений безмерно угнетает. Такое впечатление, что в мире не существует ничего, кроме конкуренции. В научных журналах мною опубликованы десятки статей, но такое впечатление, что их никто не читает, продолжая заявлять об отсутствии доказательств наших результатов. Все кругом настроены только на критику абсолютно по любому поводу.

Именно эта ревность создает для меня основные трудности. Я постоянно ощущаю дикое давление со всех сторон. Очевидно, это участь всех первопроходцев. Но я знаю, что мы спасем жизни людей и готов выдержать ради этого любые нападки.

‑ У вас есть мечта?

‑ Что касается моей личной жизни, то я мечтаю взять свою любимую собаку, забраться в лодку и уплыть на необитаемый остров, чтобы ничего не напоминало об этом мире. Что касается работы, то мечтаю спасать людей, не прибегая к операции, а лишь используя клеточную терапию. Вот это было бы, действительно, фантастикой!

‑ Когда технология создания искусственных органов станет доступна большинству населения развитых стран?

‑ Что касается трахеи, то технология выращивания этого органа практически доведена до совершенства. Если клинические испытания на Кубани будут продолжены, то через пару лет соберется достаточно фактов, доказывающих безопасность и эффективность разработанных нами методов, и их начнут применять повсеместно. Многое зависит от количества пациентов и ряда других факторов. Я продолжу разработки, связанные с выращиванием диафрагмы, пищевода и сердца. Надеюсь, что в России все пойдет значительно быстрее, так что немного терпения и скоро все узнаете сами.

В результате проведения четырех конкурсов, нацеленных на привлечение в российские вузы известных ученых мирового масштаба, 163 зарубежных и отечественных специалистов выиграли мегагранты, выделенные правительством России.

Современная медицинская техника позволяет заменять полностью или частично больные органы человека. Электронный водитель ритма сердца, усилитель звука для людей, страдающих глухотой, хрусталик из специальной пластмассы -- вот только некоторые примеры использования техники в медицине. Все большее распространение получают также биопротезы, приводимые в движение миниатюрными блоками питания, которые реагируют на биотоки в организме человека.

Во время сложнейших операций, проводимых на сердце, легких или почках, неоценимую помощь медикам оказывают «Аппарат искусственного кровообращения», «Искусственное легкое», «Искусственное сердце», «Искусственная почка», которые принимают на себя функции оперируемых органов, позволяют на время приостановить их работу.

«Искусственное сердце»

Более 2300 лет назад греческий философ Аристотель учил, что сердце является вместилищем души. Сегодня мы знаем: величиной с кулак и весящий 300 граммов полый мускул каждую минуту прокачивает все шесть литров крови человека через сеть сосудов, протянувшуюся более чем на 1000 километров, и обеспечивает питательными веществами каждую из 100 миллиардов клеток тела. В зависимости от возраста и нагрузки, сердце бьется 40-200 раз в минуту, при этом ритм орган задает себе сам: электрический задатчик такта в сердечной стенке управляет ударами в зависимости от физических требований. Имплантируемый насос из стали, снабженный батарейкой и индукционной катушкой для заряда через кожу, в будущем должен заменять неизлечимо больное сердце. При небольших дефектах, например, клапанов, хирурги пересаживают запчасти из свиных сердец или из пластика. Если сердце то и дело сбивается с ритма, корректирующие импульсы задает электронный водитель сердечного ритма, вшиваемый в грудную клетку.

Исследования поначалу проводились в направлении частичной замены функции одного из отделов сердца (правый или левый желудочек), и только с созданием аппарата искусственного кровообращения стало возможным всерьез задуматься над тем, как полностью заменить сердце механическим аналогом. Великий советский ученый-экспериментатор Владимир Демихов еще в 1937 году показал принципиальную возможность поддержания кровообращения в организме собаки с помощью пластикового насоса, приводимого в движение электродвигателем. Два с половиной часа, которые прожила собака с этим механическим устройством, имплантированным на место удаленного собственного сердца, стали отсчетом новой эры в медицине.

Эстафету подхватили американские ученые, но лишь два десятилетия спустя В. Кольф и Т. Акутсу разработали искусственное сердце из полихлорвинила, состоящее из двух мешочков, включенных в единый корпус. Оно имело 4 трехстворчатых клапана из того же материала и работало от пневмопривода, расположенного снаружи. Эти исследования положили начало целой серии конструктивных решений искусственного сердца с внешним приводом. Почти четверть века потребовалась для того, чтобы в эксперименте были достигнуты стабильные результаты выживания животных и созданы предпосылки для использования этой технологии в клинической практике. Работы по созданию искусственного сердца интенсивно проводились несколькими группами ученых в США, СССР, ФРГ, Франции, Италии, Японии.

