Информационный женский портал

Искусственная сетчатка глаза. Создан протез сетчатки глаза, не требующий источника питания «Умные» китайские палочки для еды

В 2018 году 39 миллионов человек остаются слепыми. Из-за наследственных заболеваний, старения тканей, инфекций или травм. Одна из главных причин - это болезни сетчатки. Но наука развивается так быстро, что фантастика переходит из книг в лаборатории и операционные, снимая барьер за барьером. Ниже мы рассмотрим, какое будущее ждет офтальмологию, как будут лечить (и уже лечат), возвращать зрение, диагностировать недуги и восстанавливать глаза после операций.

Киборгизация: бионические глаза

Главный тренд офтальмологии будущего - бионические глаза. В 2018 году уже существуют 4 успешных проекта, и искусственные глаза сейчас - далеко не картинка из футуристического фэнтези.

Самый интересный проект - это Argus II от Second Sight. Устройство состоит из импланта, очков, камеры, кабеля и видеопроцессора. Имплант, имеющий передатчик, вживляется в сетчатку. Носимая с очками камера фиксирует изображения, которые процессор обрабатывает, генерируя сигнал, передатчик импланта принимает его и стимулирует клетки сетчатки. Так реконструируется зрение. Разработка изначально предназначалась для больных макулодистрофией. Это возрастное заболевание, оно сопровождается слабым кровоснабжением центра сетчатки и приводит к слепоте.

В чем недостаток технологии? Устройство стоит баснословные 150 тысяч долларов и не возвращает зрение полностью, лишь позволяя различать силуэты фигур. По состоянию на 2017 год 250 человек носят Argus II, что, безусловно, ничтожно мало.

У Argus II есть аналоги. Например, Boston Retinal Implant. Он тоже создан специально для пациентов с макулодистрофией и пигментным ретинитом (разложением фоторецепторов сетчатки). Он работает по похожему принципу, направляя сигналы нервным клеткам и создавая схематичное изображение объекта. Стоит назвать и IRIS, созданный для пациентов на последних стадиях деградации сетчатки. IRIS состоит из видеокамеры, носимого процессора и стимулятора. От них отличается Retina Implant AG. Имплант улавливает фотоны и активирует зрительный нерв, при этом устройство обходится без внешней камеры.

Импланты в головном мозге

Как ни странно, лечить зрение можно, не касаясь глаз. Для этого достаточно вживить в мозг чип, который будет стимулировать короткими электрическими разрядами зрительную кору. В этом направлении работает упомянутый выше Second Sight. Компания разработала альтернативную версию Argus II, которая совсем не затрагивает глаза и работает с мозгом напрямую. Девайс будет стимулировать нервные клетки током, извещая мозг о потоке света.

Искусственная сетчатка

Мы сказали, что пигментный ретинит поражает фоторецепторы сетчатки, из-за чего человек перестает воспринимать свет и слепнет. Это заболевание кодируется генетически. Сетчатка состоит из миллионов рецепторов. Мутация лишь в одном из 240 генов запускает их гибель и портит зрение, даже если связанные с ней зрительные нейроны будут целы. Как быть в этом случае? Имплантировать новую сетчатку. Искусственный аналог состоит из электропроводящего полимера с шелковой подложкой, завернутого в полимерный полупроводник. Когда падает свет, полупроводник поглощает фотоны. Вырабатывается ток и электрические разряды касаются нейронов сетчатки. Эксперимент с мышами показал, что при освещенности в 4-5 лк (Люксов), как в начале сумерек, мыши с имплантами реагируют на свет так же, как и здоровые грызуны. Томография подтвердила, что зрительная кора мозга крыс была активна. Неясно, будет ли разработка полезной для людей. Итальянский технологический институт (IIT) обещает отчитаться о результатах опытов в 2018 году.

Ошибка в коде

Носимые, вшиваемые и встраиваемые устройства - не единственная надежда офтальмологии. Для того, чтобы вернуть зрение, можно переписать генетический код, из-за ошибки в котором человек начал слепнуть. Метод CRISPR, который базируется на инъекции раствора с вирусом, несущим правильный вариант ДНК, излечивает наследственные заболевания. Исправление кода позволяет бороться с возрастной дегенерацией сетчатки, а также с амаврозом Лебера - крайне редким недугом, убивающим светочувствительные клетки. В мире им страдает около 6 тысяч человек. Препарат Luxturna обещает покончить с ним. Он содержит раствор с правильной версией гена RPE65, шифрующим структуру необходимых белков. Это инъекционный препарат - его вводят в глаз микроскопической иглой.

Диагностика и восстановление после операции

Сопровождающий нас повсюду смартфон - прекрасный инструмент для быстрой и точной диагностики. Например, синхронизированный со смартфоном офтальмоскоп Peek Vision позволяет делать снимки сетчатки где и когда угодно. А Google в 2016 году представил алгоритм анализа изображений, основанный на искусственном интеллекте, который позволяет выявлять признаки диабетической ретинопатии на снимках сетчатки. Алгоритм отыскивает мельчайшие аневризмы, указывающие на патологию. Диабетическая ретинопатия - это тяжелое поражение сосудов сетчатой оболочки глаза, ведущее к слепоте.

Будущее - за быстрым восстановлением после операций. Интересен препарат Cacicol, представленный турецкими исследователями в 2015 году. Их разработка снимает боль, повышенную чувствительность и жжение после операции на глазах. Препарат уже опробовали клинически: пациенты, которым сшивали роговицу (этот метод используется при лечении ее истончения - кератоконуса), отмечали снижение побочных эффектов.

Каким будет зрение будущего?

Уже сейчас офтальмология достигла поразительных успехов: прежде неизлечимую слепоту можно обратить, а наследственные заболевания побороть, переписав несколько участков генетического кода. В каком направлении будет идти развитие? Попробуем предположить:

Лучше предотвратить, чем лечить. Окулист в смартфоне и нейронная сеть, ставящая диагноз, обещают заметно сократить риск запущенных и едва излечимых болезней глаз. Дополненная реальность (AR) позволит распространять медицинские знания в игровой и необременительной форме. Уже сейчас есть приложения AR, моделирующие последствия катаракты и глаукомы. Знание, как известно, сила. Заменить, если нельзя вылечить. Киборгизация - это ключевой медицинский тренд. Нынешние разработки хороши, но они реконструируют зрение лишь отчасти, позволяя различать размытые контуры. В ближайшие 10 лет технология будет идти по пути повышения качества изображения и детализации. Важная задача - избавиться от носимых компонентов: камеры, очков, кабеля. Имплант должен стать мягче и, можно сказать, дружелюбнее для тканей человека, чтобы не ранить их. Вероятно, чипы без внешних вспомогательных элементов, вживляемые прямо в мозг - это самая перспективная ветка киборгизации зрения. Дешевле и доступнее: 150 тысяч долларов за устройство пока делают бионические глаза очень далекими от рынка и недосягаемыми для большинства больных. Следующий шаг - сделать их максимально доступными. Восстановление за часы: вживление чипов, коррекция сетчатки и даже исправление ДНК требуют хирургического вмешательства. Оно оставляет резь, жжение, фантомные боли и другие неприятные следствия. Препараты будущего будут регенерировать поврежденные ткани за часы. Фантастическое зрение для всех: мгновенный снимок с помощью глаза и сетчатка, подключенная к интернету, только сейчас выглядят как научная фантастика.

22/08/2018, 14:47 1.6k Просмотров 293 Нравится

credit: Natalia Hutanu / TUM
Ученые не просто так называют графен «суперматериалом» . Несмотря на то, что он состоит из всего лишь одного слоя атомов углерода, это очень сильный, супер гибкий и сверхлегкий материал, который также проводит электричество и биодеградирует. Недавно международная команда исследователей нашла способ использовать графен для создания искусственной сетчатки глаза. Сетчатка представляет собой слой светочувствительных клеток во внутренней оболочке глаза, ответственные за преобразование изображения (электромагнитное излучение видимой части спектра) в нервные импульсы, которые мозг может интерпретировать. И если этот тонкий слой клеток не функционирует, то человек просто ничего не видит.