К 1970 году были получены обнадеживающие показатели - животные выживали до 100 часов (Университет штата Юта, Солт-Лейк-Сити, США). Однако затем в связи с хроническими неудачами экспериментаторов встал вопрос: а возможно ли в принципе выживание животного с искусственным сердцем более 100 часов? К счастью, на него сравнительно быстро удалось ответить утвердительно - к 1974 году была достигнута выживаемость животных в течение месяца, а три года спустя организм уже 75 проц. животных стабильно работал в течение этого срока. Полученные результаты позволили считать, что метод замены собственного сердца искусственным,как временная мера может быть применен в клинике.

Модель искусственного сердца, разработанного в Берлине. Эта модель была впервые имплантирована профессором Хетцером в 1987 г.

Идея имплантации искусственного сердца для поддержания жизни реципиента на период поиска подходящего донора была реализована в 1969 году, когда американский хирург Д.Кули произвел имплантацию искусственного сердца больному, которого после резекции обширной аневризмы левого желудочка не удавалось отключить от аппарата искусственного кровообращения. Через 64 часа работы искусственное сердце было заменено на аллотрансплантат, однако еще 36 часов спустя больной погиб от пневмонии. Это был первый случай двухэтапной операции трансплантации сердца, которая сегодня распространена очень широко. В настоящее время, правда, на первом этапе проводят имплантацию не искусственного сердца, а искусственного левого желудочка, но об этом дальше.

Начиная с 1982 года Де Вриз выполнил шесть операций по имплантации искусственного сердца с внешним приводом больным в терминальной стадии сердечной недостаточности. Уже первый больной, несмотря на ряд технических осложнений, прожил с искусственным сердцем "Джарвик-7" 112 суток, затем выживаемость больных была доведена до 603 суток. Все шесть пациентов в конце концов погибли от инфекций. Эти операции, несмотря на общественный интерес, не получили распространения в дальнейшем, так как у больных, привязанных к громоздкому внешнему приводу, не было ни единого шанса на сколько-нибудь полноценную жизнь.

В нашей стране серьезные исследования в области создания искусственного сердца возобновились в 1966 году по инициативе и под руководством тогда еще никому неизвестного молодого хирурга, а впоследствии академика Валерия Шумакова сначала в Институте клинической и экспериментальной хирургии, а с 1975 года - в НИИ трансплантологии и искусственных органов. В течение многих лет над этим работали сотрудники НИИТиИО В. Толпекин, А. Дробышев, Г. Иткин. В 70-е годы советские ученые шли вровень с американскими в разработке искусственного сердца. Не случайно в 1974 году министры иностранных дел СССР и США А. Громыко и Г. Киссенджер в числе других важных документов подписали межправительственное соглашение по исследованиям в области искусственного сердца и вспомогательного кровообращения. Как говорит Валерий Шумаков, этому соглашению в отличие от многих других была уготована счастливая судьба. Оно выполнялось на протяжении двух десятилетий, в результате были созданы искусственное сердце и искусственные желудочки сердца, применявшиеся в клинической практике.

В НИИТиИО были проведены исследования по созданию насосных устройств, систем управления и контроля работы протеза сердца в длительных медико-биологических экспериментах на телятах. Длительность работы модели искусственного сердца с внешним приводом "Поиск-10М" была доведена к 1985 году до 100 суток. Все это позволило начать его клинические испытания. Показаниями к применению искусственного сердца были резкое ухудшение состояния пациентов, включенных в лист ожидания на пересадку сердца; критические ситуации у больных, которые после окончания операции не могут быть отключены от аппарата искусственного кровообращения; резко прогрессирующие явления отторжения трансплантата.

С декабря 1986 года специалистами НИИТиИО было выполнено 17 трансплантаций искусственного сердца "Поиск-10М", из них 4 в Польше, куда бригада выезжала по экстренному вызову. К сожалению, несмотря на героические усилия врачей, максимальная продолжительность работы искусственного сердца не превысила 15 суток. Но, как это ни цинично звучит в данном случае, отрицательный результат в науке - тоже результат.

Мы убедились, что искусственное сердце с внешним приводом имеет серьезные отрицательные стороны, - говорит заведующий лабораторией вспомогательного кровообращения и искусственного сердца НИИТиИО профессор Владимир Толпекин. Прежде всего, это большая травматичность, ведь сначала нужно удалить собственное сердце больного и лишь потом на его место поставить сердце искусственное. При этом возникает много осложнений, воспаление тканей, из-за чего повторная трансплантация затруднительна.

Из 17 больных, которым трансплантировали "Поиск-10М", донорское сердце удалось пересадить лишь одному, но и у него за 3,5 суток жизни на искусственном сердце ткани изменились настолько сильно, что на 7-е сутки после пересадки донорского органа развился воспалительный процесс, приведший к смерти. В настоящее время лишь одна фирма в мире выпускает искусственное сердце с внешним приводом, и на практике в последнее время они практически не применяются ни в качестве "моста" к трансплантации донорского сердца, ни тем более как длительно работающий орган. В результате искусственное сердце было вытеснено менее травматичной системой - искусственным левым желудочком (обход левого желудочка).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

АО «Медицинский университет Астана»

Кафедра: Медбиофизики и ОБЖ

Тема: «Искусственные органы»

Астана 2014

Идея о замене больных органов здоровыми возникла у человека еще несколько веков назад. Но несовершенные методы хирургии и анестезиологии не позволяли осуществить задуманное. В современном мире трансплантация органов заняла достойное место в лечении терминальных стадий многих заболеваний. Были спасены тысячи человеческих жизней. Но проблемы возникли с другой стороны. Катастрофический дефицит донорских органов, иммунологическая несовместимость и тысячи людей в листах ожидания того или иного органа, которые так и не дождались своей операции.

Ученые всего мира все чащи задумывались над созданием искусственных органов, которые могли бы заменить настоящие по своим функциям, и в этом направлении были достигнуты определенные успехи. Нам известны искусственные почка, легкие, сердце, кожа, кости, суставы, сетчатка, кохлеарные имплантаты.

Искусственные органы

Применение искусственных органов началось довольно давно, начиная с 1982 года, когда шестидесятиоднолетний человек по имени Барни Кларк, в прошлом дантист, первым получил искусственное сердце Jarvik-7. Аппаратура, которая поддерживала жизнь Кларка, была большой и громоздкой, но она делала свою работу, обеспечивая кровообращение в организме Кларка в течение 112 дней, пока он в конце концов не умер из-за сгустков крови и других осложнений.

Jarvik-7 до сих пор используется как временное устройство для продления жизни людей с больным сердцем до тех пор, пока им не сделают операцию по пересадке сердца. Однако очень скоро стало очевидно, что эта машина не пригодна для постоянного применения. Она слишком сложна, слишком неуправляема и слишком неэффективна для практического применения, но она действительно открыла дверь для создания целого ряда новых искусственных органов, многие из которых, несмотря на то что находятся пока в стадии разработки, дают большую надежду на продление продолжительности жизни человека.

По сравнению с другими органами, такими как печень и поджелудочная железа, сердце - это относительно простой механизм. Ему не нужно переваривать химические вещества, производить ферменты или фильтровать жидкости - оно просто должно перекачивать кровь. Учитывая ошибки, допущенные при создании первого искусственного сердца, исследователи в настоящее время работают над усовершенствованием аппаратов искусственного сердца последнего поколения для того, чтобы создать миниатюрный насос, который был бы настолько маленьким, чтобы его можно было внедрить в тело и не использовать при этом большую систему поддержки. И, кроме того, сейчас они в основном оставили идею создания целого механического сердца, сконцентрировавшись вместо этого на создании устройств, которые помогают жить пациентам с сердечной недостаточностью до тех пор, пока для больного сердца не будет найдена подходящая замена.

Самый впечатляющий пример такого вспомогательного сердечного аппарата - это устройство, поддерживающее работу левого желудочка (LVAD). Это устройство, которое использовалось в течение нескольких прошлых лет, питается от маленького аккумулятора, который носится на теле в области живота. С его помощью устройство выкачивает кровь из левого желудочка. LVAD дает дополнительное время пациентам с больным сердцем, которые ожидают операции по пересадке.

Следующим шагом, говорят ученые, явится создание искусственного сердца, которое будет полностью вживляться в тело, не требуя большого блока питания, и которое сможет работать точно так же, как настоящее сердце. Одна из главных проблем, связанных с искусственным сердцем, заключается в том, как оно перекачивает кровь. Более ранние аппараты, такие как Jarvik-7, полагались на систему диафрагмы, которая перекачивала кровь. Однако ученые говорят, что они нашли более надежный и совершенный способ - посредством крошечных двигателей, устанавливаемых внутрь устройства с помощью магнита.