В настоящее время миллионы людей по всему миру страдают от заболеваний сетчатки, которые лишают их зрения. Чтобы помочь им увидеть снова, ученые несколько лет назад разработали искусственную сетчатку. Однако все существующие решения сложно назвать идеальными, поскольку имплантаты жесткие и плоские, поэтому изображение, которое они производят, часто выглядит размытым и искаженным. И хотя имплантаты достаточно хрупкие, они также могут повредить близлежащие ткани глаза.

Поэтому графен со всеми его уникальными свойствами может стать ключом к созданию лучшей искусственной сетчатки. Используя сочетание графена, дисульфида молибдена (другой двумерный материал), золота, оксида алюминия и нитрата кремния, исследователи из Техасского университета и Сеульского национального университета создали искусственную сетчатку, которая функционирует намного лучше, чем все существующие модели. Основываясь на лабораторных исследованиях и тестах на животных, ученые определили, что их искусственная сетчатка из графена является биосовместимой и способной имитировать функции человеческого глаза. Кроме этого, она лучше соответствует размерам естественной сетчатки человеческого глаза.

Искусственное зрение все больше становится реальностью как в науке, так и медицине - сочинители фантастических романов о таком и не помышляли. Летом прошлого года первые изготовленные из кремния искусственные сетчатки были имплантированы трем слепым пациентам. Все трое страдали почти полной потерей зрения, вызванной retinitis pigmentosa (RP), - болезнью глаз, повреждающей ночное и периферийное зрение. Они выписались из больницы на следующий после операции день.

Изобрели искусственную кремниевую сетчатку (ASR, от artificial silicon retina) основатели компании Optobionics братья Винсент и Алан Чоу. ASR представляет собой микросхему диаметром 2 мм и толщиной меньше человеческого волоса. На кремниевой пластине размещается порядка 3500 микроскопических солнечных элементов, которые преобразуют свет в электрические импульсы.

Микросхема, созданная для замены поврежденных фоторецепторов - светочувствительных элементов глаза, преобразующих в здоровом глазу свет в электрический сигналы, - работает от внешнего света, у нее нет батареек или проводов. Искусственная кремниевая сетчатка хирургическим способом имплантируется под сетчаткой пациента, в так называемом подсетчаточном пространстве, и генерирует визуальные сигналы, сходные с сигналами, производимыми биологическим фоторецепторным слоем.

В действительности ASR работает с фоторецепторами, еще не утратившими возможность функционировать. «Если микросхема сможет с ними взаимодействовать в течение некоторого продолжительного времени, значит, мы движемся к цели верной дорогой», - уверен Алан Чоу.

Люди, страдающие retinitis pigmentosa, постепенно утрачивают фоторецепторы. Вообще же это собирательное название многих заболеваний глаз, в результате которых происходит разрушение фоторецепторного слоя.

Возрастное возникновение пятен на роговице (AMD, от age-related macular degeneration), по мнению братьев Чоу, также поддается коррекции с помощью искусственной кремниевой сетчатки. Пятна на роговице являются следствием старения организма, но точная причина пока не известна. От подобных болезней страдают более 30 млн. населения планеты, они часто приводят к неизлечимой слепоте.

На сегодняшний день ASR не в состоянии справиться с глаукомой, связанной с повреждением нерва, и не помогает при диабете, приводящем к появлению рубцов на сетчатке. Бессильна искусственная сетчатка при сотрясениях и других мозговых травмах.

«Сейчас мы пытаемся понять, куда двигаться дальше, - рассказывают о своих планах братья Чоу. - Как только удастся определиться, можно будет поэкспериментировать с изменением параметров».

Естественное и искусственное зрение

Процесс «видения» можно сравнить с работой фотокамеры. В фотокамере световые лучи проходят через набор линз, фокусирующих изображение на пленке. В здоровом глазу лучи света проходят через роговицу и хрусталик, который фокусирует изображение на сетчатке, представляющей собой слой светочувствительных элементов, выстилающих заднюю поверхность глаза.