Такое искусственное сердце, экспериментальный орган, получивший название Стримлайнер (Streamliner), было разработано в Центре МакГована. Это легкое устройство имплантируется в область живота и перекачивает кровь через естественное сердце и артерии при помощи пары трубок. Питание поступает от индуктивного сцепления, которое передает энергию от катушки, прикрепленной к маленькой батарее, которая носится на поясе, ко второй катушке и батарее, имплантированной прямо под кожей. Такая система обеспечила бы пользователю почти полную свободу - то, чего никогда не было у Барни Кларка. Однако Стримлайнер станет доступным еще не скоро; для его разработки потребуется еще много месяцев, и только после этого начнутся испытания, - говорят его создатели.

Создание искусственного сердца - это детская игрушка по сравнению с созданием более сложных органов, таких как печень, почки или поджелудочная железа. Эти органы часто называют «умными органами» из-за того, что они выполняют сложные функции, и их механические заменители почти наверняка должны будут содержать органические ткани для того, чтобы они могли работать должным образом. Почему? Науке предстоит пройти еще очень длинный путь, прежде чем она сможет создать механические заменители органов, которые смогли бы работать также, как настоящие.

Большинство исследований, направленных на создание биохимических «умных» органов, включают искусственное выращивание клеток органа, взятых у человека или животного, затем эту ткань помещают в так называемый биореактор - коробка или цилиндр, в котором с помощью постоянной подачи кислорода и необходимых питательных веществ создаются условия для поддержания жизни и функционирования ткани. В большинстве случаев сейчас во время таких исследований биореактор помещается в большой механизм, который перекачивает по трубам кровь. Использование полностью вживляемых биореакторов будет возможным, по крайней мере, лет через десять, - говорят ученые-медики, хотя аппараты временного пользования, которые можно носить на теле, возможно, появятся несколько раньше.

Один из самых необходимых искусственных органов - это почка. В настоящее время десятки тысяч людей для того, чтобы выжить, должны регулярно подвергаться диализу - вредной и отнимающей много времени процедуре. А диализ - это несовершенная процедура. Здоровые почки отфильтровывают отходы мочевины из крови и снабжают организм важными питательными веществами, такими как сахара и соли, полученные из этих отфильтрованных отходов. К сожалению, механизмы, с помощью которых сегодня осуществляется диализ, просто не могут выполнять вторую задачу.

Ее решение, говорят ученые, возможно с помощью искусственной биологической почки, которая представляла бы собой специально выращенную ткань, помещенную в механическое устройство. Искусственный орган такого типа мог бы справиться со всеми функциями настоящей почки, и таким образом отпала бы необходимость в традиционном диализе для большинства людей.

Такой орган в настоящее время пытаются разработать исследователи Мичиганского университета. Они культивировали проксимальные клетки канальцев, взятые из почек свиньи, и переплели их с чрезвычайно тонкими волокнами, помещенными внутрь фильтрационного патрона. Этот патрон содержится в механизме, который фильтрует кровь пациента и возвращает ей необходимые питательные вещества, которые в противном случае были бы потеряны. Эта система успешно испытана на собаках, и в тот момент, когда эта книга готовилась к изданию, исследователи ждали разрешения на проведение испытаний на людях.

искусственный орган имплантация

Скорее всего, биопочка, разработанная в Университете Мичигана, будет использоваться как временная мера, устройство, которое позволит людям с острой почечной недостаточностью жить до тех пор, пока не будет найден настоящий орган для трансплантации. Однако его создатели говорят, что появление более маленького и более совершенного аппарата - это лишь вопрос времени. Такое устройство, даже и не столь совершенное, как настоящая почка, могло бы сократить время процедуры диализа на целых 50 процентов, и, возможно, даже позволить обходиться без нее совсем.

Поджелудочная железа

Искусственная поджелудочная железа - это еще более сложное устройство, чем искусственная почка. Однако усилия, направленные на ее создание, того стоят, - говорят сторонники этой инициативы, поскольку такое устройство могло бы значительно улучшить здоровье и качество жизни миллионов людей, страдающих инсулинозависимой формой диабета.

Люди с инсулинозависимым диабетом должны регулярно проверять кровь на содержание сахара и вводить себе инсулин для того, чтобы держать болезнь под контролем. Один из самых больших недостатков такого лечения состоит в том, что невозможно узнать точно, сколько инсулина необходимо ввести больному. В большинстве случаев пациентам приходится исходить из собственного предположения. Это приводит к постоянным колебаниям уровня глюкозы, а это, как полагают, является причиной многих обычных осложнений, связанных с диабетом, включая болезнь сердца и проблемы со зрением.

Идеальная искусственная поджелудочная железа могла бы «догадываться» об уровне глюкозы по реакции организма для того, чтобы определить точно, когда и сколько инсулина ему требуется. В настоящее время на стадии разработки находится устройство под названием PancreAssist, над которым работают биомедики из Лексингтона, штат Массачусетс. Эта система контролирует химические процессы в организме и определяет, сколько инсулина ему требуется, и затем вводит его именно в то время, когда это необходимо.

PancreAssist - это устройство, состоящее из пластикового корпуса, вживляемой трубчатой мембраны, окруженной производящими инсулин «островками» из клеток, взятых у свиньи. Когда поток крови пользователя проходит по трубе, эти островки определяют уровень содержания в крови глюкозы и начинают вырабатывать инсулин, который в нужный момент поступает в кровоток, проходя через мембрану.

Мембрана также играет важную роль в защите этих островков от естественных систем защиты организма, которые сразу же начинали бы действовать, если бы была такая возможность. Если все будет идти хорошо, то клинические испытания этого устройства на людях могут начаться в течение нескольких ближайших лет, - говорят ученые.

Столь же важный, но еще более сложный орган - это печень. Расположенный в верхней правой области живота, он играет важную роль в усвоении организмом питательных веществ. Печень преобразовывает излишнюю глюкозу в гликоген, который она хранит и затем повторно преобразовывает в глюкозу, когда это необходимо. Печень также расщепляет излишние аминокислоты, превращая их в мочевину, помогает организму усваивать жир и выполняет ряд других функций. Когда печень повреждена болезнью (гепатит С) или в результате злоупотребления алкоголем, она не может функционировать должным образом. Печеночная недостаточность, как правило, означает смерть.

Печень - это трансплантабельный орган, но количество людей, нуждающихся в пересадке донорского органа, значительно превышает количество донорских органов, поэтому существует острая потребность в таком искусственном органе. Создание искусственной печени, которая могла бы функционировать на протяжении всей жизнь, могло бы помочь бесчисленному количеству пациентов, страдающих острой печеночной недостаточностью и находящихся в беспомощном положении. Однако такой орган появится еще очень нескоро. Лучшим и более надежным выходом из этого положения может стать биологическая искусственная система, которая могла бы выполнять большинство функций печени в течение короткого периода времени, достаточного для того, чтобы больной орган смог самостоятельно восстановиться.

Некоторые специалисты считают, что в большинстве случаев одной недели было бы достаточно для восстановления поврежденной печени настолько, чтобы она могла почти нормально функционировать.

Неудивительно, что несколько компаний упорно работают над созданием таких систем. К ним относится и компания Сере Биомедикал, которая в сотрудничестве со специалистами Седар-Синайского Медицинского центра в Лос-Анджелесе разработала экспериментальную систему под названием «Hepat Assist». Эта система, для создания которой использовались клетки, взятые из печени свиньи, выводит токсины из крови почти так же, как прототип биологической искусственной почки, - говорят исследователи. Пластмассовый патрон, изнутри покрытый искусственно выращенными клетками, вставляется в большой механизм, который очищает проходящую через него кровь. В лучшем случае пациенты будут использовать этот аппарат приблизительно шесть часов ежедневно в течение одной недели - времени, которого достаточно для того, чтобы печень могла себя восстановить.

Биологические искусственные органы - это лишь один подход, который ученые пытаются использовать в своем поиске способов продления жизни людей, организм которых по каким-либо причинам отказывается работать. Другой подход, который больше относится к научной фантастике, чем к реальности в этом отношении, но все-таки заслуживает обсуждения, - это концепция, связанная с понятием «ксенотрансплантация», которая основана на идее пересадки больным людям органов, полученных от других видов.

Проблему отторжения организмом получателя нового, чужеродного органа можно было бы предотвратить с помощью введения в эти органы человеческих генов, которые после этого не могли бы вызывать естественную иммунную реакцию организма, - говорят ученые.

Заключение

Искусственные органы - это устройства, предназначенные для временной или постоянной активной замены утраченной функции природного прототипа (правда, эта функция еще не может быть замещена полностью, особенно если конкретный прототип, например легкое, печень, почка или поджелудочная железа, обладает комплексом сложных функций). С искусственным органом не следует отождествлять функциональный протез - устройство, пассивно воспроизводящее основную утраченную функцию природного прототипа за счет своей формы или конструктивной особенности.