Пятно (macula) - это область сетчатки, получающая и обрабатывающая детальные изображения и посылающая их в мозг по зрительному нерву. Многослойное пятно обеспечивает изображениям, которые мы видим, высочайшую степень разрешения. Повреждено пятно - ухудшается зрение. Что делать в этом случае? Вводить ASR.

Тысячи микроскопических элементов ASR подсоединены к электроду, преобразующему входящие световые изображения в импульсы. Эти элементы стимулируют работу оставшихся работоспособных элементов сетчатки и вырабатывают визуальные сигналы, сходные с сигналами, генерируемыми здоровым глазом. «Искусственные» сигналы могут быть затем обработаны и посланы по зрительному нерву в мозг.

В экспериментах с животными в 80-х годах братья Чоу стимулировали ASR инфракрасным светом и регистрировали отклик сетчатки. Но животные, к сожалению, не могут говорить, поэтому неизвестно, что же, в сущности, происходило.

Более существенные результаты

Около трех лет назад братья собрали достаточное количество данных для того, чтобы обратиться в Управление питания и лекарственных препаратов за разрешением на проведение клинических экспериментов с участием человека. В качестве кандидатов были выбраны три пациента в возрасте от 45 до 75 лет, долгое время страдавших сетчаточной слепотой.

«Мы отобрали людей с наиболее серьезными нарушениями, так что если им удастся хоть что-то увидеть, результаты будут самыми обнадеживающими, - рассказал об эксперименте Алан Чоу. - Нам хотелось начать как можно скорее, мы тревожились только по поводу слишком поспешных выводов, которые могут быть сделаны в результате экспериментов».

Создатели искусственной сетчатки подчеркивают, что в настоящий момент их устройство не в состоянии помочь пациентам видеть так, как делают это здоровые люди.

«Можно будет говорить о блестящем результате, если плотность элементов окажется достаточной, чтобы пациенты могли видеть движущиеся объекты. В идеале им нужно различать формы и очертания предметов», - говорит Ларри Бланкеншип, управляющий директор компании Optobionics.

Отторжения имплантанта изобретатели не боятся. «Как только искусственная сетчатка имплантирована, вокруг нее образуется вакуум, это вполне предсказуемо», - считают Чоу. Уже можно утверждать, что искусственная кремниевая сетчатка - монументальное научное достижение, которое поможет навсегда избавиться от угрозы некоторых форм слепоты.

  • Создана искусственная сетчатка, которая может вернуть нормальное зрение даже абсолютно слепым людям

Ученые-исследователи из Weill Cornell Medical College смогли расшифровать код нейронной сети сетчатки мыши. Благодаря этому увенчалась успехом попытка создания искусственного глаза, который позволил восстановить зрение слепым мышам. Кроме того, подобным образом уже был "взломан" код сетчатки обезьян, а она практически идентична человеческой сетчатке. Авторы открытия надеются, что в ближайшее время им удастся разработать и протестировать устройство, при помощи которого слепым людям можно будет восстановить зрение.

Это открытие позволит слепым людям видеть не только контуры предметов, но вернет абсолютно нормальное зрение с возможностью видения черт лица собеседника. На данном этапе исследования подопытные животные уже могут различать движущиеся предметы.

Сейчас ученые работают над созданием небольшого устройства по типу обруча или очков, при помощи которого собираемый свет будет преобразовываться в электронный код, который человеческий мозг трансформирует в изображение.

Заболевания сетчатки являются одной из самых частых причин слепоты, однако даже в случае гибели всех фоторецепторов, нервный выходной путь сетчатки, как правило, остается цел. Современные протезы уже используют этот факт: в глаз слепого пациента имплантируются электроды, стимулирующие ганглиозные нервные клетки. Однако такая технология дает лишь расплывчатую картинку, на которой можно рассмотреть лишь общие контуры предметов.

В качестве альтернативного способа стимулирования клеток ученые также проверяют использование светочувствительных белков. Эти белки вводятся в сетчатку при помощи генной терапии. Попав в глаз, белки могут стимулировать сразу многие ганглиозные клетки.