Идеальный искусственный орган должен соответствовать следующим параметрам:

Его можно имплантировать в организм человека;

Он не имеет сообщения с окружающей средой;

Изготовлен из легкого, прочного, обладающего высокой биологической совместимостью материала;

Долговечный, выдерживающий большие нагрузки;

Полностью моделирует функции естественного аналога

Список использованной литературы

1. http://meduniver.com/Medical/Xirurgia/815.html\

2. http://transplantation.eurodoctor.ru/artificialorgan/

3. http://help-help.ru/old/239/

Размещено на Allbest.ru

...

Подобные документы

    Значение искусственных органов в современной медицине. Активные и пассивные протезы рук. Правильный выбор протеза для человека с физическим повреждением нижних конечностей. Прототипы эффективных имплантируемых искусственно человеку протезов всего сердца.

    реферат , добавлен 09.04.2016

    Изучение источников и особенностей применения стволовых клеток. Исследование технологии выращивания искусственных органов на основе стволовых клеток. Преимущества биологического принтера. Характеристика механических и электрических искусственных органов.

    презентация , добавлен 20.04.2016

    Понятие искусственного сердца, его назначение и показания к применению. Поиск искусственного сердца с наиболее продвинутыми технологиями. Особенности аналогов этого аппарата, их оценка. Моделирование прототипа и гипотезы по преодолению его недостатков.

    реферат , добавлен 12.07.2012

    Имплантация искусственного хрусталика (интраокулярной линзы) в глаз. Виды искусственных хрусталиков. Особенности проведения операции по имплантации искусственного хрусталика при его помутнении (катаракте), при выраженных нарушениях остроты зрения.

    презентация , добавлен 13.01.2014

    Патогенез поражения нервной системы при соматических заболеваниях. Заболевания сердца и магистральных сосудов. Неврологические нарушения при острых и хронических заболеваний легких, печени, поджелудочной железы, почек. Поражения соединительной ткани.

    лекция , добавлен 30.07.2013

    Обзор и сравнительная характеристика искусственных клапанов. Механические искусственные клапаны. Дисковые и двухстворчатые механические искусственные клапаны сердца. Искусственное сердце и желудочки, их характеристика, принцип работы и особенности.

    реферат , добавлен 16.01.2009

    Создание искусственных органов как одно из важных направлений современной медицины. Значение выбора материалов, адекватного поставленной цели инженерного решения. Искусственные кровь, кровеносные сосуды, кишечник, сердце, кости, матка, кожа, конечности.

    презентация , добавлен 14.03.2013

    Приобретенные пороки сердца (клапанные пороки). Недостаточность и стеноз митрального, аортального и трехстворчатого клапанов. Лечение врожденных и приобретенных пороков сердца. Радикальная пластика или имплантация искусственных клапанов, коарктация аорты.

    презентация , добавлен 05.02.2015

    Особенности изучения внешней и внутренней секреции поджелудочной железы. Белки, минеральный состав поджелудочной железы, нуклеиновые кислоты. Влияние различных факторов на содержание инсулина в поджелудочной железе. Описание аномалий поджелудочной железы.

    реферат , добавлен 28.04.2010

    Особенности расположения и функции поджелудочной железы. Специфика формирования и развития этого органа. Сравнительно-анатомические данные строения поджелудочной железы у разных видов животных. Значение поджелудочной железы в регуляции углеводного обмена.

В середине двадцатого века в создание искусственных органов вряд ли кто мог поверить всерьёз, это было что-то из разряда фантастики. В наши дни в обозначенном направлении органов ведутся активные исследовательские работы, результаты которых мы уже можем наблюдать, однако остаётся и множество проблем, связанных с технической сложностью реализации данной идеи. Рассмотрим проблематику на примере создания искусственного сердца.

Одна из основных задач состоит в том, чтобы получить трехмерную ткань стенки сердца толщиной в палец или два. Получать монослои клеток и выращивать такие ткани мы уже можем. Проблема же в том, чтобы одновременно с мышечной тканью вырастить и сосудистое русло, через которое эта мышечная ткань будет снабжаться кислородом и питательными веществами и будут выводиться продукты метаболизма. Без сосудистого русла, без адекватного снабжения клетки в толстом слое погибнут. В тонком слое они могут питаться благодаря диффузии питательных веществ и кислорода, а в толстом слое диффузии уже недостаточно, и глубокие слои клеток будут погибать. Сейчас мы можем делать порядка трех слоев сердечных клеток, которые способны выжить.

Говоря о перспективных имплантатах, нужно помнить, что сосудистое русло имплантата необходимо будет подключить к сосудистому руслу, которое уже имеется в другой части сердца реципиента, то есть нужно вырастить сосудистое русло определенной анатомии. Выращивание целого сердца с множеством его отделов, клеток и собственной проводящей системой - это очень сложная многоклеточная задача. Точная копия человеческого сердца может быть получена приблизительно через 7–10 лет в хорошо оснащенных лабораториях развитых стран. Сердце - это не железа, которая вырабатывает гормоны, это насос. Нам нужно, чтобы кровь прокачивалась и не травмировалась при прокачке. Травмирование крови - это как раз проблема внешних насосов, которые используются при операциях на сердце. Когда их только разрабатывали, основной трудностью было то, что эритроциты и другие элементы крови этими насосами повреждались.

Современное развитие материалов может привести к тому, что будет создано механическое сердце, которое можно будет подшить, чтобы оно спокойно выполняло функции биологического сердца, которое дает человеку природа.

Если в целом говорить об импортируемых системах, то сердце здесь не самый удобный объект. Разумнее продвигать эксперименты на печеночных или почечных тканях. Например, полоски печени легко выживают сами по себе и относительно легко прирастают. Дать человеку, у которого печень поражена циррозом, новую часть печени, которая могла бы начать регенерировать и расти сама по себе, - это гораздо более разумное приложение сил.


В перспективе 5–10 лет станет понятно, стоит ли тратить время и силы на то, чтобы выращивать новое сердце, или проще будет поставить человеку механическое сердце, примеры успешного применения которого уже есть на данный момент.

Проблема с существующими вариантами искусственного сердца заключается в том, что для выполнения аналогичной работы они должны биться 100 тыс. раз в день и 35 млн. раз в год, поэтому быстро изнашиваются. Если бы речь шла о машине, то вопрос можно было бы легко решить – поменять масло и свечи зажигания, но в случае с сердцем все не так просто.

Уникальность нового устройства, примененного докторами из Техасского института сердца (Texas Heart Institute in Houston) как раз в том, что оно непрерывно гонит кровь и человеческий пульс прощупывается. Оно помогает справиться с образованием тромбов и кровотечением, предоставляет больше возможностей людям с тяжелой стадией сердечной недостаточности, которые ранее имели только два варианта: искусственное сердце или длительное ожидание в очереди на трансплантацию органа. Полученный аппарат предлагает третий вариант для больных с острой сердечной недостаточностью.

Для оценки прогресса в разработке и применениях искусственных органов можно обратиться также к опыту западных учёных и медиков.

Ученым из Западного резервного университета Кейза (Case Western Reserve University) удалось создать искусственное легкое, которое, в отличие от других подобных систем, использует воздух, а не чистый кислород. Прибор полностью копирует дыхательный орган. В его конструкцию включены аналоги кровеносных сосудов, выполненные из дышащей силиконовой резины. Подобно настоящим сосудам, они разветвляются и имеют разный размер: диаметр самых тонких из них составляет примерно четверть толщины человеческого волоса.

Хирурги Каролинского университета (Karolinska University Hospital) в Стокгольме впервые в мире провели операцию по трансплантации синтетической трахеи, созданной из стволовых клеток самого пациента. Данная технология позволяет обойтись без донора и избежать риска отторжения тканей, а изготовление органа достаточно быстрое и занимает от двух дней до недели.

Уже сегодня технологии выращивания новых органов широко используются в медицине и позволяют осваивать новые методы изучения иммунной системы и различных заболеваний, а также снижают потребность в трансплантатах. Пациенты, которым сделали пересадку каких-либо органов, нуждаются в большом количестве токсических препаратов для того, чтобы подавлять свою иммунную систему; иначе их организм может отвергнуть пересаженный орган. Однако, благодаря развитию тканевой инженерии, пересадка органов может остаться в прошлом. Используя клетки самих пациентов в качестве материала для выращивания в лаборатории новых видов ткани, ученые открывают все новые технологии создания человеческих органов.

Выращивание органов -- перспективная биоинженерная технология, целью которой является создание различных полноценных жизнеспособных биологических органов для человека. Пока технология не применяется на людях.

Создание органов стало возможным чуть более 10 лет назад благодаря развитию биоинженерных технологий. Для выращивания используют стволовые клетки, взятые у пациента. Разработанная недавно технология ИПК (индуцированные плюрипотентные клетки) позволяет перепрограммировать стволовые клетки взрослого человека так, чтобы из них мог получиться любой орган.