В любом случае, для того, чтобы была сформирована четкая картинка, необходимо знать код сетчатки, тот набор уравнений, который использует природа для превращения света в электрические импульсы, понятные мозгу. Ученые уже пытались найти его для простых объектов, таких как, например, геометрические фигуры. Невролог доктор Шейла Ниренберг предположила, что код должен быть обобщенный и работать как с фигурами, так и с пейзажами или человеческими лицами. Во ходе работы над кодом Ниренберг поняла, что это можно использовать для протезирования. В результате был проведен простой эксперимент, в ходе которого мини-проектор, управляемый расшифрованным кодом, посылал световые импульсы в светочувствительные белки, встроенные в ганглиозные клетки мышей с помощью генных манипуляций.

Тщательный контроль серии экспериментов показал, что качество зрения даже у собранного на скорую руку в лаборатории протеза практически совпадает с аналогичным показателем нормальной здоровой сетчатки мышей.

Новый подход в лечении нарушения зрения дает надежду миллионам человек во всем мире, которые страдают от слепоты из-за заболеваний сетчатки. Лекарственная терапия помогает лишь немногим из них, и совершенный протез будет крайне востребован.

По материалам http://www.cnews.ru


28 Апреля 2015

Исследователи медицинской школы Стэндфордского университета, работающие под руководством профессора Даниэля Паланкера (Daniel Palanker), разработали беспроводной сетчаточный имплантат, который в будущем позволит восстанавливать зрение в пять лучше, чем существующие устройства. Результаты исследований на крысах свидетельствуют о способности нового устройства обеспечивать функциональное зрение пациентам с дегенеративными заболеваниями сетчатки, такими как пигментная дистрофия сетчатки и макулярная дегенерация.

Дегенеративные заболевания сетчатки приводят к разрушению фоторецепторов – так называемых палочек и колбочек, – тогда как остальные части глаза, как правило, сохраняются в хорошем состоянии. Новый имплантат использует электрическую возбудимость одной из популяций сетчаточных нейронов, известных как биполярные клетки. Эти клетки обрабатывают поступающие с фоторецепторов сигналы до того, как они достигают ганглионарных клеток, отправляющих зрительную информацию в головной мозг. Стимулируя биполярные клетки, имплантат пользуется важными естественными свойствами нейронной системы сетчатки, что обеспечивает получение более детализованных изображений, по сравнению с устройствами, не воздействующими на эти клетки.

Изготавливаемый из оксида кремния имплантат состоит из шестиугольных фотоэлектрических пикселей, конвертирующих световое излучение, испускаемое надеваемыми на глаза пациента специальными очками, в электрический ток. Эти электрические импульсы стимулируют биполярные клетки сетчатки, запуская достигающий головного мозга нейронный каскад.

назад

Читать также:

06 Апреля 2015

Как выглядят магнитные волны?

Чип твердотельного компаса, передающий сигналы в области коры головного мозга слепой крысы, отвечающие за обработку визуальной информации, позволил животному «видеть» геомагнитные поля.

читать 20 Июня 2013

Беспроводной протез сетчатки

Биотехнологи из Стэнфордского университета успешно пересадили в глаза крыс протезы сетчатки, которые обходятся без источника питания и требуют минимального хирургического вмешательства для имплантации.

читать 22 Февраля 2013

Электронные сетчатки совершенствуются

Беспроводная бионическая сетчатка Alpha IMS работает без внешней камеры, обеспечивая свободное движение глаз, и подаёт сигналы от 1500 пикселей на близлежащие нейронные слои сетчатки и на зрительный нерв, полностью имитируя работу клеток-фоторецепторов.

читать 18 Февраля 2013

Первая электронная сетчатка выходит на рынок США

FDA одобрило первую искусственную сетчатку – имплантируемое устройство с некоторыми функциями сетчатки, которое поможет людям, потерявшим зрение вследствие генетического заболевания – пигментного ретинита.

читать 14 Мая 2012

Оптоэлектронная сетчатка без батареек

Для создания искусственной сетчатки ученые решили использовать фотоэлементы, активируемые инфракрасным лучом, что позволило совместить передачу визуальной информации с передачей энергии и упростить устройство имплантата.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!