Выращивание органов или тканей человека может быть, как внутренним, так и наружным (в пробирках).

Самый известный ученый в этой области - Энтони Атала, признанный Врачом года-2011, глава лаборатории в Институте регенеративной медицины Вейк Сити (США). Именно под его руководством 12 лет назад был создан первый искусственный орган - мочевой пузырь. Вначале Атала с коллегами создали искусственную матрицу из биосовместимых материалов. Затем взяли у пациента здоровые стволовые клетки мочевого пузыря и перенесли на каркас: одни изнутри, другие снаружи. Через 6-8 недель орган был готов к пересадке.

«Меня учили, что нервные клетки не восстанавливаются, - вспоминал позже Атала. - Как же мы были поражены, когда наблюдали, как пересаженный нами мочевой пузырь покрывается сеткой нервных клеток! Это значило, что он будет, как и должно, общаться с мозгом и функционировать как у всех здоровых людей. Удивительно, как много истин, которые еще 20 лет назад казались незыблемыми, опровергнуто, и теперь нам открыты ворота в будущее».

Для создания матрикса применяют донорские или искусственные ткани, даже углеродные нанотрубки и нити ДНК. Например, кожа, выращенная на каркасе из углеродных нанотрубок, в десятки раз прочнее стали - неуязвима, как у супермена. Только непонятно, как с таким человеком потом работать, например, хирургу. Кожу на каркасе из паучьего шелка (тоже прочнее стали) уже вырастили. Правда, человеку пока не пересаживали.

А самая, пожалуй, передовая технология - печатание органов. Придумал ее все тот же Атала. Метод годится для сплошных органов и особенно хорош для трубчатых. Для первых экспериментов использовали обычный струйный принтер. Позже, конечно, изобрели специальный.

Принцип прост, как все гениальное. Вместо чернил разного цвета картриджи заправлены суспензиями разных типов стволовых клеток. Компьютер вычисляет структуру органа и задает режим печати. Он, конечно, сложнее обычной печати на бумаге, в нем много-много слоев. За счет них и создается объем. Потом все это должно срастись. Уже удалось «напечатать» кровеносные сосуды, в том числе сложно ветвящиеся.

Кожа и хрящи. Их вырастить проще всего: достаточно было научиться размножать кожные и хрящевые клетки вне организма. Хрящи пересаживают уже около 16 лет, это достаточно распространенная операция.

Кровеносные сосуды. Вырастить их несколько сложнее, чем кожу. Ведь это трубчатый орган, который состоит из двух типов клеток: одни выстилают внутреннюю поверхность, а другие формируют наружные стенки. Первыми вырастили сосуды японцы под руководством профессора Кадзува Накао из Медицинской школы Киотского университета еще в 2004 году. Чуть позже, в 2006 году, директор Института стволовой клетки университета Миннесоты в Миннеаполисе (США) Катрин Верфэйл продемонстрировала выращенные клетки мышц.

Сердце. Шестнадцати детям в Германии уже пересажены клапаны сердца, выращенные на каркасе от свиного сердца. Двое детей живут с такими клапанами уже 8 лет, и клапаны растут вместе с сердцем! Американо-гонконгская группа ученых обещает начать пересадку «заплаток» для сердца после инфаркта через 5 лет, а английская команда биоинженеров через 10 лет планирует пересаживать целое новенькое сердце.

Почки, печень, поджелудочная железа. Как и сердце, это так называемые сплошные органы. В них самая высокая плотность клеток, поэтому вырастить их труднее всего. Уже решен главный вопрос: как сделать так, чтобы выращенные клетки составили форму печени или почки? Для этого берут матрицу в форме органа, помещают в биореактор и заполняют клетками.

Мочевой пузырь. Самый первый «орган из пробирки». Сегодня операции по выращиванию и пересадке собственного «нового» мочевого пузыря уже сделаны нескольким десяткам американцев.

Верхняя челюсть. Специалисты из Института регенеративной медицины при университете Тампере (Финляндия) умудрились вырастить верхнюю челюсть человека… в его собственной брюшной полости. Они перенесли стволовые клетки на искусственную матрицу из фосфата кальция и зашили мужчине в живот. Через 9 месяцев челюсть извлекли и поставили на место родной, удаленной из-за опухоли.

Сетчатка глаза, нервная ткань мозга. Достигнуты серьезные успехи, но пока о весомых результатах говорить рано.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!